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Supervised learning

Set of possible input instances X

Categories C , say {0, 1}

Build a classification model M : X ! C

Restrict the types of models

Hypothesis space H — e.g., linear separators

Search for best M 2 H

How do we find the best M?

Labelled training data

Choose M to minimize error (loss) with respect to this set

Why should M generalize well to arbitrary data?
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No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 3 / 11



No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 3 / 11



No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 3 / 11

on

Ma



No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 3 / 11



No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 3 / 11



No free lunch

ML algorithms minimize training loss

Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

Is the situation hopeless?

NFL theorem refers to prediction inputs coming from all possible distributions

ML assumes training set is “representative” of overall data

Prediction instances follow roughly the same distribution as training set

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 3 / 11



A theoretical framework for ML

X is the space of input instances

C ✓ X is the target concept to be
learned

e.g., X is all emails, C is the set of
spam emails

X is equipped with a probability
distribution D

Any random sample from X is
drawn using D

In particular, training set and test
set are such random samples

H is a set of hypotheses

Each h 2 H identifies a subset of X

Choose the best h 2 H as model

True error: Probability that h
incorrectly classifies x 2 X drawn
randomly according to D

errD(h) = Prob(h�C )

h�C = (h \ C ) [ (C \ h) is the
symmetric di↵erence

Training error: Given a (finite)
training sample S ✓ X

errS(h) = |S \ (h�C )|/|S |
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A theoretical framework for ML

X , inputs with distribution D

C ✓ X , target concept

h 2 H, hypothesis (model) for C

True error: errD(h) = Prob(h�C )

Training error:
errS(h) = |S \ (h�C )|/|S |

Overfitting Low training error but
high true error

Underfitting Cannot achieve low
training/true error

Related to the representational
capacity of H

How expressive is H? How many
di↵erent concepts can it capture?

Capacity too high — overfitting

Capacity too low — underfitting
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Probably Approximately Correct (PAC) learning

Assume H is finite — use |H| for capacity

Probably Approximately Correct learning

With high probability, the hypothesis h that fits the sample S also fits the
concept approximately correctly

Size of the sample required for PAC guarantee determined by parameters �, ✏

Smaller � means higher probability of find a good hypothesis

Smaller ✏ means better performance with respect to generalization
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Probably Approximately Correct (PAC) learning

Assume H is finite — use |H| for capacity

Probably Approximately Correct learning

With high probability, the hypothesis h that fits the sample S also fits the
concept approximately correctly

Theorem (PAC learning guarantee)

Let �, ✏ > 0. Let S be a training set of size n �
1

✏
(ln |H|+ ln(1/�)) drawn using D.

With probability � 1� �, every h 2 H with training error zero has true error < ✏.

Size of the sample required for PAC guarantee determined by parameters �, ✏

Smaller � means higher probability of find a good hypothesis

Smaller ✏ means better performance with respect to generalization
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Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

Let �, ✏ > 0. Let S be a training set of size n �
1

2✏2
(ln |H|+ ln(2/�)) drawn using

D. With probability � 1� �, every h 2 H satisfies |errS(h)� errD(h)|  ✏.

Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

What if H is not finite?

Other measures of capacity — e.g. VC-dimension

Analogous convergence theorems in terms of VC-dimension

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 7 / 11

Optimize mthi train set



Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

Let �, ✏ > 0. Let S be a training set of size n �
1

2✏2
(ln |H|+ ln(2/�)) drawn using

D. With probability � 1� �, every h 2 H satisfies |errS(h)� errD(h)|  ✏.

Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

What if H is not finite?

Other measures of capacity — e.g. VC-dimension

Analogous convergence theorems in terms of VC-dimension

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 7 / 11



Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

Let �, ✏ > 0. Let S be a training set of size n �
1

2✏2
(ln |H|+ ln(2/�)) drawn using

D. With probability � 1� �, every h 2 H satisfies |errS(h)� errD(h)|  ✏.

Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

What if H is not finite?

Other measures of capacity — e.g. VC-dimension

Analogous convergence theorems in terms of VC-dimension

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 7 / 11



Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

Let �, ✏ > 0. Let S be a training set of size n �
1

2✏2
(ln |H|+ ln(2/�)) drawn using

D. With probability � 1� �, every h 2 H satisfies |errS(h)� errD(h)|  ✏.

Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

What if H is not finite?

Other measures of capacity — e.g. VC-dimension

Analogous convergence theorems in terms of VC-dimension

Madhavan Mukund Lecture 1: Theoretical foundations of ML AML Sep–Dec 2021 7 / 11



Overfitting and underfitting

Example: Regression

Hd is set of polynomials of
degree d

Increasing d increases
expressiveness — higher
representational capacity

Using too high a d results in
overfitting

Using too low a d results in
underfitting

Random points lying along a quadratic

Linear function underfits

Quadratic fits and generalizes well

Degree 9 polynomial overfits
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Capacity and error

As capacity increases, training
error decreases

Initially, generalization error also
decreases

At some point, generalization error starts
increasing

Optimum capacity is not where training
error is minimum
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Theory and practice

Deep learning models are too
complex to compute representational
capacity explicitly

May not even be able to achieve true
representational capacity

E↵ective capacity limited by
capabilities of parameter estimation
algorithm (backpropagation with
optimization)

Parameter estimation is a complex
nonlinear optimization
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Theory and practice

Deep learning models are too
complex to compute representational
capacity explicitly

May not even be able to achieve true
representational capacity

E↵ective capacity limited by
capabilities of parameter estimation
algorithm (backpropagation with
optimization)

Parameter estimation is a complex
nonlinear optimization

Regularization

Add a penalty for model complexity
to the loss function

Trade o↵ lower training error against
penalty

Hyperparameters

Settings that adjust the capacity —
e.g., degree of polynomial

Set externally, not learned

Search hyperparameter combinations
for optimal settings
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Summary

Supervised learning builds a model that minimize training error

Real goal is to minimize generalization error

PAC learning provides a theoretical framework to justify this

Discrepancies in representational capacity of models can cause underfitting or overfitting

In practice, use regularization and hyperparameter search to identify optimum capacity
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