Lecture 20: Deep Reinforcement Learning

Madhavan Mukund and Pranabendu Misra

Advanced Machine Learning 2021

Deep Reinforcement Learning

We use lecture slides by Fei-Fei Li & Justin Johnson & Serena Yeung

http://cs231n.stanford.edu/slides/2017 /cs231n_2017 _lecturel4.pdf

Madhavan Mukund and Pranabendu Misra Lecture 20: Deep Reinforcement Learning AML 2021 2/3

Today: Reinforcement Learning

Problems involving an agent

interacting with an environment, %°*
which provides numeric reward

signals

Reward A
Next state S,

Action a,

Environment

Goal: Learn how to take actions

in order to maximize reward -

Atari games figure copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 7 May 23, 2017

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 15 May 23, 2017

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 16 May 23, 2017

Markov Decision Process

- Attime step t=0, environment samples initial state s, ~ p(s,)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r, ~ R(. | s, a)

- Environment samples next state s, ~P(.|s, a,)

- Agent receives reward r, and next state s,

- A policy mis a function from S to A that specifies what action to take in
each state

t
- Objective: find policy m* that maximizes cumulative discounted reward: Z'}’ Tt
t=>0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 20 May 23, 2017

A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. u I * for each transition
- (e.g.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 21 May 23, 2017

A simple MDP: Grid World

* 4t L alnul
RRSsaL Jaseer
S T

Random Policy Optimal Policy

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 22 May 23, 2017

The optimal policy m*
We want to find optimal policy n* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 23 May 23, 2017

The optimal policy m*

We want to find optimal policy n* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: ©* = argm;;:lx]E

Z"}(t?’tlﬂ'] Wlth 8p p(S[]), sy ~ ?T('|3t)53t—|—l i~ p('|3t,ﬂt)

t>0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 14 - 24 May 23, 2017

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, @, 1y, --.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 25 May 23, 2017

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, s, @, ry, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V™(s) =E Z'}*trds(] = 8,

t>0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 26 May 23, 2017

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, ry, s, @, ry, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:
V™(s) =E Z'}*trds(] = 8,

t>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

t>0

Q" (s,a) =E [Z ¥irelso = 8, a0 = a, ?T]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 27 May 23, 2017

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(S,G,) — max E |:Z’}’t7"t|80 — §,40 — a,’n’]

t>0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 28 May 23, 2017

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meIE Z"}’tT‘t|So =8,00 =Q,T
>0

Q* satisfies the following Bellman equation:
Q*(5,0) = Eyne |1+ ymaxQ*(s',a’)[s,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s',d’)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 29 May 23, 2017

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = meIE Z"}’tT‘t|So =8,00 =Q,T
>0

Q* satisfies the following Bellman equation:
Q*(5,0) = Eyne |1+ ymaxQ*(s',a’)[s,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s',d’)

The optimal policy nm* corresponds to taking the best action in any state as specified by Q*

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 30 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
'
Qiv1(s,a) =E [’f‘ +ymax Qi(s’, a’)ls, a]
a

Q, will converge to Q* as i -> infinity

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 31 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
'
Qiv1(s,a) =E [’f‘ +ymax Qi(s’, a’)ls, a]
a

Q, will converge to Q* as i -> infinity

What’s the problem with this?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 32 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
'
Qivi(s,a) = E |1+ ymax Qi(s', a')|s,]

Q, will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 33 May 23, 2017

Solving for the optimal policy

Value iteration algorithm: Use Bellman equation as an iterative update
'
Qivi(s,a) = E |1+ ymax Qi(s', a')|s,]

Q, will converge to Q* as i -> infinity

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 34 May 23, 2017

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q" (s,a)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 35 May 23, 2017

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) = Q" (s,a)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 36 May 23, 2017

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 60,{@*(8, a)
function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 37 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Egne [T‘ + ’}'n}ﬁxQ*(s’, a')ls, a}

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 38 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Egne [T‘ + ’}'n}ﬁxQ*(s’, a')ls, a}

Forward Pass
Loss function: L;(6;) = Eg 4up() [(yi — Q(s,0;6;))?]

where y; = Eg g [7‘ +ymax Q(s’,a’; Qi_1)|s,a}
a'.f

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 39 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:

Q*(s,a) =Eg~¢ [T‘ + ’}'n}ﬁxQ*(s’, a')ls, a}
Forward Pass

Loss function: L;(6;) = Eg 4up() (i — Q(s,a;6;))°]

where y; = Eg e [T + ’)/IIIE},XQ(S’,CL’; 9?1—1)|Saa’i|
a

Backward Pass
Gradient update (with respect to Q-function parameters 0):

VGZL?,(Q?,) — Es,awp(-);s’NE [T + H}ﬁx Q(S‘Ir: a”; 9?3—1) o Q(S: a, 9%))V9¢ Q(S: a, 9%)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 40 May 23, 2017

Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
R*(s,a) =Egne [T‘ + ’}'n}ﬁxQ*(s’, a')ls, a}

Forward Pass
Loss function: L;(6;) = Eg 4up() (i = Q(s,a;6;))°]

lteratively try to make the Q-value
where y; = Eg g [’f' + ymax Q('S’: a,'; 0i—1)|s, a} close to the target value (y,) it
@ should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy rt*)

Gradient update (with respect to Q-function parameters 0):

VGZL?,(Q?,) — Es,awp(-);s’NE [T + H}ﬁx Q(S‘Ir: a”; 9?3—1) o Q(S: a, 9%))V9¢ Q(S: a, 9%)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 41 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 42 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(Ss a, 9) : FC-4 (Q-values)
neural network
with weights @ FC-256

1| —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 43 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(Ss a, 9) : FC-4 (Q-values)
neural network
with weights @ FC-256

1| —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

- Input: state s,

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 44 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(S’ 4; 9) : FC-4 (Q-values)
neural network
with weights § FC-256
< Familiar conv layers,
FC layer

1| —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 45 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

s.a:0): _
e oG] Lo FCiaye s 4
with weights 0 FC-256 corresponding to Q(s,,

a,), Q(s, a,), Q(s, a,),
Q(s,a,)

1| —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 46 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

s.a:0): _
e oG] Lo FCiaye s 4
with weights 0 FC-256 corresponding to Q(s,,

a,), Q(s, a,), Q(s, a,),
Q(s,a,)

e Number of actions between 4-18
1N — depending on Atari game

1| —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 47 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Q(s,a;0):

FC-4 (Q-values) < Last FC_ layer has 4-d

neural network output (if 4 actions),

with weights @ FC-256 corresponding to Q(s,,
a'])! Q(St, a2)1 Q(St’ a3)1
Q(s,,a,)

A single feedforward pass v

to compute Q-values for all

actions from the current o e Number of actions between 4-18

state => efficient! 10— depending on Atari game

1| —

Current state s;: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 48 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Loss function (from before)

Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) = Eg g [T‘ +ymax Q*(s’,a’)|s, a}
a!

Forward Pass
Loss function: L;(6;) = Eg 4up() (i = Q(s,a;6;))°]

lteratively try to make the Q-value
where y; = Eg g [’f' + ymax Q('S’: a,'; 0i—1)|s, a} close to the target value (y,) it
@ should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy rt*)

Gradient update (with respect to Q-function parameters 0):

VGZL?,(Q?,) — Es,awp(-);s’NE [T + H}ﬁx Q(S‘Ir: a”; 9?3—1) o Q(S: a, 9%))V9¢ Q(S: a, 9%)]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 49 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 50 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s, a,, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 51 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s, a,, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples " .
P Each transition can also contribute

to multiple weight updates
=> greater data efficiency

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 52 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(&(s;),a;0)
Execute action a; in emulator and observe reward r; and image z; 1
Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)
Store transition (¢, a4, Ty, ¢¢+1) in D
Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D
Seryu= T for terminal ¢,
J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 53 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity IV _ - Initialize replay memory, Q-network
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(&(s;),a;0)
Execute action a; in emulator and observe reward r; and image z; 1
Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)
Store transition (¢, a4, Ty, ¢¢+1) in D
Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D
Seryu= T for terminal ¢,
J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 54 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;

otherwise select a; = max, Q*(&(s;),a;0)

Execute action a; in emulator and observe reward r; and image z; 1
Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)

Store transition (¢, a4, Ty, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D
Seryu= T for terminal ¢,

J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 55 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do

Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;) < Initialize state

fort =1,T do (starting game
With probability € select a random action a, screen pixels) at the
otherwise select a; = max, Q*(&(s;),a;0) beginning of each

Execute action a; in emulator and observe reward r; and image z; 1
Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)

Store transition (¢, a4, Ty, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D
Setyim { T ! for terminal ¢; 1

T + Yymaxy Q(¢j+1,a’;6) for non-terminal ¢;.;

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

episode

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 56 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do - For each timestep t
With probability € select a random action a; of the game
otherwise select a; = max, Q*(&(s;),a;0)
Execute action a; in emulator and observe reward r; and image z; 1
Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)
Store transition (¢, a4, Ty, ¢¢+1) in D
Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D
Seryu= T for terminal ¢,
J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 57 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)

fort =1,T do
With probability € select a random action a, < With small probability,
otherwise select a; = max, Q*(¢(s,), a; 6) select a random
Execute action a; in emulator and observe reward r; and image x; action (explore),

Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)

Store transition (¢, a4, Ty, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D
S { T for terminal ¢; 1

J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

otherwise select
greedy action from
current policy

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 58 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(&(s;),a;0)
Execute action a; in emulator and observe reward r; and image z; 1

Set Si11 = 8t Qgy Ty and Preprocess {b;_;hl = ¢(5E+1J - Take the action (at),
Store transition (¢, a4, Ty, ¢¢+1) in D and observe the
Sample random minibatch of transitions (¢;,a;,r;, ¢;+1) from D reward r, and next

S { T for terminal ¢; 1 state s, ,
J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4
Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 59 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(&(s;),a;0)
Execute action a; in emulator and observe reward r; and image z; 1
Set 8,01 = 8¢, a4, T4 and preprocess @q11 = @(Sy41 e
Store transition (@, @z, 71, des1) in D () < Store transition in
Sample random minibatch of transitions (¢,,a;,7;, ¢;11) from D replay memory
Seryu= T for terminal ¢,
J T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢; .4

Perform a gradient descent step on (y; — Q(@;, a;; 0))2 according to equation 3
end for
end for

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 60 May 23, 2017

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(&(s;),a;0)
Execute action a; in emulator and observe reward r; and image z; 1
Set 8411 = 8¢, Gy, Ty and preprocess ¢;1 = O(S¢41)
Store transition (¢, a4, Ty, ¢¢+1) in D
Sample random minibatch of transitions (¢,,a,,r;, ¢;.1) fromD <«— EXperience Replay:

el X for terminal ¢, ; Sample a random
L { T; + yYmaxy Q(@j+1,a’;0) for non-terminal ¢;., minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3 from replay memory
end for and perform a gradient
end for descent step

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 61 May 23, 2017

F
- ._.':. 5
=
=
i
e
&
i
:_l: 'IZ_:
o

&
:|.! ;_‘
)
i
a

I

i

https://www.youtube.com/watch?v=V1eYniJORnk

Video by Karoly Zsolnai-Fehér. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - 62 May 23, 2017

http://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk

References:

These slides are based on:
m http://cs231n.stanford.edu/slides /2017 /cs231n 2017 _lecturel4.pdf

m https://www.youtube.com/watch?v=IvoHnicueoE

Madhavan Mukund and Pranabendu Misra Lecture 20: Deep Reinforcement Learning AML 2021 3/3

