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Policy evaluation

m Given a policy 7, compute its state value function v,

m Bellman equations: v,(s) = Zﬁ(a | s) ZZp(s', r|s,a)[r+yve(s)]

a
m For MDP with n states, n equations in n unknowns

m Can solve to get v, but computationally infeasible for large n
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Policy evaluation

m Given a policy 7, compute its state value function v,

m Bellman equations: VW(SGZ m(als) ZZp(s', r|s,a)[r+yve(s)]

m For MDP with n states, n equations in n unknowns

m Can solve to get v, but computationally infeasible for large n

m Instead, use the Bellman equations as update rules (3((_‘_() ,C\’ 7‘)
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Policy evaluation

m Given a policy 7, compute its state value function v,

m Bellman equations: v,(s) = Zﬁ(a | s) ZZp(s’, r|s,a)[r+yve(s)]

a
m For MDP with n states, n equations in n unknowns

m Can solve to get v, but computationally infeasible for large n

m Instead, use the Bellman equations as update rules

m Initialize v

O(s): set vO(term) = 0 for terminal state term, arbitrary values for other s
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Policy evaluation
[
m Given a policy 7, compute its state value function v, o

m Bellman equations: v,(s) = Z als ZZ s'rs,a)[r+va(s)]

m For MDP with n states, n equations in n unknowns (4]
m Can solve to get v, but computationally infeasible for large n (< C

m Instead, use the Bellman equations as update rules

m Initialize v2(s): set v2(term) = O for terminal state term, arbitrary values for other s

m Update v* to v ! using: v/ (s) = ZW(a | s)ZZp(s’, rls,a) [r+’)}
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Policy evaluation

m Given a policy 7, compute its state value function v,
m Bellman equations: v.(s) = Zﬁ(a | s) ZZp(s’, r|s,a)[r+yve(s)]
a s/ r

m For MDP with n states, n equations in n unknowns

m Can solve to get v, but computationally infeasible for large n

m Instead, use the Bellman equations as update rules

m Initialize v2(s): set vO(term) = O for terminal stat ;

m Update v* to v*! using: v (s) =) n(als FZ p(s’, r\sa [r+’>v( "]
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Policy evaluation

m Given a policy 7, compute its state value function v,

m Bellman equations: v,(s) = Zﬁ(a | s) ZZp(s’, r|s,a)[r+yve(s)]

a
m For MDP with n states, n equations in n unknowns

m Can solve to get v, but computationally infeasible for large n

m Instead, use the Bellman equations as update rules

m Initialize v°

m Update v* to v ! using: v/ (s) = ZW(a | s) Z Zp(s’, r|s,a)[r+yvi(s))]
s’ r

a

(s): set v2(term) = O for terminal state term, arbitrary values for other s

m Stop when incremental change A = [vA"! — v¥| is below threshold 6

s
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Policy evaluation

Iterative Policy Evaluation, for estimating V ~ v,

Input 7, the policy to be evaluated
Algorithm parameter: a small threshold > 0 determining accuracy of estimation
Initialize V (s), for all s € 8, arbitrarily except that V(terminal) = 0

Loop: dﬁﬁf s (ALSDN‘.M“) phwd T %

A+ 0 = MAF

Loop for each s € 8: | jZfMW

v+ V(s)
V(s) < >, m(als) Es’,r p(s',r|s,a) [7" L 'yV(s’)]
A + max(A, v — V(s)])

until A < 6 c—r! ) t )
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Policy evaluation example
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Policy improvem

m Assume a deterministic policy 7

m Using v, can we find a better policy 7'?
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Policy improvement

m Assume a deterministic policy 7 VTEC$7

m Using v, can we find a better policy 7'? q}rtsh)
(4

m Is there a state s where we can substitute 7(s) by a better choice a?
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Policy improvement

m Assume a deterministic policy 7
m Using v, can we find a better policy 7'?
m Is there a state s where we can substitute 7(s) by a better choice a?
m g:(s,a) = E[Rey1 + Yva(Ses1) | Se.= s, Ar = 4]
= Zp(s',r | s,a) [r
or ==
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Policy improvement

m Assume a deterministic policy 7
m Using v, can we find a better policy 7'?

m Is there a state s where we can substitute 7(s) by a better choice a?

r(s,a) = E[Rer1 + v (Se+1) | St =5, A = ]
= Zp(s’, rls,a)[r+yve(s)]

s'r
—

If g-(s,a) > vx(s), modify 7 so that 7(s) = a
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Policy improvement

m Assume a deterministic policy 7
m Using v, can we find a better policy 7'?

m Is there a state s where we can substitute 7(s) by a better choice a?

r(s,a) = E[Rer1 + v (Se+1) | St =5, A = ]
= Zp(s’, rls,a)[r+yve(s)]

s'r

If g-(s,a) > vx(s), modify 7 so that 7(s) = a

The new policy 7’ is strictly better 'IC( =TC M—at S
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Policy improvement

Policy Improvement Theorem
For deterministic policies 7, 7'
m If g(s,7'(s)) > vx(s) for all s, then 7’ >,
m If 7/ > 7 and g (s,7'(s)) > vx(s) for some s, then v,/(s) > v (s).
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Policy improvement

Policy Improvement Theorem
For deterministic policies 7, 7'
m If g(s,7'(s)) > vx(s) for all s, then 7’ >,
m If 7/ > 7 and g (s,7'(s)) > vx(s) for some s, then v,/(s) > v (s).

m Proof of the theorem is not difficult for deterministic policies
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Policy improvement

Policy Improvement Theorem
For deterministic policies 7, 7'
m If g(s,7'(s)) > vx(s) for all s, then 7’ >,
m If 7/ > 7 and g (s,7'(s)) > vx(s) for some s, then v,/(s) > v (s).

m Proof of the theorem is not difficult for deterministic policies

m The theorem extends to probabilistic policies also
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Policy improvement

Policy Improvement Theorem
For deterministic policies 7, 7'
m If g(s,7'(s)) > vx(s) for all s, then 7’ >,

m If 7/ > 7 and g (s,7'(s)) > vx(s) for some s, then v,/(s) > v (s).

m Proof of the theorem is not difficult for deterministic policies
m The theorem extends to probabilistic policies also

m Provides a basis to iteratively improve the policy
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Policy iteration

m Start with a random policy 7
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Policy iteration

m Start with a random policy 7

m Use policy evaluation to compute vy,
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Policy iteration

m Start with a random policy mg
m Use policy evaluation to compute vy,

m Use policy improvement to construct a better policy 71
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Policy iteration

m Start with a random policy 7
m Use policy evaluation to compute vy,
m Use policy improvement to construct a better policy 71

m Policy iteration: Alternate between policy evaluation and policy improvement

evaluate improve evaluate improve evaluate
Vo ™ Vi, s
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Policy iteration

m Start with a random policy 7

m Use policy evaluation to compute vy,
m Use policy improvement to construct a better policy 71
m Policy iteration: Alternate between policy evaluation and policy improvement
evaluate improve evaluate improve evaluate improve evaluate
Viro m Vi, o e Ty Vi,
m Finite MDPs — can improve 7 only finitely many times,

m Must converge to optimal policy
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Policy iteration

m Start with a random policy 7
m Use policy evaluation to compute vy,
m Use policy improvement to construct a better policy 71

m Policy iteration: Alternate between policy evaluation and policy improvement

evaluate improve evaluate improve evaluate improve evaluate
Vo ™ Vi, T S Ty Vi,

m Finite MDPs — can improve 7 only finitely many times,

m Must converge to optimal policy

m Nested iteration — each policy evaluation is itself an iteration

m Speed up by using v, as initial state to compute v, ,
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Policy iteration

Policy Iteration (using iterative policy evaluation) for estimating 7

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Loop:
A+0
Loop for each s € 8:
v+ V(s)
V(s) ¢ Xy 05y 7], m()) [ + 7V (5))]
A + max(A, v —V(s)])
until A < 0 (a small positive number determining the accuracy of estimation)

3. Polic
policy-stable < true
Forgach ¢ - 8-
old-action + 7(s)
m(s) < argmax, >, . p(s',7[s,a) [r+V(s)]
If old-action # (s), then policy-stable « false
If polf€y-stable, then stop and rfeturn V ~v, andr = ,; elgé go to 2
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Optimizing Policy lteration
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Value iteration

m Policy iteration — policy evaluation requires a nested iteration
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Value iteration

m Policy iteration — policy evaluation requires a nested iteration

m A partial computation of v, is sufficent to proceed towards 7., v.
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Value iteration

m Policy iteration — policy evaluation requires a nested iteration
m A partial computation of v, is sufficent to proceed towards 7., v.

m Even a single iteration in the computation of v, will do
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Value iteration

m Policy iteration — policy evaluation requires a nested iteration
m A partial computation of v, is sufficent to proceed towards 7., v.
m Even a single iteration in the computation of v, will do

m Combine policy improvement and one step update at each state
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Value iteration

m Policy iteration — policy evaluation requires a nested iteration

m A partial computation of v, is sufficent to proceed towards 7., v.
m Even a single iteration in the computation of v, will do

m Combine policy improvement and one step update at each state

m Value iteration

vﬂkﬂ(s, a) = m;xE[RtH + Y, (Se41) | St =5, Ar = 3]

= m;XZp(S/, rl|s,a) [r + ’Yvﬂk(sl)]

'5’,r - I )
J Sep valoe
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Value iteration

m Policy iteration — policy evaluation requires a nested iteration
m A partial computation of v, is sufficent to proceed towards 7., v.

m Even a single iteration in the computation of v, will do

Combine policy improvement and one step update at each state

m Value iteration

vﬂkﬂ(s, a) = m;xE[RtH + Y, (Se41) | St =5, Ar = 3]

= m;XZp(S/, rl|s,a) [r + ’Yvﬂk(sl)]

s',r

Again, stop when incremental change A = |v;, ., — v, | is below threshold ¢

Madhavan Mukund Policy and Value Iteration AML Sep—Dec 2021 10/11



Dynamic programming

m In the literature, policy iteration and value iteration are referred to as dynamic

programming methods
Je bt Encleson
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Dynamic programming

m In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

m Requires knowledge of the model — p(s’,r | s, a)
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Dynamic programming

m In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

m Requires knowledge of the model — p(s’,r | s, a)

m How to combine policy evaluation and policy improvement is flexible
m Value iteration is policy iteration with policy evaluation truncated to a single step

m Generalized policy iteration — simultaneously maintain and update approximations of
. and v,
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Dynamic programming

m In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

m Requires knowledge of the model — p(s’,r | s, a)

m How to combine policy evaluation and policy improvement is flexible
m Value iteration is policy iteration with policy evaluation truncated to a single step

m Generalized policy iteration — simultaneously maintain and update approximations of
. and v,

m Asynchronous dynamic programming for large state spaces
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