Temporal Difference Learning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate π_* , ν_*
 - Bootstrap from an initial estimate through incremental updates
 - Need to know the model
- Monte Carlo methods: random exploration to estimate π_* , ν_*
 - Works with black box models
 - Need to complete an episode before applying updates
- Temporal Difference (TD) learning
 - Apply bootstrapping to Monte Carlo methods

From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
 - $V(S_t) \leftarrow V(S_t) + \alpha [G_t V(S_t)], \ \alpha \in (0,1]$ is a constant
 - ullet G_t is available only after we complete the episode calculate backwards from G_T
- Instead
 - Expand G_t as $R_{t+1} + \gamma V(S_{t+1})$
 - Revised update rule: $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
 - \blacksquare R_{t+1} is available after choosing A_t
 - Use current estimate for $V(S_{t+1})$
 - Update $V(S_t)$ on the fly, as the episode evolves
- Also called TD(0), because it has zero lookahead
 - More generally, can look ahead n steps to update, TD(n)
 - Most general version is called $TD(\lambda)$, we only consider TD(0)

TD(0) algorithm for policy evaluation

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
```

TD(0) example: Driving home from work

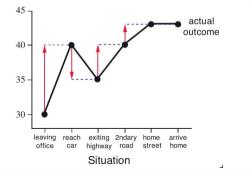
- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm
- Turn off onto home street, arrive at 6:43 pm

	$Elapsed\ Time$	Predicted	Predicted
State	(minutes)	Time to Go	$Total\ Time$
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

TD(0) example: Driving home

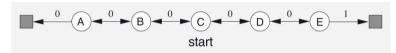
- Rewards: elapsed time on each leg
- No discounting: $\gamma=1$, return at a state is actual time remaining

	$Elapsed\ Time$	Predicted	Predicted
State	(minutes)	Time to Go	$Total\ Time$
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	20	15	35
2ndary road, behind truck	30	10	40
entering home street	40	3	43
arrive home	43	0	43

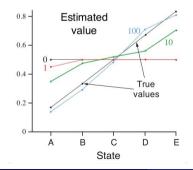


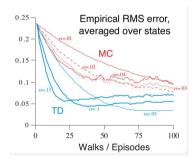
Comparing MC and TD(0)

Markov Reward Process



Reward is probability of reaching right hand side





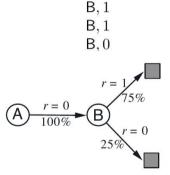
Comparing MC and TD(0) . . .

Predict the values of states A and B

$$A, 0, B, 0$$

 $B, 1$
 $B, 1$
 $B, 1$

- V(B) = 6/8 = 0.75
- What about V(A)?
- MC one episode, V(A) = 0
- \blacksquare TD(0) V(A) = 0.75



B, 1

SARSA: On policy TD control, estimating π_*

- For π_* , better to estimate q_{π} rather than v_{π}
- Structure of an episode

$$\cdots \underbrace{S_{t}}_{A_{t}} \underbrace{R_{t+1}}_{A_{t}} \underbrace{S_{t+1}}_{A_{t+1}} \underbrace{R_{t+2}}_{A_{t+2}} \underbrace{S_{t+2}}_{A_{t+2}} \underbrace{R_{t+3}}_{A_{t+3}} \underbrace{S_{t+3}}_{A_{t+3}} \cdots$$

■ Use the following update rule

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- Update uses $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$, hence the name SARSA
- As with Monte Carlo estimation, use ε -soft policies to balance exploration and exploitation

SARSA algorithm on-policy TD control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., ε -greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]$$

 $S \leftarrow S'; A \leftarrow A';$

until S is terminal

Q-learning: Off policy TD control, estimating π_*

- Directly estimate q_* independent of policy being followed
- Use the following update rule

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

- Underlying policy still needs to be designed to visit all state-action pairs
- With suitable assumptions, Q-learning provably converges to q_*

Q-learning algorithm, off-policy TD control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

Summary

- Temporal difference methods combine bootstrapping with Monte Carlo exploration of state space
- SARSA is a TD(0) algorithm for on-policy control estimating π_*
- $lue{Q}$ -learning is an off-policy algorithm that provably converges to q_*
- TD-based approaches apply beyond reinforcement learning
 - General methods to make long term predictions about dynamical systems
- Theoretical properties such as convergence still an area of research