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Representational capacity

PAC learning guarantee

1 ()}
Let # be a hypothesis class, §,¢ > 0 and S a training set of size n > —(In [H| + In(1/¢))
€
drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

bpohen # Gemgle. 0o 0
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Representational capacity

PAC learning guarantee

1
Let 7 be a hypothesis class, ¢,¢ > 0 and S a training set of size n > —(In |H| + In(1/9))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +1In(2/6)) is drawn using D, then with probability > 1 — §, every h € H
satisfies |errs(h) —errp(h)| < e.
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Representational capacity

PAC learning guarantee

1
Let 7 be a hypothesis class, ¢,¢ > 0 and S a training set of size n > —(In |H| + In(1/9))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +1In(2/6)) is drawn using D, then with probability > 1 — §, every h € H
satisfies |errs(h) —errp(h)| < e.

m || is representational capacity, when H is finite
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Representational capacity

PAC learning guarantee

1
Let 7 be a hypothesis class, ¢,¢ > 0 and S a training set of size n > —(In |H| + In(1/9))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

Uniform convergence

Let 7 be a hypothesis class, §,¢ > 0. If a training set S of size

n> ;?(In |H| +1In(2/6)) is drawn using D, then with probability > 1 — §, every h € H
satisfies |errs(h) —errp(h)| < e.

m || is representational capacity, when H is finite

m How do we adapt and apply these bounds when 7 is infinite?
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m Set system: (X, H)
m X is a set — instance space 7(

m H, set of subsets of X — set of possible classifiers /
hypotheses
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m Set system: (X, H)
m X is a set — instance space

m H, set of subsets of X — set of possible classifiers /
hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H

|
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m Set system: (X, H)
m X is a set — instance space
m 7, set of subsets of X — set of possible classifiers /

hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H

m Every way of splitting A is captured by a hypothesis in
m 24l different subsets of A
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m Set system: (X, H)
m X is a set — instance space
m 7, set of subsets of X — set of possible classifiers /

hypotheses

m A C X is shattered by H if every subset of A is given by
AN h for some h € H

m Every way of splitting A is captured by a hypothesis in
m 24l different subsets of A

m Example:
E X=RxR
m H : Axis-parallel rectangles
m A : Four points forming a diamond
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m Set system: (X, H)
m X is a set — instance space
m 7, set of subsets of X — set of possible classifiers /
hypotheses
m A C X is shattered by H if every subset of A is given by
AN h for some h € H
m Every way of splitting A is captured by a hypothesis in

m 214 different subsets of A

m Example:
m X=RxR PY
m 7 : Axis-parallel rectangles
m A : Four points forming a diamond
m 7 shatters A
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m VC-Dimension of H — size of the largest subset of X
o
shattered by H

m For axis-parallel rectangles, VC-dimension is at least 4
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m VC-Dimension of H — size of the largest subset of X
o
shattered by H

m For axis-parallel rectangles, VC-dimension is at least 4 ° °
m Not a universal requirement — some sets of size 4 may
not be shattered
@
k.5,C .
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m VC-Dimension of H — size of the largest subset of X
o
shattered by H

m For axis-parallel rectangles, VC-dimension is at least 4 ° °
m Not a universal requirement — some sets of size 4 may
not be shattered
: : @
m No set of size 5 can be shattered by axis-parallel
rectangles
m Draw a bounding box rectangle — each edge touches a A
boundary point @
m At least one point lies inside the bounding box D
m Any set that includes the boundary points also includes B i
the interior point C
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VC-Dimension, Examples

m Intervals of reals have VC-dimension 2
m X=R, H={[ab]|a<becR}

m Cannot shatter 3 points: consider subset with first and third point
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VC-Dimension, Examples

m Intervals of reals have VC-dimension 2
m X=R, H={[ab]|a<becR}

m Cannot shatter 3 points: consider subset with first and third point

m Pairs of intervals of reals have VC-dimension 4 [ﬁ ‘7 x E]

m X =R H={[a,b]U[c,d]|a< b c<deR}
m Cannot shatter 5 points: consider subset with first, third and fifth point
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VC-Dimension, Examples

m Intervals of reals have VC-dimension 2
m X=R, H={[ab]|a<becR}
m Cannot shatter 3 points: consider subset with first and third point
m Pairs of intervals of reals have VC-dimension 4
m X =R H={[a,b]U[c,d]|a< b c<deR}
m Cannot shatter 5 points: consider subset with first, third and fifth point

m Finite sets of real numbers A Q‘nh )K

B X=R, H={Z|ZCR,|Z| < x}
XA X<, R

m Can shatter any finite set of reals — VC-dimension is infinite
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VC-Dimension, Examples

m Intervals of reals have VC-dimension 2
m X =R, H={[ab]|a<beR}

m Cannot shatter 3 points: consider subset with first and third point

m Pairs of intervals of reals have VC-dimension 4
m X =R, H={abU[c,d|a<bc<decR} lA)’/:P
m Cannot shatter 5 points: consider subset with first, third and fifth point
m Finite sets of real numbers
m X=R H={Z|ZCR,|Z| <o}
m Can shatter any finite set of reals — VC-dimension is infinite
m Convex polygons, X =R x R

m For any n, place n points on unit circle

m Each subset of these points is a convex polygon — VC-dimension is infinite
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VC-dimension and machine learning

PAC learning guarantee

1
Let # be a hypothesis class, §,¢ > 0 and S a training set of size n > —(In [H| + In(1/¢))
€
drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.
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VC-dimension and machine learning

PAC learning guarantee

1
Let 7L be a hypothesis class, d,¢ > 0 and S a training set of size n > ~(In |H| + In(1/0))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

m We can rewrite this using VC-dimension.

Sample bound using VC-dimension
For any class H and distribution D, if a training sample S is drawn using D of size

1 1 1 .
(0] < {VC—dim(?—[) In= +1In 5}) then with probability > 1 — ¢,
€ €

m every h € H with true error errp(h) > € has training error errs(h) > 0,

m i.e., every h € H with training error errs(h) = 0. has true error errp(h) < ¢
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VC-dimension and machine learning

PAC learning guarantee

1
Let 7L be a hypothesis class, d,¢ > 0 and S a training set of size n > ~(In |H| + In(1/0))
€

drawn using D. With probability > 1 — 0, every h € H with true error errp > € has
training error errs > 0.

m We can rewrite this using VC-dimension. Can similarly restate uniform convergence.

Sample bound using VC-dimension
For any class H and distribution D, if a training sample S is drawn using D of size

1 1 1 .
(0] < {VC—dim(?—[) In= +1In 5}) then with probability > 1 — ¢,
€ €

m every h € H with true error errp(h) > € has training error errs(h) > 0,

m i.e., every h € H with training error errs(h) = 0. has true error errp(h) < ¢
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m PAC learning and uniform convergence use size of finite hypothesis set as measure
of representational capacity

m VC-dimension provides a way of measuring capacity for infinite hypothesis sets
m VC-dimension may be finite or infinite

m For finite VC-dimension, we have analogues of PAC learning guarantee and uniform
convergence

m Note that these theoretical bounds are hard to use in practice

Difficult, if not impossible, to compute VC-dimension for complex models
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Gradient descent

m Supervised learning estimates parameters for a model based on training data
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Gradient descent

m Supervised learning estimates parameters for a model based on training data

m Parameter estimate is through gradient descent
m Define a loss function measuring the error with respect to training data
m Compute gradients with respect to each parameter

m Adjust parameters by a small step in direction opposite to gradients
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Gradient descent

m Supervised learning estimates parameters for a model based on training data

m Parameter estimate is through gradient descent
m Define a loss function measuring the error with respect to training data
m Compute gradients with respect to each parameter

m Adjust parameters by a small step in direction opposite to gradients

m Typical loss functions include mean squared error (MSE) and cross entropy
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Gradient descent

m Supervised learning estimates parameters for a model based on training data

m Parameter estimate is through gradient descent
m Define a loss function measuring the error with respect to training data
m Compute gradients with respect to each parameter

m Adjust parameters by a small step in direction opposite to gradients
m Typical loss functions include mean squared error (MSE) and cross entropy

m How do arrive at these loss functions?
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Maximum likelihood estimators (MLE)

m Build a model M from training data D = {(x1,y1,), (x2, 2, ), ..., (Xn, ¥n)}
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Maximum likelihood estimators (MLE)

m Build a model M from training data D = {(x1,y1,), (x2, 2, ), ..., (Xn, ¥n)}

m Learning — define M by computing parameters 0
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Maximum likelihood estimators (MLE)

m Build a model M from training data D = {(x1,y1,), (x2, 2, ), ..., (Xn, ¥n)}
m Learning — define M by computing parameters 0

m Model predicts value y on input x; with probability Prodel(V | xi, 6)
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Maximum likelihood estimators (MLE)

m Build a model M from training data D = {(x1,y1,), (x2, 2, ), ..., (Xn, ¥n)}
m Learning — define M by computing parameters 0
m Model predicts value y on input x; with probability Prodel(V | xi, 6)

m Probability of predicting correct value is Prodel(Vi | xi,0)
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Maximum likelihood estimators (MLE)

m Build a model M from training data D = {(x1,y1,), (x2, 2, ), ..., (Xn, ¥n)}

m Learning — define M by computing parameters 0
m Model predicts value y on input x; with probability Prodel(V | xi, 6)
m Probability of predicting correct value is Prodel(Vi | xi,0)
n
m Likelihood is H Prodel(vi | xi,0)

i=1

Madhavan Mukund Lecture 3: Loss functions AML Sep—Dec 2021 3/11



Maximum likelihood estimators (MLE)

m Build a model M from training data D = {(x1,y1,), (x2, 2, ), ..., (Xn, ¥n)}

m Learning — define M by computing parameters 0
m Model predicts value y on input x; with probability Prodel(V | xi, 6)
m Probability of predicting correct value is Prodel(Vi | xi,0)
n
m Likelihood is | | Pmodel(vi | i, 0)
i=1
m Find M that maximizes the likelihood
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Log likelihood

n
m Maximize the likelihood | [ Prodei(yi | xi.0)
i=1

Madhavan Mukund Lecture 3: Loss functions AML Sep—Dec 2021 4/11



Log likelihood
= Maximize the likelihood | ] Prodei(y: | x:.6) ,/

i=1 ]

m log is an increasing function, so we can equivalently maximize log likelihood

|Og H Pmodel()/i | Xf79)
i=1

Madhavan Mukund Lecture 3: Loss functions AML Sep—Dec 2021 4/11



Log likelihood

n
m Maximize the likelihood | [ Prodei(yi | xi.0)
i=1

m log is an increasing function, so we can equivalently maximize log likelihood
n
|Og (H Pmodel()/i | Xi>9)>
i=1

m Rewrite log likelihood as a sum

log (H Prodel (Yi | Xi, 9)) = Z log( Pmodel(Yi | xi,0))
i=1 i=1
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Maximizing Log likelihood

1 ify=y

m Define Pyaa(y | xi) as follows: Pyaa(y | xi) = _
0 otherwise
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Maximizing Log likelihood

1 ify=y

m Define Pyaa(y | xi) as follows: Pyaa(y | xi) = _
0 otherwise

m For each x;, Pyata(yi | x;) = 1, so rewrite log likelihood as

> " log(Prmodei(yi | xi,60)) = > Paata(yi | xi) - log(Pmodei(yi | xi, 6))
i—1 i—1
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Maximizing Log likelihood

1 ify=y

m Define Pyaa(y | xi) as follows: Pyaa(y | xi) = _
0 otherwise

m For each x;, Pyata(yi | x;) = 1, so rewrite log likelihood as
n n
> " log(Prmodei(yi | xi,60)) = > Paata(yi | xi) - log(Pmodei(yi | xi, 6))
i=1 i=1
m Log likelihood is a function of the learned parameters ¢

E(H) = Z Pdata()/i | Xi) |Og(Pmode|()/i | X,'79))

i=1
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Maximizing Log likelihood

1 ify=y

m Define Pyaa(y | xi) as follows: Pyaa(y | xi) = _
0 otherwise

m For each x;, Pyata(yi | x;) = 1, so rewrite log likelihood as
n n
> " log(Prmodei(yi | xi,60)) = > Paata(yi | xi) - log(Pmodei(yi | xi, 6))
i=1 i=1

m Log likelihood is a function of the learned parameters ¢

E(H) = Z Pdata()/i | Xi) |Og(Pmode|()/i | X,'79))

i=1

)L(0
m To maximize, find an optimum value of ¢: ag(g) =0
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Cross entropy

m Let X = {x1,x2,..., Xk} with a probability distribution P
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Cross entropy

m Let X = {x1,x2,..., Xk} with a probability distribution P
k
m Entropy is defined as H(P) = — > P(x;) log P(x))
i=1
m Average number of bits to encode each element of X
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Cross entropy

m Let X = {x1,x2,..., Xk} with a probability distribution P

k
m Entropy is defined as H(P) = — > P(x;) log P(x))
i=1
m Average number of bits to encode each element of X

m Given two distributions P and @ over X, cross entropy is defined as

H(P,Q) = ZP x;) log Q(x;)

i=1
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Cross entropy

m Let X = {x1,x2,..., Xk} with a probability distribution P
k

m Entropy is defined as H(P) = — > P(x;) log P(x))
i=1

m Average number of bits to encode each element of X

m Given two distributions P and @ over X, cross entropy is defined as

H(P,Q) = ZP x;) log Q(x;)

i=1
m Imagine an encoding based on @ where true distribution is P

m Again, average number of bits to encode each element of X
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Cross entropy

m Let X = {x1,x2,..., Xk} with a probability distribution P

k
m Entropy is defined as H(P) = — > P(x;) log P(x))
i=1
m Average number of bits to encode each element of X

m Given two distributions P and @ over X, cross entropy is defined as

H(P,Q) = ZP x;) log Q(x;)

i=1
m Imagine an encoding based on @ where true distribution is P

m Again, average number of bits to encode each element of X

m Note that cross entropy is not symmetric: H(P, Q) # H(Q, P)
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Cross entropy and MLE

m Maximum likelihood estimator (MLE) — maximize

,C(Q) = Z Pdata()/i | Xi) |0g(Pmode|(YI | X,',H))

= P( ) leg an)
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Cross entropy and MLE

m Maximum likelihood estimator (MLE) — maximize

L(0) =" Paata(vi | i) 108(Pmodel (i | xi,0))
=1

B Prodel is an estimate for the true distribution Pgy,q,

Madhavan Mukund Lecture 3: Loss functions AML Sep—Dec 2021 7/11



Cross entropy and MLE

m Maximum likelihood estimator (MLE) — maximize

L(0) =" Paata(vi | i) 108(Pmodel (i | xi,0))
=1

B Prodel is an estimate for the true distribution Pgy,q,

k
u H(Pdataa Pmodel) :ﬁ: Pdata(y | Xi) |Og(Pmodel(y | X,',Q))
=1
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Cross entropy and MLE

m Maximum likelihood estimator (MLE) — maximize

L(0) =" Paata(vi | i) 108(Pmodel (i | xi,0))
=1

B Prodel is an estimate for the true distribution Pgy,q,

k

u H(Pdataa Pmodel) - - Z Pdata(y | Xi) |Og(Pmodel(y | X,',Q))
i=1

u H(Pdataa 'Dmodel) - _['(9)
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Cross entropy and MLE

m Maximum likelihood estimator (MLE) — maximize

,C(Q) = Z Pdata()/i | Xi) |0g(Pmode|(YI | X,',H))

i=1
B Prodel is an estimate for the true distribution Pgy,q,
k
u H(Pdataa Pmodel) - - Z Pdata(y | Xi) |Og(Pmodel(y | X,',Q))
i=1

u H(Pdataa 'Dmodel) - _['(9)

Minimizing cross entropy is the same as maximizing likelihood
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Cross entropy and MLE

m Maximum likelihood estimator (MLE) — maximize

,C(Q) = Z Pdata()/i | Xi) |0g(Pmode|(YI | X,',H))

i=1
B Prodel is an estimate for the true distribution Pgy,q,
k
u H(Pdataa Pmodel) - *Z Pdata(y | Xi) |Og(Pmodel(y | X,',Q))
i=1

u H(Pdataa 'Dmodel) - _E(e)

Minimizing cross entropy is the same as maximizing likelihood

m The “cross entropy loss function” is a special form of this generic observation
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Regression and MSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

Noisy outputs from a linear function

[ y;:WTx;+€

e ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o2

yi ~ N (i, 0?), pi=w'x
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Regression and MSE loss

m Training input is {(x1, 1), (x2,¥2), .-, (X0, ¥n)}
m Noisy outputs from a linear function
By = WTX,' +e€
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

L7 NN(,UiaUz)x Wi = WTXi

m Model gives us an estimate for w, so regression learns yi; for each x;

AML Sep—Dec 2021 8/11
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Regression and MSE loss

m Training input is {(x1, 1), (x2,¥2), .-, (X0, ¥n)}
m Noisy outputs from a linear function
By = WTX,' +e€
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

L7 NN(,UiaUz)x Wi = WTXi

m Model gives us an estimate for w, so regression learns yi; for each x;

1 (y—pp)?

u Pmodel()// ‘ Xl/e) - W a

e 2052
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Regression and MSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

Noisy outputs from a linear function

[ y;:WTx;+€

m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o

L7 NN(,UiaUz)x Wi = WTXi

m Model gives us an estimate for w, so regression learns yi; for each x;

1 (y—np)? 1 (y—w x)?

e 2052 = ——e 2052

u Pmodel()/i \ Xf‘/e) = \/ﬁ \/W
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Regression and MSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

Noisy outputs from a linear function

By = WTX,' +e€
m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o
m oy~ N (i, 0?), pi = w'x
m Model gives us an estimate for w, so regression learns yi; for each x;
1 eew? 1wy
e 22 = e 252

m P | xi,0) =
model()//‘ i ) \/ﬁ W
= Log Iikelihood
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Regression and MSE loss

m Training input is {(x1,y1), (x2.y2), ..., (Xn, ¥n)}

Noisy outputs from a linear function

[ y;:WTx;+€

m ¢ ~ N(0,0?) : Gaussian noise, mean 0, fixed variance o
2 T
m oy~ N(pi,o%), pi=w'x;
m Model gives us an estimate for w, so regression learns yi; for each x;

1 (y—pp)? 1 (y—w x)?

e 2052 = e 2052

m Log likelihood (assuming natural logarithm)

ﬁ(@)—ib( ! e(y2WT2Xi)2>—n|o( ! >Z(V_WTX)2
— & V2mo? & V2ro? — 202
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Regression and MSE loss

)£

i=1

m Log likelihood: L£(#) = nlog (

27T0'
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Regression and MSE loss

)£

i=1

m Log likelihood: L£(#) = nlog (

27T0'

m w'x; is predicted value §;
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Regression and MSE loss

)£

i=1

m Log likelihood: L£(#) = nlog (

27T0'

m w'x; is predicted value §;

m To maximize £(0) with respect to w, ignore all terms that do not depend on w
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Regression and MSE loss

y—-w X 2
z I
2710' >

i=1

m Log likelihood: L£(#) = nlog (

m w'x; is predicted value §;

m To maximize £(0) with respect to w, ignore all terms that do not depend on w
m Optimum value of w is given by

n
Wmse = arg max [ > i - )7,')2]
w

i=1
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Regression and MSE loss

y—-w X 2
z I
2710' >

i=1

m Log likelihood: L£(#) = nlog (

m w'x; is predicted value §;

m To maximize £(0) with respect to w, ignore all terms that do not depend on w
m Optimum value of w is given by

n n
WMsE = arg max [ > i )7:')2] = arg min [Z(%’ - }7:')2]
w w

i=1 i=1
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Regression and MSE loss

el hand- 1 ~(y —w'x)?
m Log likelihood: £(0) = nlog ( 27m2> — Z T

m w'x; is predicted value §;

m To maximize £(0) with respect to w, ignore all terms that do not depend on w

Optimum value of w is given by

n n
WMsE = arg max [ > i )7:')2] = arg min [Z(%’ - }7:')2]
w i=1 w i=1

m Assuming data points are generated by linear function and then perturbed by
Gaussian noise, MSE is the “correct” loss function to maximize likelihood (and
minimize cross entropy)
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Binary classification

1

m Compute linear output z; = w ' x;, then apply sigmoid o(z) = =
e
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Binary classification

1

m Compute linear output z; = w ' x;, then apply sigmoid o(z) = =
e

m Let 3, = 0(z).
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Binary classification

1
m Compute linear output z; = w ' x;, then apply sigmoid o(z) = T
e
m Let a; = 0(2). S0, Pmodel(yi = 1) = ai, Pmodel(yi =0) =1 —a;
n
m Cross entropy: » > Puata(yi = Jj) log(Prmodel(yi = J | xi,))
i=1je{0,1}
m Expand:
n
> Paata(yi = 0) log Prodel(yi = 0 | xi,0) + Puata(yi = 1) log Prodel (i = 1 | X, 6)
i=1

n

m Equivalently, Z(l — i) -log(1l — a;) + y; - log aj
i=1

m Recommended loss function, directly minimizes cross entropy
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m Our goal is to find a maximum likelihood estimator
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