Temporal Difference Learning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate π_* , v_*
 - Bootstrap from an initial estimate through incremental updates
 - Need to know the model

Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate π_* , v_*
 - Bootstrap from an initial estimate through incremental updates
 - Need to know the model
- Monte Carlo methods: random exploration to estimate π_* , v_*
 - Works with black box models
 - Need to complete an episode before applying updates

Adding bootstrapping to Monte Carlo methods

- **D**ynamic programming: use generalized policy iteration to approximate π_* , v_*
 - Bootstrap from an initial estimate through incremental updates
 - Need to know the model
- Monte Carlo methods: random exploration to estimate π_* , v_*
 - Works with black box models
 - Need to complete an episode before applying updates
- Temporal Difference (TD) learning
 - Apply bootstrapping to Monte Carlo methods

From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
 - $V(S_t) \leftarrow V(S_t) + \alpha G_t V(S_t)$], $\alpha \in (0,1]$ is a constant
 - G_t is available only after we complete the episode calculate backwards from G_T

э

-

From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
 - $V(S_t) \leftarrow V(S_t) + \alpha [G_t V(S_t)], \alpha \in (0, 1]$ is a constant
 - G_t is available only after we complete the episode calculate backwards from G_T
- Instead

 - Expand G_t as $R_{t+1} + \gamma V(S_{t+1})$ Revised update rule: $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
 - \blacksquare R_{t+1} is available after choosing A_t
 - Use current estimate for $V(S_{t+1})$
 - Update $V(S_t)$ on the fly, as the episode evolves

From Monte Carlo to TD

- Monte Carlo update for non-stationary environments
 - $V(S_t) \leftarrow V(S_t) + \alpha[G_t V(S_t)]$, $\alpha \in (0, 1]$ is a constant
 - G_t is available only after we complete the episode calculate backwards from G_T
- Instead
 - Expand G_t as $R_{t+1} + \gamma V(S_{t+1})$
 - Revised update rule: $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) V(S_t)]$
 - R_{t+1} is available after choosing A_t
 - Use current estimate for $V(S_{t+1})$
 - Update $V(S_t)$ on the fly, as the episode evolves
- Also called TD(0), because it has zero lookahead
 - More generally, can look ahead n steps to update, TD(n)
 - Most general version is called $TD(\lambda)$, we only consider TD(0)

TD(0) algorithm for policy evaluation

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated
Algorithm parameter: step size \alpha \in (0, 1]
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
```

Predict how long it will take you to drive home from work

э

▶ ∢ ⊒

- (E

- 4 西

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm
- Turn off onto home street, arrive at 6:43 pm

- Predict how long it will take you to drive home from work
- Leave office on Friday at 6:00 pm, initial estimate 30 minutes from now
- Reach car at 6:05 pm, raining, revise estimate to 35 minutes from now, total 40
- At 6:20 pm, complete highway stretch smoothly, cut estimate of total to 35 minutes
- Stuck behind slow truck, follow till 6:40 pm
- Turn off onto home street, arrive at 6:43 pm

	Elapsed Time	Predicted	Predicted
State	(minutes)	Time to Go	Total Time
leaving office, friday at 6	0	30	30
reach car, raining	5	35	40
exiting highway	(20)	15	35
2ndary road, behind truck	30	10	(40)
entering home street	40	3	43
arrive home	43	0	43

TD(0) example: Driving home

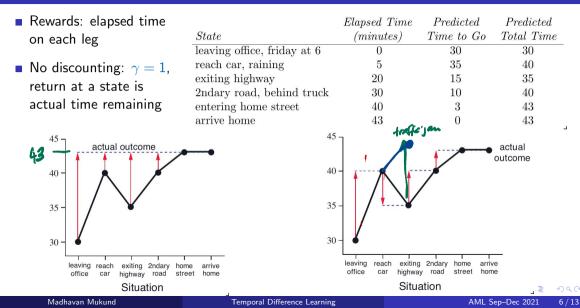
Rewards: elapsed time		Elapsed Time	Predicted	Predicted
on each leg	State	(minutes)	Time to Go	Total Time
	leaving office, friday at 6	0	30	30
 No discounting: γ = 1, return at a state is actual time remaining 	reach car, raining	5	35	40
	exiting highway	20	15	35
	2ndary road, behind truck	30	10	40
	entering home street	40	3	43
	arrive home	43	0	43

э

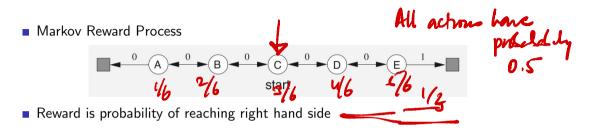
• • = • • = •

< □ > < 同

TD(0) example: Driving home



Comparing MC and TD(0)



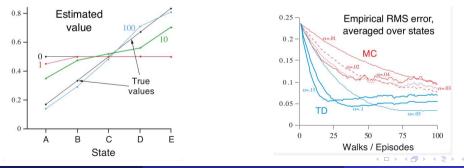
э

< E

Comparing MC and TD(0)

Markov Reward Process

Reward is probability of reaching right hand side



Madhavan Mukund

э

э

Predict the values of states A and B

S B,1 6. B,1 → B,1
 → B,0 ×

イロト 不得 トイヨト イヨト 二日

Predict the values of states A and B

A,0,B,0	B,1
B,1	B,1
B,1	B,1
B,1	B,0

• V(B) = 6/8 = 0.75

э

▶ < ∃ ▶</p>

→ ∢ Ξ

< 口 > < 向

Predict the values of states A and B

A,0,B,0	B,1
B,1	B,1
B,1	B,1
B,1	B,0

- V(B) = 6/8 = 0.75
- What about V(A)?

э

-

Predict the values of states A and B

A,0,B,0	B,1
B,1	B,1
B,1	B,1
B,1	B,0

- V(B) = 6/8 = 0.75
- What about V(A)?
- MC one episode, V(A) = 0

3

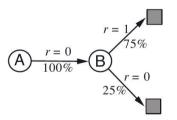
▶ < ∃ ▶</p>

- 4 西

Predict the values of states A and B

- A, 0, B, 0 B, 1 B, 1 B, 1
- V(B) = 6/8 = 0.75
- What about V(A)?
- MC one episode, V(A) = 0
- TD(0) V(A) = 0.75

B, 1 B, 1 B, 1 B, 0



э

4 E N

SARSA: On policy TD control, estimating π_*

- For π_* , better to estimate q_{π} rather than v_{π}
- Structure of an episode $\underbrace{\begin{array}{c} & & \\ &$
- Use the following update rule $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$
- Update uses $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$, hence the name SARSA
- As with Monte Carlo estimation, use *ε*-soft policies to balance exploration and exploitation

SARSA algorithm on-policy TD control

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

```
Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

N 4 1 N

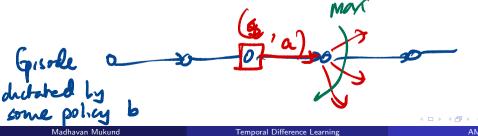
• Directly estimate q_* independent of policy being followed

э

- Directly estimate q_* independent of policy being followed
- Use the following update rule $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$

- Directly estimate q_* independent of policy being followed
- Use the following update rule $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]$
- Underlying policy still needs to be designed to visit all state-action pairs

- Directly estimate q_* independent of policy being followed
- Use the following update rule $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) Q(S_t, A_t)]$ Atti Use the following update rule
- Underlying policy still needs to be designed to visit all state-action pairs
- With suitable assumptions. Q-learning provably converges to q_*



Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Algorithm parameters: step size \alpha \in (0, 1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
       Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
       S \leftarrow S'
   until S is terminal
```


- Temporal difference methods combine bootstrapping with Monte Carlo exploration of state space
- SARSA is a TD(0) algorithm for on-policy control estimating π_*
- Q-learning is an off-policy algorithm that provably converges to q_*
- TD-based approaches apply beyond reinforcement learning
 - General methods to make long term predictions about dynamical systems
- Theoretical properties such as convergence still an area of research