#### Temporal Difference Learning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

#### Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate  $\pi_*$ ,  $v_*$ 
  - Bootstrap from an initial estimate through incremental updates
  - Need to know the model

#### Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate  $\pi_*$ ,  $v_*$ 
  - Bootstrap from an initial estimate through incremental updates
  - Need to know the model
- Monte Carlo methods: random exploration to estimate  $\pi_*$ ,  $v_*$ 
  - Works with black box models
  - Need to complete an episode before applying updates

#### Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate  $\pi_*$ ,  $v_*$ 
  - Bootstrap from an initial estimate through incremental updates
  - Need to know the model
- Monte Carlo methods: random exploration to estimate  $\pi_*$ ,  $v_*$ 
  - Works with black box models
  - Need to complete an episode before applying updates
- Temporal Difference (TD) learning
  - Apply bootstrapping to Monte Carlo methods

### From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
  - $V(S_t) \leftarrow V(S_t) + \alpha G_t V(S_t)$ ],  $\alpha \in (0,1]$  is a constant
  - $G_t$  is available only after we complete the episode calculate backwards from  $G_T$

э

-

#### From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
  - $V(S_t) \leftarrow V(S_t) + \alpha [G_t V(S_t)], \alpha \in (0, 1]$  is a constant
  - $G_t$  is available only after we complete the episode calculate backwards from  $G_T$
- Instead

  - Expand  $G_t$  as  $R_{t+1} + \gamma V(S_{t+1})$ Revised update rule:  $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
  - $\blacksquare$   $R_{t+1}$  is available after choosing  $A_t$
  - Use current estimate for  $V(S_{t+1})$
  - Update  $V(S_t)$  on the fly, as the episode evolves

# From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
  - $V(S_t) \leftarrow V(S_t) + \alpha[G_t V(S_t)]$ ,  $\alpha \in (0, 1]$  is a constant
  - $G_t$  is available only after we complete the episode calculate backwards from  $G_T$
- Instead
  - Expand  $G_t$  as  $R_{t+1} + \gamma V(S_{t+1})$
  - Revised update rule:  $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
  - $R_{t+1}$  is available after choosing  $A_t$
  - Use current estimate for  $V(S_{t+1})$
  - Update  $V(S_t)$  on the fly, as the episode evolves
- Also called TD(0), because it has zero lookahead
  - More generally, can look ahead n steps to update, TD(n)
  - Most general version is called  $TD(\lambda)$ , we only consider TD(0)

# TD(0) algorithm for policy evaluation

#### Tabular TD(0) for estimating $v_{\pi}$

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
```

Predict how long it will take you to drive home from work

э

▶ ∢ ⊒

- ( E

- 4 西

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm
- Turn off onto home street, arrive at 6:43 pm

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm
- Turn off onto home street, arrive at 6:43 pm

|                             | Elapsed Time | Predicted  | Predicted  |
|-----------------------------|--------------|------------|------------|
| State                       | (minutes)    | Time to Go | Total Time |
| leaving office, friday at 6 | 0            | 30         | 30         |
| reach car, raining          | 5            | 35         | 40         |
| exiting highway             | (20)         | 15         | 35         |
| 2ndary road, behind truck   | 30           | 10         | (40)       |
| entering home street        | 40           | 3          | 43         |
| arrive home                 | 43           | 0          | 43         |

# TD(0) example: Driving home

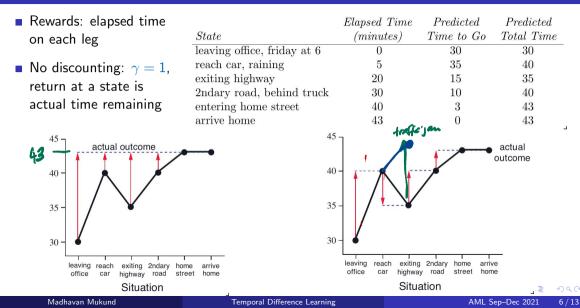
| Rewards: elapsed time                                                                         |                             | Elapsed Time | Predicted  | Predicted  |
|-----------------------------------------------------------------------------------------------|-----------------------------|--------------|------------|------------|
| on each leg                                                                                   | State                       | (minutes)    | Time to Go | Total Time |
|                                                                                               | leaving office, friday at 6 | 0            | 30         | 30         |
| <ul> <li>No discounting: γ = 1,<br/>return at a state is<br/>actual time remaining</li> </ul> | reach car, raining          | 5            | 35         | 40         |
|                                                                                               | exiting highway             | 20           | 15         | 35         |
|                                                                                               | 2ndary road, behind truck   | 30           | 10         | 40         |
|                                                                                               | entering home street        | 40           | 3          | 43         |
|                                                                                               | arrive home                 | 43           | 0          | 43         |

э

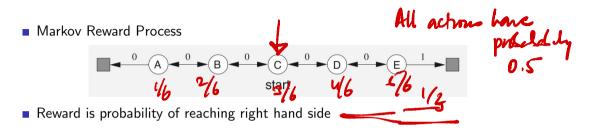
• • = • • = •

< □ > < 同

# TD(0) example: Driving home



# Comparing MC and TD(0)

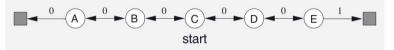


э

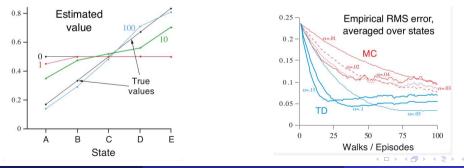
< E

# Comparing MC and TD(0)

Markov Reward Process



Reward is probability of reaching right hand side



Madhavan Mukund

э

э

Predict the values of states A and B



**S** B,1 6. B,1 → B,1
 → B,0 ×

イロト 不得 トイヨト イヨト 二日

Predict the values of states A and B

| A,0,B,0 | B,1 |
|---------|-----|
| B,1     | B,1 |
| B,1     | B,1 |
| B,1     | B,0 |

• V(B) = 6/8 = 0.75

э

▶ < ∃ ▶</p>

→ ∢ Ξ

< 口 > < 向

Predict the values of states A and B

| A,0,B,0 | B,1 |
|---------|-----|
| B,1     | B,1 |
| B,1     | B,1 |
| B,1     | B,0 |

- V(B) = 6/8 = 0.75
- What about V(A)?

э

-

Predict the values of states A and B

| A,0,B,0 | B,1 |
|---------|-----|
| B,1     | B,1 |
| B,1     | B,1 |
| B,1     | B,0 |

- V(B) = 6/8 = 0.75
- What about V(A)?
- MC one episode, V(A) = 0

3

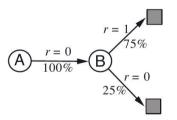
▶ < ∃ ▶</p>

- 4 西

Predict the values of states A and B

- A, 0, B, 0 B, 1 B, 1 B, 1
- V(B) = 6/8 = 0.75
- What about V(A)?
- MC one episode, V(A) = 0
- TD(0) V(A) = 0.75

B, 1 B, 1 B, 1 B, 0



э

4 E N

## SARSA: On policy TD control, estimating $\pi_*$

- For  $\pi_*$ , better to estimate  $q_{\pi}$  rather than  $v_{\pi}$
- Structure of an episode  $\underbrace{\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
- Use the following update rule  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$
- Update uses  $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$ , hence the name SARSA
- As with Monte Carlo estimation, use *ε*-soft policies to balance exploration and exploitation

# SARSA algorithm on-policy TD control

#### Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size  $\alpha \in (0, 1]$ , small  $\varepsilon > 0$ Initialize Q(s, a), for all  $s \in S^+$ ,  $a \in \mathcal{A}(s)$ , arbitrarily except that  $Q(terminal, \cdot) = 0$ 

```
Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

N 4 1 N

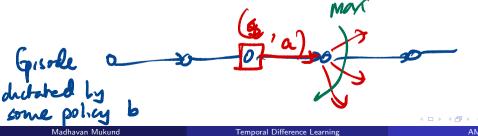
• Directly estimate  $q_*$  independent of policy being followed

э

- Directly estimate  $q_*$  independent of policy being followed
- Use the following update rule  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$

- Directly estimate  $q_*$  independent of policy being followed
- Use the following update rule  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$
- Underlying policy still needs to be designed to visit all state-action pairs

- Directly estimate  $q_*$  independent of policy being followed
- Use the following update rule  $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) Q(S_t, A_t)]$ Atti Use the following update rule
- Underlying policy still needs to be designed to visit all state-action pairs
- With suitable assumptions. Q-learning provably converges to  $q_*$



#### Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
       Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
       S \leftarrow S'
   until S is terminal
```



- Temporal difference methods combine bootstrapping with Monte Carlo exploration of state space
- SARSA is a TD(0) algorithm for on-policy control estimating  $\pi_*$
- Q-learning is an off-policy algorithm that provably converges to  $q_*$
- TD-based approaches apply beyond reinforcement learning
  - General methods to make long term predictions about dynamical systems
- Theoretical properties such as convergence still an area of research