
Policy and Value Iteration

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning

September–December 2021



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11

Policy
MDP model Aststates,Ge①States S chooses action a

ActionsA) Finite
Rewards Rµ Ottone is gwen

1TGirls,a)WI depends only on s
"Markov" property

) ( reward
new state

IT itself may be probabilistic



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11

I
,
7- Iz if Yt

,
G) 2 Vitals)
for all s

there Exists an optimal 1T¥ ,
☒ZIT HE



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11

e.

Given UI → compete y,
Gill -(Yp)



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11

G- o



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11

☒IF

s÷€_
-0

Terminal state has " no future" pg@o
✓(s) - future reward fours



Si ⑤ -
-
-

Sn

"



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11

1-



Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0
)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 2 / 11



Policy evaluation

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 3 / 11

- Max difference (absolute)
observed in this

iteration

Ewe value



Policy evaluation example

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 4 / 11

(
terminal

-

) 0

I 0
outcome is deterministic

, stay
in place if you try to more off-grid ← 4×40.25×-1

IT -- Uniformly random 0 §☐
0.25 in all 0
drreihns

0
AT = expected no of steps toterminate



Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0
?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0
is strictly better

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 5 / 11



Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0
?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0
is strictly better

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 5 / 11

Vats

qtls.at

ITCats) - l for chosen a
0 otherwise

PCs '.ir/as,a)-pnbahhs2i



Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0
?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0
is strictly better

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 5 / 11

- 0



Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0
?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0
is strictly better

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 5 / 11

-



Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0
?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0
)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0
is strictly better

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 5 / 11

IT' = IT exceptats



Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0
:

If q⇡(s,⇡0
(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0
(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 6 / 11



Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0
:

If q⇡(s,⇡0
(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0
(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 6 / 11



Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0
:

If q⇡(s,⇡0
(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0
(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 6 / 11



Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0
:

If q⇡(s,⇡0
(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0
(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 6 / 11



Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · · improve����! ⇡⇤

evaluate�����! v⇡⇤

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · · improve����! ⇡⇤

evaluate�����! v⇡⇤

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 7 / 11



Policy iteration

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 8 / 11

G-
- o



Optimizing Policy Iteration

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 9 / 11



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0
)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0
)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0
)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0
)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0
)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11

Y hÉahe update
greedy pony update



Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0
)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 10 / 11



Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic

programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of

⇡⇤ and v⇤

Asynchronous dynamic programming for large state spaces

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 11 / 11

Jeff Erickson

Algorithms
(Purdue)



Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic

programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of

⇡⇤ and v⇤

Asynchronous dynamic programming for large state spaces

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 11 / 11



Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic

programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of

⇡⇤ and v⇤

Asynchronous dynamic programming for large state spaces

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 11 / 11



Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic

programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of

⇡⇤ and v⇤

Asynchronous dynamic programming for large state spaces

Madhavan Mukund Policy and Value Iteration AML Sep–Dec 2021 11 / 11

Fair exploration of entire space


