Lecture 2: VC Dimension

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

・ロト ・日ト ・ヨト ・ヨト ・ヨー うへで

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

hypohn H Sample won D
) The woor
$$\angle E$$

tran evro $\not = 0$ frue un $\not = E$
 $= 0$ \leq

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

Uniform convergence

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$. If a training set S of size $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$ is drawn using D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

Uniform convergence

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$. If a training set S of size $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$ is drawn using D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

\blacksquare $|\mathcal{H}|$ is representational capacity, when \mathcal{H} is finite

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

Uniform convergence

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$. If a training set S of size $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$ is drawn using D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

\blacksquare $|\mathcal{H}|$ is representational capacity, when \mathcal{H} is finite

■ How do we adapt and apply these bounds when *H* is infinite?

- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses

э

< ∃ >

- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses

 $C_{1} = C_{1}'$

• $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$

-

э

- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$
 - Every way of splitting A is captured by a hypothesis in H
 - $2^{|A|}$ different subsets of A

- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$
 - Every way of splitting A is captured by a hypothesis in H
 - $2^{|A|}$ different subsets of A
- Example:
 - $X = \mathbb{R} \times \mathbb{R}$
 - \mathcal{H} : Axis-parallel rectangles
 - A : Four points forming a diamond

- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$
 - Every way of splitting A is captured by a hypothesis in H
 - $2^{|A|}$ different subsets of A
- Example:
 - $X = \mathbb{R} \times \mathbb{R}$
 - \mathcal{H} : Axis-parallel rectangles
 - A : Four points forming a diamond
 - H shatters A

VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
 - For axis-parallel rectangles, VC-dimension is at least 4

VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
 - For axis-parallel rectangles, VC-dimension is at least 4
 - Not a universal requirement some sets of size 4 may not be shattered

VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
 - For axis-parallel rectangles, VC-dimension is at least 4
 - Not a universal requirement some sets of size 4 may not be shattered
- No set of size 5 can be shattered by axis-parallel rectangles
 - Draw a bounding box rectangle each edge touches a boundary point
 - At least one point lies inside the bounding box
 - Any set that includes the boundary points also includes the interior point

Intervals of reals have VC-dimension 2

• $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$

Cannot shatter 3 points: consider subset with first and third point

э

- Intervals of reals have VC-dimension 2
 - $X = \mathbb{R}, \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
 - Cannot shatter 3 points: consider subset with first and third point [• •] X [•]
- Pairs of intervals of reals have VC-dimension 4
 - $X = \mathbb{R}, \mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
 - Cannot shatter 5 points: consider subset with first, third and fifth point

- Intervals of reals have VC-dimension 2
 - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
 - Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
 - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
 - Cannot shatter 5 points: consider subset with first, third and fifth point
- Finite sets of real numbers
 - $X = \mathbb{R}, \ \mathcal{H} = \{Z \mid Z \subseteq \mathbb{R}, |Z| < \infty\}$
 - Can shatter any finite set of reals VC-dimension is infinite

A Cfn K

XCA, XCMR

- Intervals of reals have VC-dimension 2
 - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
 - Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
 - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
 - Cannot shatter 5 points: consider subset with first, third and fifth point
- Finite sets of real numbers
 - $X = \mathbb{R}, \ \mathcal{H} = \{Z \mid Z \subseteq \mathbb{R}, |Z| < \infty\}$
 - Can shatter any finite set of reals VC-dimension is infinite
- Convex polygons, $X = \mathbb{R} \times \mathbb{R}$
 - For any n, place n points on unit circle
 - \blacksquare Each subset of these points is a convex polygon VC-dimension is infinite

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

• We can rewrite this using VC-dimension.

Sample bound using VC-dimension

For any class \mathcal{H} and distribution D, if a training sample S is drawn using D of size $O\left(\frac{1}{\epsilon}\left[\mathsf{VC}\text{-dim}(\mathcal{H})\ln\frac{1}{\epsilon}+\ln\frac{1}{\delta}\right]\right)$, then with probability $\geq 1-\delta$, • every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \geq \epsilon$ has training error $\operatorname{err}_S(h) > 0$, • i.e., every $h \in \mathcal{H}$ with training error $\operatorname{err}_S(h) = 0$. has true error $\operatorname{err}_D(h) < \epsilon$

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

• We can rewrite this using VC-dimension. Can similarly restate uniform convergence.

Sample bound using VC-dimension

For any class \mathcal{H} and distribution D, if a training sample S is drawn using D of size $O\left(\frac{1}{\epsilon}\left[VC\text{-dim}(\mathcal{H})\ln\frac{1}{\epsilon}+\ln\frac{1}{\delta}\right]\right)$, then with probability $\geq 1-\delta$, • every $h \in \mathcal{H}$ with true error $\operatorname{err}_{D}(h) \geq \epsilon$ has training error $\operatorname{err}_{S}(h) > 0$, • i.e., every $h \in \mathcal{H}$ with training error $\operatorname{err}_{S}(h) = 0$. has true error $\operatorname{err}_{D}(h) < \epsilon$

- PAC learning and uniform convergence use size of finite hypothesis set as measure of representational capacity
- VC-dimension provides a way of measuring capacity for infinite hypothesis sets
- VC-dimension may be finite or infinite
- For finite VC-dimension, we have analogues of PAC learning guarantee and uniform convergence
- Note that these theoretical bounds are hard to use in practice
- Difficult, if not impossible, to compute VC-dimension for complex models

Lecture 3: Loss functions

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Supervised learning estimates parameters for a model based on training data

э

Gradient descent

- Supervised learning estimates parameters for a model based on training data
- Parameter estimate is through gradient descent
 - Define a loss function measuring the error with respect to training data
 - Compute gradients with respect to each parameter
 - Adjust parameters by a small step in direction opposite to gradients

Gradient descent

- Supervised learning estimates parameters for a model based on training data
- Parameter estimate is through gradient descent
 - Define a loss function measuring the error with respect to training data
 - Compute gradients with respect to each parameter
 - Adjust parameters by a small step in direction opposite to gradients
- Typical loss functions include mean squared error (MSE) and cross entropy

Gradient descent

- Supervised learning estimates parameters for a model based on training data
- Parameter estimate is through gradient descent
 - Define a loss function measuring the error with respect to training data
 - Compute gradients with respect to each parameter
 - Adjust parameters by a small step in direction opposite to gradients
- Typical loss functions include mean squared error (MSE) and cross entropy
- How do arrive at these loss functions?

• Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$

э

< E

< □ > < 凸

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ

э

4 E

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$
- Probability of predicting correct value is $P_{\text{model}}(y_i \mid x_i, \theta)$

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$
- Probability of predicting correct value is $P_{\text{model}}(y_i \mid x_i, \theta)$

```
• Likelihood is \prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)
```

- Build a model M from training data $D = \{(x_1, y_1,), (x_2, y_2,), \dots, (x_n, y_n)\}$
- Learning define M by computing parameters θ
- Model predicts value \hat{y} on input x_i with probability $P_{\text{model}}(\hat{y} \mid x_i, \theta)$
- Probability of predicting correct value is $P_{\text{model}}(y_i \mid x_i, \theta)$

```
• Likelihood is \prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)
```

Find *M* that maximizes the likelihood

• Maximize the likelihood $\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)$

Э

→ < ∃→

Log likelihood

• Maximize the likelihood $\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)$

log is an increasing function, so we can equivalently maximize log likelihood

 $\log\left(\prod_{i=1}^n P_{\mathsf{model}}(y_i \mid x_i, \theta)\right)$

Log likelihood

• Maximize the likelihood $\prod_{i=1}^{n} P_{model}(y_i \mid x_i, \theta)$

• log is an increasing function, so we can equivalently maximize log likelihood $\log\left(\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)\right)$

Rewrite log likelihood as a sum

$$\log\left(\prod_{i=1}^{n} P_{\text{model}}(y_i \mid x_i, \theta)\right) = \sum_{i=1}^{n} \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

Maximizing Log likelihood

• Define
$$P_{data}(y \mid x_i)$$
 as follows: $P_{data}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

э

→ < Ξ

< □ > < □ > < □ > < Ξ
Maximizing Log likelihood

• Define $P_{data}(y \mid x_i)$ as follows: $P_{data}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

• For each x_i , $P_{data}(y_i \mid x_i) = 1$, so rewrite log likelihood as $\sum_{i=1}^{n} \log(P_{model}(y_i \mid x_i, \theta)) = \sum_{i=1}^{n} P_{data}(y_i \mid x_i) \cdot \log(P_{model}(y_i \mid x_i, \theta))$

Maximizing Log likelihood

• Define $P_{data}(y \mid x_i)$ as follows: $P_{data}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

• For each x_i , $P_{data}(y_i \mid x_i) = 1$, so rewrite log likelihood as $\sum_{i=1}^{n} \log(P_{model}(y_i \mid x_i, \theta)) = \sum_{i=1}^{n} P_{data}(y_i \mid x_i) \cdot \log(P_{model}(y_i \mid x_i, \theta))$

 \blacksquare Log likelihood is a function of the learned parameters θ

$$\mathcal{L}(heta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, heta))$$

Maximizing Log likelihood

• Define $P_{data}(y \mid x_i)$ as follows: $P_{data}(y \mid x_i) = \begin{cases} 1 & \text{if } y = y_i \\ 0 & \text{otherwise} \end{cases}$

• For each x_i , $P_{data}(y_i \mid x_i) = 1$, so rewrite log likelihood as $\sum_{i=1}^{n} \log(P_{model}(y_i \mid x_i, \theta)) = \sum_{i=1}^{n} P_{data}(y_i \mid x_i) \cdot \log(P_{model}(y_i \mid x_i, \theta))$

• Log likelihood is a function of the learned parameters θ

$$\mathcal{L}(heta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, heta))$$

• To maximize, find an optimum value of θ : $\frac{\partial \mathcal{L}(\theta)}{\partial \theta} = 0$

<ロト < 同ト < 回ト < 回ト = 三日

Cross entropy

- Let $X = \{x_1, x_2, \dots, x_k\}$ with a probability distribution P
- Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$

Average number of bits to encode each element of X

.

• Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$

Average number of bits to encode each element of X

Given two distributions *P* and *Q* over *X*, cross entropy is defined as $H(P, Q) = -\sum_{i=1}^{k} P(x_i) \log Q(x_i)$

• Entropy is defined as
$$H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$$

Average number of bits to encode each element of X

Given two distributions *P* and *Q* over *X*, cross entropy is defined as $H(P, Q) = -\sum_{i=1}^{k} P(x_i) \log Q(x_i)$

Imagine an encoding based on Q where true distribution is P

Again, average number of bits to encode each element of X

• Entropy is defined as $H(P) = -\sum_{i=1}^{k} P(x_i) \log P(x_i)$

Average number of bits to encode each element of X

Given two distributions *P* and *Q* over *X*, cross entropy is defined as $H(P, Q) = -\sum_{i=1}^{k} P(x_i) \log Q(x_i)$

- Imagine an encoding based on Q where true distribution is P
- Again, average number of bits to encode each element of X
- Note that cross entropy is not symmetric: $H(P, Q) \neq H(Q, P)$

Cross entropy and MLE

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\text{data}}(y_i \mid x_i) \log(P_{\text{model}}(y_i \mid x_i, \theta))$$

$$P() \log (Q(y_i))$$

Э

• • = • • = •

Cross entropy and MLE

• Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

• P_{model} is an estimate for the true distribution P_{data}

э

2 E

Cross entropy and $\ensuremath{\mathsf{MLE}}$

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

• P_{model} is an estimate for the true distribution P_{data}

$$\blacksquare H(P_{data}, P_{model}) = \bigcap_{i=1}^{k} P_{data}(y \mid x_i) \log(P_{model}(y \mid x_i, \theta))$$

э

2 E

Cross entropy and $\ensuremath{\mathsf{MLE}}$

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

• P_{model} is an estimate for the true distribution P_{data}

$$H(P_{data}, P_{model}) = -\sum_{i=1}^{k} P_{data}(y \mid x_i) \log(P_{model}(y \mid x_i, \theta))$$

• $H(P_{data}, P_{model}) = -\mathcal{L}(\theta)$

Cross entropy and MLE

Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

• P_{model} is an estimate for the true distribution P_{data}

$$H(P_{data}, P_{model}) = -\sum_{i=1}^{k} P_{data}(y \mid x_i) \log(P_{model}(y \mid x_i, \theta))$$

- $H(P_{data}, P_{model}) = -\mathcal{L}(\theta)$
- Minimizing cross entropy is the same as maximizing likelihood

Cross entropy and MLE

• Maximum likelihood estimator (MLE) — maximize

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} P_{\mathsf{data}}(y_i \mid x_i) \log(P_{\mathsf{model}}(y_i \mid x_i, \theta))$$

• P_{model} is an estimate for the true distribution P_{data}

$$H(P_{data}, P_{model}) = -\sum_{i=1}^{k} P_{data}(y \mid x_i) \log(P_{model}(y \mid x_i, \theta))$$

- $H(P_{data}, P_{model}) = -\mathcal{L}(\theta)$
- Minimizing cross entropy is the same as maximizing likelihood
- The "cross entropy loss function" is a special form of this generic observation

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = w^T x_i$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2), \ \mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

•
$$P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}}$$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

•
$$P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^Tx_i)^2}{2\sigma^2}}$$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$
 - $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2
 - $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

•
$$P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^T x_i)^2}{2\sigma^2}}$$

Log likelihood

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y-w^Tx_i)^2}{2\sigma^2}}\right)$$

- Training input is $\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$
 - Noisy outputs from a linear function
 - $y_i = w^T x_i + \epsilon$

• $\epsilon \sim \mathcal{N}(0, \sigma^2)$: Gaussian noise, mean 0, fixed variance σ^2

- $y_i \sim \mathcal{N}(\mu_i, \sigma^2)$, $\mu_i = w^T x_i$
- Model gives us an estimate for w, so regression learns μ_i for each x_i

•
$$P_{\text{model}}(y_i \mid x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu_i)^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^T x_i)^2}{2\sigma^2}}$$

Log likelihood (assuming natural logarithm)

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log\left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-w^T x_i)^2}{2\sigma^2}}\right) = n \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^{n} \frac{(y-w^T x_i)^2}{2\sigma^2}$$

• Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

3

イロト 不得 トイヨト イヨト

• Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

• $w^T x_i$ is predicted value \hat{y}_i

э

▶ ∢ ⊒

• Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w

• Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w
- Optimum value of w is given by

$$\hat{w}_{\text{MSE}} = \underset{w}{\operatorname{arg\,max}} \left[-\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]$$

• Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w
- Optimum value of w is given by

$$\hat{w}_{\mathsf{MSE}} = \operatorname*{arg\,max}_{w} \left[-\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right] = \operatorname*{arg\,min}_{w} \left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]$$

• Log likelihood:
$$\mathcal{L}(\theta) = n \log \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \sum_{i=1}^n \frac{(y - w^T x_i)^2}{2\sigma^2}$$

- $w^T x_i$ is predicted value \hat{y}_i
- To maximize $\mathcal{L}(\theta)$ with respect to w, ignore all terms that do not depend on w
- Optimum value of w is given by

$$\hat{w}_{\mathsf{MSE}} = \arg\max_{w} \left[-\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right] = \arg\min_{w} \left[\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \right]$$

 Assuming data points are generated by linear function and then perturbed by Gaussian noise, MSE is the "correct" loss function to maximize likelihood (and minimize cross entropy)

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

3

▶ < ∃ ▶</p>

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

• Let $a_i = \sigma(z_i)$.

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

• Let $a_i = \sigma(z_i)$. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 - a_i$

3

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

• Let
$$a_i = \sigma(z_i)$$
. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 - a_i$

• Cross entropy:
$$\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{data}(y_i = j) \log(P_{model}(y_i = j \mid x_i, \theta))$$

< □ > < 向

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

• Let
$$a_i = \sigma(z_i)$$
. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 - a_i$

• Cross entropy:
$$\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{data}(y_i = j) \log(P_{model}(y_i = j \mid x_i, \theta))$$

Expand:

$$\sum_{i=1}^{n} P_{data}(y_i = 0) \log P_{model}(y_i = 0 \mid x_i, \theta) + P_{data}(y_i = 1) \log P_{model}(y_i = 1 \mid x_i, \theta)$$

3

▶ < ∃ ▶</p>

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

• Let
$$a_i = \sigma(z_i)$$
. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 - a_i$

• Cross entropy:
$$\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{data}(y_i = j) \log(P_{model}(y_i = j \mid x_i, \theta))$$

• Expand:

$$\sum_{i=1}^{n} P_{data}(y_i = 0) \log P_{model}(y_i = 0 \mid x_i, \theta) + P_{data}(y_i = 1) \log P_{model}(y_i = 1 \mid x_i, \theta)$$

• Equivalently,
$$\sum_{i=1}^{''} (1-y_i) \cdot \log(1-a_i) + y_i \cdot \log a_i$$

< □ > < 向

• Compute linear output $z_i = w^T x_i$, then apply sigmoid $\sigma(z) = \frac{1}{1 + e^{-z}}$

• Let
$$a_i = \sigma(z_i)$$
. So, $P_{\text{model}}(y_i = 1) = a_i$, $P_{\text{model}}(y_i = 0) = 1 - a_i$

• Cross entropy:
$$\sum_{i=1}^{n} \sum_{j \in \{0,1\}} P_{data}(y_i = j) \log(P_{model}(y_i = j \mid x_i, \theta))$$

• Expand:

$$\sum_{i=1}^{n} P_{data}(y_i = 0) \log P_{model}(y_i = 0 \mid x_i, \theta) + P_{data}(y_i = 1) \log P_{model}(y_i = 1 \mid x_i, \theta)$$

• Equivalently,
$$\sum_{i=1}^{n} (1-y_i) \cdot \log(1-a_i) + y_i \cdot \log a_i$$

n

Recommended loss function, directly minimizes cross entropy

Madhavan Mukund

• Our goal is to find a maximum likelihood estimator

Madhavan Mukund

э AML Sep-Dec 2021

3

< □ > < 円

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters
- Finding MLE is equivalent to minimizing cross entropy $H(P_{data}, P_{model})$
Summary

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters
- Finding MLE is equivalent to minimizing cross entropy $H(P_{data}, P_{model})$
- Applying this to a given situation, we arrive at concrete loss functions
 - Mean square error for regression
 - "Cross entropy" for binary classification

Summary

- Our goal is to find a maximum likelihood estimator
- Gradient descent uses a loss function to optimize parameters
- Finding MLE is equivalent to minimizing cross entropy $H(P_{data}, P_{model})$
- Applying this to a given situation, we arrive at concrete loss functions
 - Mean square error for regression
 - "Cross entropy" for binary classification