
Policy and Value Iteration

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning
September–December 2021

https://www.cmi.ac.in/~madhavan


Policy evaluation

Given a policy π, compute its state value function vπ

Bellman equations: vπ(s) =
∑
a

π(a | s)
∑
s′

∑
r

p(s ′, r | s, a)
[
r + γvπ(s ′)

]
For MDP with n states, n equations in n unknowns

Can solve to get vπ, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
π(s): set v0

π(term) = 0 for terminal state term, arbitrary values for other s

Update vk
π to vk+1

π using: vk+1
π (s) =

∑
a

π(a | s)
∑
s′

∑
r

p(s ′, r | s, a)
[
r + γvk

π(s ′)
]

Stop when incremental change ∆ = |vk+1
π − vk

π | is below threshold θ

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11



Policy evaluation

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 3 / 11



Policy evaluation example

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 4 / 11



Policy improvement

Assume a deterministic policy π

Using vπ, can we find a better policy π′?

Is there a state s where we can substitute π(s) by a better choice a?

qπ(s, a) = E[Rt+1 + γvπ(St+1) | St = s,At = a]

=
∑
s′,r

p(s ′, r | s, a)
[
r + γvπ(s ′)

]
If qπ(s, a) > vπ(s), modify π so that π(s) = a

The new policy π′ is strictly better

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 5 / 11



Policy improvement

Policy Improvement Theorem

For deterministic policies π, π′:

If qπ(s, π′(s)) ≥ vπ(s) for all s, then π′ ≥ π,

If π′ ≥ π and qπ(s, π′(s)) > vπ(s) for some s, then vπ′(s) > vπ(s).

Proof of the theorem is not difficult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 6 / 11



Policy iteration

Start with a random policy π0

Use policy evaluation to compute vπ0

Use policy improvement to construct a better policy π1

Policy iteration: Alternate between policy evaluation and policy improvement

π0
evaluate−−−−−→ vπ0

improve−−−−→ π1
evaluate−−−−−→ vπ1

improve−−−−→ π2
evaluate−−−−−→ · · · improve−−−−→ π∗

evaluate−−−−−→ vπ∗

Finite MDPs — can improve π only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using vπi as initial state to compute vπi+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 8 / 11



Optimizing Policy Iteration

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 9 / 11



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of vπk is sufficent to proceed towards π∗, v∗

Even a single iteration in the computation of vπk will do

Combine policy improvement and one step update at each state

Value iteration

vπk+1
(s, a) = max

a
E[Rt+1 + γvπk (St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s ′, r | s, a)
[
r + γvπk (s ′)

]
Again, stop when incremental change ∆ = |vπk+1

− vπk | is below threshold θ

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11



Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

Requires knowledge of the model — p(s ′, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of
π∗ and v∗

Asynchronous dynamic programming for large state spaces

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 11 / 11


