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Representational capacity

PAC learning guarantee

Let H be a hypothesis class, �, ✏ > 0 and S a training set of size n �
1

✏
(ln |H|+ ln(1/�))

drawn using D. With probability � 1� �, every h 2 H with true error errD > ✏ has
training error errS > 0.

|H| is representational capacity, when H is finite

How do we adapt and apply these bounds when H is infinite?
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Shattering

Set system: (X ,H)

X is a set — instance space

H, set of subsets of X — set of possible classifiers /

hypotheses

A ✓ X is shattered by H if every subset of A is given by

A \ h for some h 2 H

Every way of splitting A is captured by a hypothesis in H

2
|A|

di↵erent subsets of A

Example:

X = R⇥ R
H : Axis-parallel rectangles

A : Four points forming a diamond

H shatters A
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VC-Dimension [Vapnik-Chervonenkis]

VC-Dimension of H — size of the largest subset of X

shattered by H

For axis-parallel rectangles, VC-dimension is at least 4

Not a universal requirement — some sets of size 4 may

not be shattered

No set of size 5 can be shattered by axis-parallel

rectangles

Draw a bounding box rectangle — each edge touches a

boundary point

At least one point lies inside the bounding box

Any set that includes the boundary points also includes

the interior point
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VC-Dimension, Examples

Intervals of reals have VC-dimension 2

X = R, H = {[a, b] | a  b 2 R}
Cannot shatter 3 points: consider subset with first and third point

Pairs of intervals of reals have VC-dimension 4

X = R, H = {[a, b] [ [c , d ] | a  b, c  d 2 R}
Cannot shatter 5 points: consider subset with first, third and fifth point

Finite sets of real numbers

X = R, H = {Z | Z ✓ R, |Z | < 1}

Can shatter any finite set of reals — VC-dimension is infinite

Convex polygons, X = R⇥ R
For any n, place n points on unit circle

Each subset of these points is a convex polygon — VC-dimension is infinite
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VC-dimension and machine learning

PAC learning guarantee

Let H be a hypothesis class, �, ✏ > 0 and S a training set of size n �
1

✏
(ln |H|+ ln(1/�))

drawn using D. With probability � 1� �, every h 2 H with true error errD > ✏ has
training error errS > 0.

We can rewrite this using VC-dimension.
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O

✓
1

✏


VC-dim(H) ln

1

✏
+ ln

1

�

�◆
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i.e., every h 2 H with training error errS(h) = 0. has true error errD(h) < ✏

Madhavan Mukund Lecture 2: VC Dimension AML Sep–Dec 2021 6 / 6



VC-dimension and machine learning

PAC learning guarantee

Let H be a hypothesis class, �, ✏ > 0 and S a training set of size n �
1

✏
(ln |H|+ ln(1/�))

drawn using D. With probability � 1� �, every h 2 H with true error errD > ✏ has
training error errS > 0.

We can rewrite this using VC-dimension. Can similarly restate uniform convergence.

Sample bound using VC-dimension

For any class H and distribution D, if a training sample S is drawn using D of size

O

✓
1

✏


VC-dim(H) ln

1

✏
+ ln

1

�

�◆
, then with probability � 1� �,

every h 2 H with true error errD(h) � ✏ has training error errS(h) > 0,

i.e., every h 2 H with training error errS(h) = 0. has true error errD(h) < ✏

Madhavan Mukund Lecture 2: VC Dimension AML Sep–Dec 2021 6 / 6



Summary

PAC learning and uniform convergence use size of finite hypothesis set as measure

of representational capacity

VC-dimension provides a way of measuring capacity for infinite hypothesis sets

VC-dimension may be finite or infinite

For finite VC-dimension, we have analogues of PAC learning guarantee and uniform

convergence

Note that these theoretical bounds are hard to use in practice

Di�cult, if not impossible, to compute VC-dimension for complex models
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Gradient descent

Supervised learning estimates parameters for a model based on training data

Parameter estimate is through gradient descent

Define a loss function measuring the error with respect to training data

Compute gradients with respect to each parameter

Adjust parameters by a small step in direction opposite to gradients

Typical loss functions include mean squared error (MSE) and cross entropy

How do arrive at these loss functions?
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Maximum likelihood estimators (MLE)

Build a model M from training data D = {(x1, y1, ), (x2, y2, ), . . . , (xn, yn)}

Learning — define M by computing parameters ✓

Model predicts value ŷ on input xi with probability Pmodel(ŷ | xi , ✓)

Probability of predicting correct value is Pmodel(yi | xi , ✓)

Likelihood is
nY

i=1

Pmodel(yi | xi , ✓)

Find M that maximizes the likelihood
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Log likelihood

Maximize the likelihood
nY

i=1

Pmodel(yi | xi , ✓)

log is an increasing function, so we can equivalently maximize log likelihood

log

 
nY

i=1

Pmodel(yi | xi , ✓)
!

Rewrite log likelihood as a sum

log

 
nY

i=1

Pmodel(yi | xi , ✓)
!

=
nX

i=1

log(Pmodel(yi | xi , ✓))
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Maximizing Log likelihood

Define Pdata(y | xi ) as follows: Pdata(y | xi ) =
(
1 if y = yi

0 otherwise

For each xi , Pdata(yi | xi ) = 1, so rewrite log likelihood as
nX

i=1

log(Pmodel(yi | xi , ✓)) =
nX

i=1

Pdata(yi | xi ) · log(Pmodel(yi | xi , ✓))

Log likelihood is a function of the learned parameters ✓

L(✓) =
nX

i=1

Pdata(yi | xi ) log(Pmodel(yi | xi , ✓))

To maximize, find an optimum value of ✓:
@L(✓)
@✓

= 0
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Cross entropy

Let X = {x1, x2, . . . , xk} with a probability distribution P

Entropy is defined as H(P) = �
kX

i=1

P(xi ) logP(xi )

Average number of bits to encode each element of X

Given two distributions P and Q over X , cross entropy is defined as

H(P ,Q) = �
kX

i=1

P(xi ) logQ(xi )

Imagine an encoding based on Q where true distribution is P

Again, average number of bits to encode each element of X

Note that cross entropy is not symmetric: H(P ,Q) 6= H(Q,P)
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Cross entropy and MLE

Maximum likelihood estimator (MLE) — maximize

L(✓) =
nX

i=1

Pdata(yi | xi ) log(Pmodel(yi | xi , ✓))

Pmodel is an estimate for the true distribution Pdata

H(Pdata,Pmodel) = �
kX

i=1

Pdata(y | xi ) log(Pmodel(y | xi , ✓))

H(Pdata,Pmodel) = �L(✓)

Minimizing cross entropy is the same as maximizing likelihood

The “cross entropy loss function” is a special form of this generic observation
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The “cross entropy loss function” is a special form of this generic observation
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Regression and MSE loss

Training input is {(x1, y1), (x2, y2), . . . , (xn, yn)}
Noisy outputs from a linear function

yi = w
T
xi + ✏

✏ ⇠ N (0,�2) : Gaussian noise, mean 0, fixed variance �2

yi ⇠ N (µi ,�2), µi = w
T
xi

Model gives us an estimate for w , so regression learns µi for each xi

Pmodel(yi | xi , ✓) =
1p
2⇡�2

e
� (y�µi )

2

2�2

=
1p
2⇡�2

e
� (y�wT xi )

2

2�2

Log likelihood

L(✓) =
nX

i=1

log

✓
1p
2⇡�2

e
� (y�wT xi )

2

2�2

◆

= n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � w
T
xi )2

2�2
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Regression and MSE loss

Log likelihood: L(✓) = n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � w
T
xi )2

2�2

w
T
xi is predicted value ŷi

To maximize L(✓) with respect to w , ignore all terms that do not depend on w

Optimum value of w is given by

ŵMSE = argmax
w

"
�

nX

i=1

(yi � ŷi )
2

#

= argmin
w

"
nX

i=1

(yi � ŷi )
2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, MSE is the “correct” loss function to maximize likelihood (and
minimize cross entropy)
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2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, MSE is the “correct” loss function to maximize likelihood (and
minimize cross entropy)

Madhavan Mukund Lecture 3: Loss functions AML Sep–Dec 2021 9 / 11



Regression and MSE loss

Log likelihood: L(✓) = n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � w
T
xi )2

2�2

w
T
xi is predicted value ŷi
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2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, MSE is the “correct” loss function to maximize likelihood (and
minimize cross entropy)

Madhavan Mukund Lecture 3: Loss functions AML Sep–Dec 2021 9 / 11



Regression and MSE loss

Log likelihood: L(✓) = n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � w
T
xi )2

2�2

w
T
xi is predicted value ŷi
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2

#

Assuming data points are generated by linear function and then perturbed by
Gaussian noise, MSE is the “correct” loss function to maximize likelihood (and
minimize cross entropy)

Madhavan Mukund Lecture 3: Loss functions AML Sep–Dec 2021 9 / 11



Regression and MSE loss

Log likelihood: L(✓) = n log

✓
1p
2⇡�2

◆
�

nX

i=1

(y � w
T
xi )2

2�2

w
T
xi is predicted value ŷi
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Binary classification

Compute linear output zi = w
T
xi , then apply sigmoid �(z) =

1

1 + e�z

Let ai = �(zi ).

So, Pmodel(yi = 1) = ai , Pmodel(yi = 0) = 1� ai

Cross entropy:
nX

i=1

X

j2{0,1}

Pdata(yi = j) log(Pmodel(yi = j | xi , ✓))

Expand:
nX

i=1

Pdata(yi = 0) logPmodel(yi = 0 | xi , ✓) + Pdata(yi = 1) logPmodel(yi = 1 | xi , ✓)

Equivalently,
nX

i=1

(1� yi ) · log(1� ai ) + yi · log ai

Recommended loss function, directly minimizes cross entropy
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Summary

Our goal is to find a maximum likelihood estimator

Gradient descent uses a loss function to optimize parameters

Finding MLE is equivalent to minimizing cross entropy H(Pdata,Pmodel)

Applying this to a given situation, we arrive at concrete loss functions

Mean square error for regression

“Cross entropy” for binary classification
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