Lecture 4: Training Deep Neural Networks

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

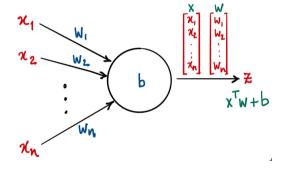
Advanced Machine Learning September–December 2021

Perceptrons define linear separators

$$x^T w + b$$

$$x^T w + b > 0$$
, classify Yes $(+1)$

$$x^T w + b < 0$$
, classify No (-1)

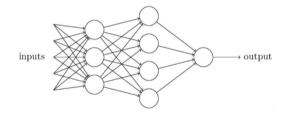


Perceptrons define linear separators

$$x^T w + b$$
 $x^T w + b > 0$, classify Yes (+1)

 $x^T w + b < 0$, classify No (-1)

 Network of perceptrons still defines only a linear separator

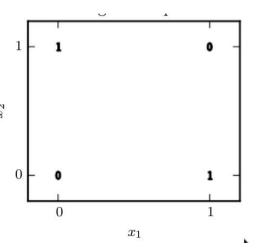


Perceptrons define linear separators

$$x^T w + b$$
 $x^T w + b > 0$, classify Yes (+1)

 $x^T w + b < 0$, classify No (-1)

- Network of perceptrons still defines only a linear separator
- Linear separators cannot describe XOR



Perceptrons define linear separators

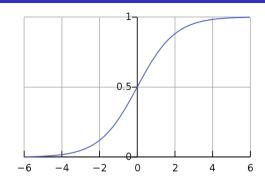
$$x^T w + b$$

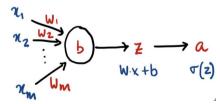
$$x^T w + b > 0$$
, classify Yes (+1)

$$x^T w + b < 0$$
, classify No (-1)

- Network of perceptrons still defines only a linear separator
- Linear separators cannot describe XOR
- Introduce a non-linear activation function
 - Traditionally sigmoid.

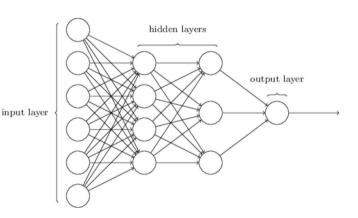
$$\sigma(z) = 1/(1 + e^{-z})$$



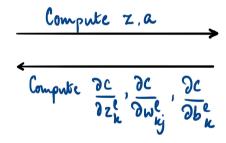


(Feed forward) Neural networks

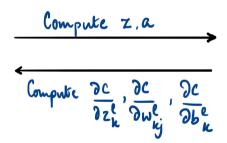
- Acyclic network of perceptrons with non-linear activation functions
- Ingredients
 - Output layer activation function
 - Loss function for gradient descent
 - Hidden layer activation functions
 - Network architecture: Interconnection of layers
 - Initial values of weights and biases



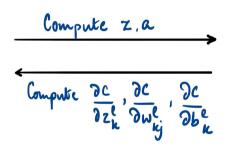
 Backpropagation — efficient implementation of gradient descent for neural networks



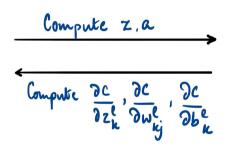
- Backpropagation efficient implementation of gradient descent for neural networks
- Forward pass, compute outputs, activation values
- Backward pass, use chain rule to compute all gradients in one scan



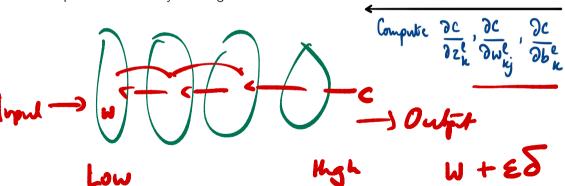
- Backpropagation efficient implementation of gradient descent for neural networks
- Forward pass, compute outputs, activation values
- Backward pass, use chain rule to compute all gradients in one scan
- Stochastic gradient descent (SGD)
 - Update parameters in minibatches
 - Epoch: set of minibatches that covers entire training data



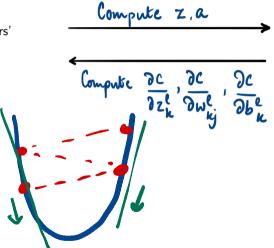
- Backpropagation efficient implementation of gradient descent for neural networks
- Forward pass, compute outputs, activation values
- Backward pass, use chain rule to compute all gradients in one scan
- Stochastic gradient descent (SGD)
 - Update parameters in minibatches
 - Epoch: set of minibatches that covers entire training data
- Difficulties: slow convergence, vanishing and exploding gradients



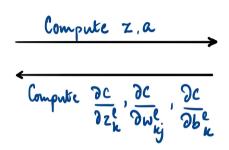
- Vanishing gradients gradients become smaller towards lower layers (closer to input)
 - Gradient descent updates leave these layers' parameters virtually unchanged



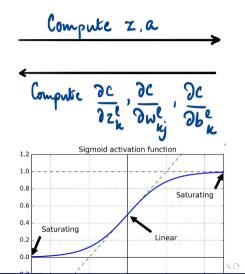
- Vanishing gradients gradients become smaller towards lower layers (closer to input)
 - Gradient descent updates leave these layers' parameters virtually unchanged
- Also exploding gradients, recurrent neural networks with feedback edges



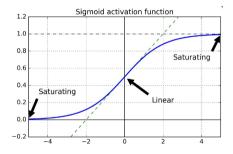
- Vanishing gradients gradients become smaller towards lower layers (closer to input)
 - Gradient descent updates leave these layers' parameters virtually unchanged
- Also exploding gradients, recurrent neural networks with feedback edges
- In general, unstable gradients, different layers learn at different speeds



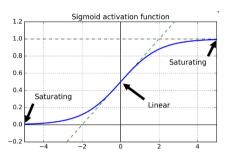
- Vanishing gradients gradients become smaller towards lower layers (closer to input)
 - Gradient descent updates leave these layers' parameters virtually unchanged
- Also exploding gradients, recurrent neural networks with feedback edges
- In general, unstable gradients, different layers learn at different speeds
- [Xavier Glorot and Joshua Bengio, 2010]
 - Random initialization, traditionally Gaussian distribution $\mathcal{N}(0,1)$
 - Variance keeps increasing going forward
 - Saturating sigmoid function



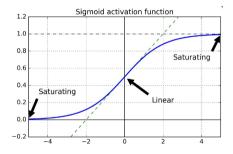
- Want "signal" to flow well in both directions during backpropagation
 - Signal should not die out, explode, saturate



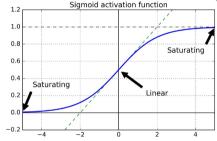
- Want "signal" to flow well in both directions during backpropagation
 - Signal should not die out, explode, saturate
- [Glorot, Bengio] Gradients should have equal variance before and after flowing through a layer in both directions
 - Equal variance requires $fan_{in} = fan_{out}$



- Want "signal" to flow well in both directions during backpropagation
 - Signal should not die out, explode, saturate
- [Glorot, Bengio] Gradients should have equal variance before and after flowing through a layer in both directions
 - Equal variance requires $fan_{in} = fan_{out}$
- Let $fan_{avg} = (fan_{in} + fan_{out})/2$

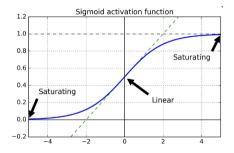


- Want "signal" to flow well in both directions during backpropagation
 - Signal should not die out, explode, saturate
- [Glorot, Bengio] Gradients should have equal variance before and after flowing through a layer in both directions
 - **Equal** variance requires $fan_{in} = fan_{out}$
- Let $fan_{avg} = (fan_{in} + fan_{out})/2$
- Initialize with

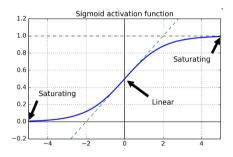


The second state of the second secon

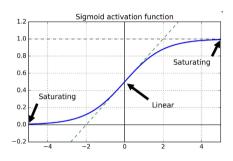
- Let $fan_{avg} = (fan_{in} + fan_{out})/2$
- Initialize with
 - Gaussian, $\mathcal{N}(0, 1/fan_{avg})$
 - Uniform, $\mathcal{U}(-r,r)$, $r = \sqrt{\frac{3}{fan_{avg}}}$



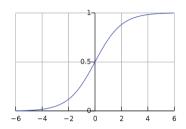
- Let $fan_{avg} = (fan_{in} + fan_{out})/2$
- Initialize with
 - Gaussian, $\mathcal{N}(0, 1/fan_{avg})$
 - Uniform, $\mathcal{U}(-r,r)$, $r = \sqrt{\frac{3}{fan_{avg}}}$
- [Yann LeCun, 1990s] earlier proposed the same with fanavg replaced by fanin
 - Equivalent if $fan_{in} = fan_{out}$



- Let $fan_{avg} = (fan_{in} + fan_{out})/2$
- Initialize with
 - Gaussian, $\mathcal{N}(0, 1/fan_{avg})$
 - Uniform, $\mathcal{U}(-r,r)$, $r = \sqrt{\frac{3}{fan_{avg}}}$
- [Yann LeCun, 1990s] earlier proposed the same with fanavg replaced by fanin
 - Equivalent if $fan_{in} = fan_{out}$
- Other choices for specific activation function
 - lacksquare ReLU, [He et al, 2015], $\mathcal{N}(0,2/\mathit{fan}_\mathit{in})$



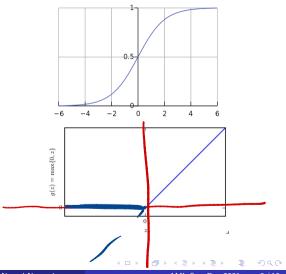
Sigmoid was initially chosen as a "smooth" step



- Sigmoid was initially chosen as a "smooth" step
- Rectified linear unit (ReLU):

$$g(z) = \max(0, z)$$

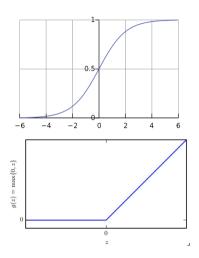
- Fast to compute
- Non-differentiable point not a bottleneck



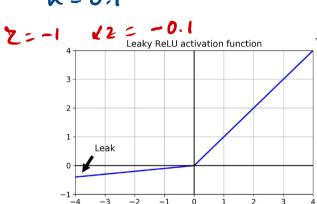
- Sigmoid was initially chosen as a "smooth" step
- Rectified linear unit (ReLU):

$$g(z) = \max(0, z)$$

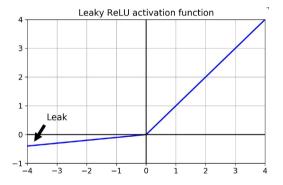
- Fast to compute
- Non-differentiable point not a bottleneck
- "Dying ReLU"
 - Neuron dies weighted sum of outputs is negative for all training samples
 - With a large learning rate, half the network may die!



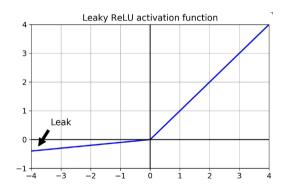
- Leaky ReLU, $max(\alpha z, z)$
 - lacksquare "Leak" lpha is a hyperparameter



- Leaky ReLU, $max(\alpha z, z)$
 - "Leak" α is a hyperparameter
- RReLU random leak
 - Pick α from a random range during training
 - Fix to an average value when testing
 - Seems to work well, act as a regularizer



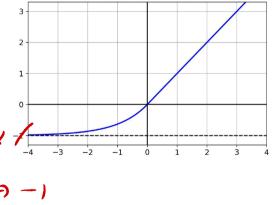
- Leaky ReLU, $\max(\alpha z, z)$
 - "Leak" α is a hyperparameter
- RReLU random leak
 - Pick α from a random range during training
 - Fix to an average value when testing
 - Seems to work well, act as a regularizer
- PReLU parametric ReLU [He et al, 2015]
 - \blacksquare α is learned during training
 - Often outperforms ReLU, but could lead to overfitting



■ ELU — Exponential Linear Unit [Clevert et al, 2015]

$$ELU_{lpha}(z) = egin{cases} lpha(e^z-1) & ext{if } z < 0 \ z & ext{if } z \geq 0 \end{cases}$$

- Training converges faster
- Computing exponential is slower
- In practice, slower than ReLU



ELU activation function ($\alpha = 1$)

$$2 \rightarrow -\infty$$

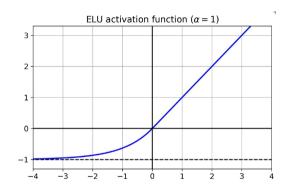
$$e^{2} - 1 \Rightarrow 0 - 1 \Rightarrow -1$$

$$\alpha(e^{2} - 1) \Rightarrow -\alpha$$

■ SELU — Scaled ELU [Klambauer et al, 2017]

$$SELU_{\alpha}(z) = \begin{cases} \alpha(e^{z} - 1) & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

- Self-normalizing output of each layer preserves mean 0 and standard deviation 1 during training
- Use LeCun initialization, $\mathcal{N}(0, 1/fan_{in})$



 Good activation function and initialization mitigates vanishing/exploding gradients

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \underbrace{\sqrt{\sigma_B^2 + \epsilon}}_{\text{A}}$$

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

■ Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

- Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$
- Learn optimal scaling and shifting parameters for each layer

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

- Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$
- Learn optimal scaling and shifting parameters for each layer

 At input, BN layer avoids need for standardizing

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

- Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$
- Learn optimal scaling and shifting parameters for each layer

- At input, BN layer avoids need for standardizing
- Difficulties
 - Mean and variance differ across minibatches
 - How to estimate parameters for entire dataset?
 - Practical solution: maintain a moving average of means and standard deviations for each layer

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

- Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$
- Learn optimal scaling and shifting parameters for each layer

- At input, BN layer avoids need for standardizing
- Difficulties
 - Mean and variance differ across minibatches
 - How to estimate parameters for entire dataset?
 - Practical solution: maintain a moving average of means and standard deviations for each layer
- Batch normalization greatly speeds up learning rate

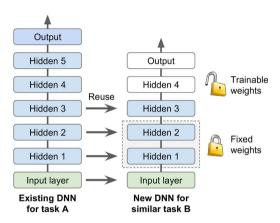
- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ_B^2 for inputs across minibatch
 - Zero-centre and normalize each input

$$\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

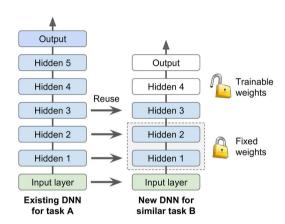
- Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$
- Learn optimal scaling and shifting parameters for each layer

- At input, BN layer avoids need for standardizing
- Difficulties
 - Mean and variance differ across minibatches
 - How to estimate parameters for entire dataset?
 - Practical solution: maintain a moving average of means and standard deviations for each layer
- Batch normalization greatly speeds up learning rate
- Even works as a regularizer!

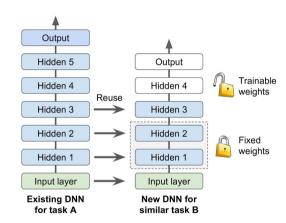
 Reuse trained layers across deep neural networks (DNNs)



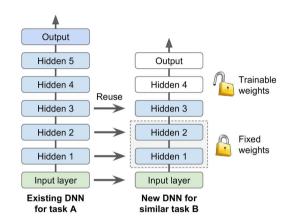
- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, . . .)



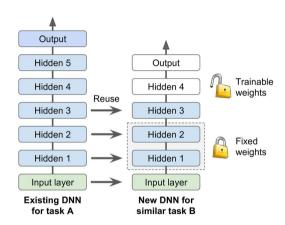
- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, . . .)
- New DNN to classify types of vehicles



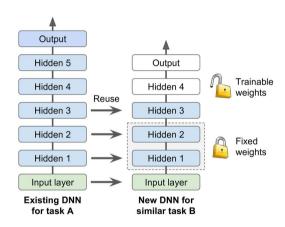
- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, . . .)
- New DNN to classify types of vehicles
- Tasks similar, even overlapping



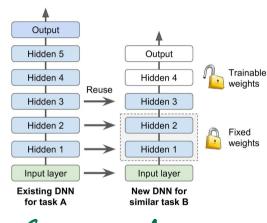
- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, . . .)
- New DNN to classify types of vehicles
- Tasks similar, even overlapping
- Lower layers identify basic features, upper layers combine them to classify



- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, . . .)
- New DNN to classify types of vehicles
- Tasks similar, even overlapping
- Lower layers identify basic features, upper layers combine them to classify
- Freeze weights of lower layers, re-learn upper layers



- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, . . .)
- New DNN to classify types of vehicles
- Tasks similar, even overlapping
- Lower layers identify basic features, upper layers combine them to classify
- Freeze weights of lower layers, re-learn upper layers
- Unfreeze in stages to determine how much to reuse



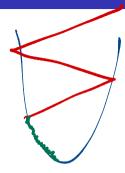
Sany

on releasing

many

Still to come

Optimizing rate of updates in backpropagation



Still to come

- Optimizing rate of updates in backpropagation
- How problematic are local minima?

Regression - granantee of flotel ophmin

Still to come

- Optimizing rate of updates in backpropagation
- How problematic are local minima?
- Identifying and dealing with unstable gradients
- · Choosing a good structure for the network