Instructors: Pranabendu Misra, Madhavan Mukund
Lectures and Tutorials: Two live online classes each week. Tutorials as needed.
Evaluation:
Quizzes on Moodle, midsemester exam, programming assignments, final exam
Weightage approximately 10%, 20%, 30%, 40%, to be confirmed
Copying is fatal
Text and reference books:
Avrim Blum, John Hopcroft and Ravi Kannan: Foundations of Data Science, Cambridge University Press 2021 Available Here
Ian Goodfellow, Yoshua Bengio and Aaron Courville: Deep Learning, MIT Press 2016 Available Here
Richard S. Sutton and Andrew G. Barto: Reinforcement Learning: An Introduction, MIT Press (2nd ed) 2018 Available Here
Aurélien Géron: Hands-On Machine Learning with Scikit-Learn, Keras and Tensorflow (2nd ed), O'Reilly 2019
Francois Chollet: Deep Learning with Python, Manning Publications 2017
Nikhil Buduma: Fundamentals of Deep Learning, O'Reilly 2017
Stuart J Russell and Peter Norvig: Artificial Intelligence: A Modern Approach, Pearson (3rd ed) 2016
Daphne Koller and Nir Friedman: Probabilistic Graphical Models – Principles and Techniques, MIT Press 2009
This list is approximate and subject to change.
Lecture 1: 20 Sep 2021
(Introduction (pdf),
Theoretical foundations of ML (pdf),
Class Notes (pdf),
Lecture video)
PAC learning, uniform convergence
Representational capacity, overfitting, underfitting, hyperparameter search
Lecture 2: 23 Sep 2021
(VC-Dimension (pdf),
Loss Functions (pdf),
Class Notes (pdf),
Lecture video)
VC dimension
Choosing loss functions: MLE, cross entropy
Lecture 3: 28 Sep 2021
(Training Deep Neural Networks (pdf),
Class Notes (pdf),
Lecture video)
Neural networks, unstable gradients, initialization strategies, non-saturating activation functions, batch normalization
Lecture 4: 30 Sep 2021
(Class Notes (pdf),
Lecture video)
ill-conditioning; optimizing backpropagation: momentum, adaptive learning rates; regularization; local minima; model identifiability; saddle points
Lecture 5: 04 Oct 2021
(DNN for MNIST (html),
DNN for MNIST (ipynb),
Lecture video –
Part 1,
Part 2)
Deep neural network for MNIST
Lecture 6: 07 Oct 2021
(Convolutional Neural Networks (pdf),
Lecture video)
Convolution, feature maps, zero padding, stride, pooling, parameter sharing
Lecture 7: 18 Oct 2021
(Convolutional Neural Networks (zip),
Lecture video)
CNNs, adversarial attacks
Lecture 8: 21 Oct 2021
(Recurrent Neural Networks (pdf),
Lecture video)
RNNs
Lecture 9: 25 Oct 2021
(RNN and LSTM examples (html),
(RNN and LSTM examples (ipynb),
Lecture video)
RNN and LSTM examples
Lecture 10: 28 Oct 2021
(Autoencoders (pdf),
Lecture video)
Autoencoders: standard, de-noising, contractive, variational
Lecture 11: 01 Nov 2021
(Autoencoders (zip),
Lecture video)
Autoencoders, denoising autoencoders, variational autoencoders
Lecture 12: 15 Nov 2021
(Bayesian Optimization (pdf),
Lecture video)
Bayesian Optimization, Gaussian Process Regression
Lecture 13: 18 Nov 2021
(Generative Adversarial Networks (pdf),
Lecture video)
Generative Adversarial Networks (GANs)
Lecture 14: 22 Nov 2021
(Generative Adversarial Networks (pdf),
Lecture video)
Lecture 15: 25 Nov 2021
(Reinforcement Learning (pdf),
Class notes (pdf),
Lecture video)
Introduction to reinforcement learning, multi-armed bandits
Lecture 16: 29 Nov 2021
(Markov Decision Processes (pdf),
Class notes (pdf),
Lecture video)
Markov Decision Processes: Basic definitions and examples, policies and value functions, Bellman equation, optimal policies
Lecture 17: 02 Dec 2021
(MDPs: Dynamic Programming (pdf),
Class notes (pdf),
Lecture video)
Markov Decision Processes: Police evaluation, policy iteration, value iteration
Lecture 18: 06 Dec 2021
(MDPs: Dynamic Programming (pdf),
Class notes (pdf),
Lecture video)
Markov Decision Processes: Monte Carlo methods
Lecture 19: 09 Dec 2021
(MDPs: Temporal Difference Learning (pdf),
Class notes (pdf),
Lecture video)
Markov Decision Processes: Temporal Difference Learning
Lecture 20: 13 Oct 2021
(Deep Reinforcement Learning (pdf),
DQN for Video Games (html),
DQN for Video Games (ipynb),
Lecture video)
Deep reinforcement learning
Lecture 21: 16 Dec 2021
(Probabilistic Graphical Models (pdf),
Class notes (pdf),
Lecture video)
Probabilistic Graphical Models: Inference, Conditional Independence