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lll conditioning

m Il conditioning — small change in input produces a
large change in output

_ 0
Gradient Vy = 879,-J(9) Cost

Impact of update 6 — ¢V on cost J(6)?

Depends on curvature, given by second derivative
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lll conditioning

m Il conditioning — small change in input produces a
large change in output

Gradient Vy =

0
(99,’ J(G) Cost

Impact of update 6 — ¢V on cost J(6)?

m Depends on curvature, given by second derivative
52

m Hessian: Hy = 59i59jJ(9)

m Using Taylor expansion, impact of update 0 — €V,

1
J(0) = V]V + 5VJHQW
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lll conditioning

m Il conditioning — small change in input produces a
large change in output

0
(99,’ J(G) Cost

Impact of update 6 — ¢V on cost J(6)?

Gradient Vy =

Depends on curvature, given by second derivative
62
00;60;

Hessian: Hy =

J(0)

Using Taylor expansion, impact of update 6 — ¢Vy,

1
J(0) = V]V + 5VJHQW

Analyze Hy to check for ill conditioning
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours

m Gradient changes rapidly along the
direction of steepest descent
m Taking large steps is problematic

m lll-conditioned Hessian H — second
derivatives
m Computing Hessian is expensive

m “Second order” methods are not used in
practice
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Directing gradient descent

m Locally steepest direction of descent may
be far from the optimum

m Elliptical contours vs circular contours
m Gradient changes rapidly along the

direction of steepest descent
m Taking large steps is problematic

m lll-conditioned Hessian H — second
derivatives
m Computing Hessian is expensive
m “Second order” methods are not used in

practice

m Instead, heuristics like momentum and
adaptive learning rates

%
oA
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Momentum

m SGD convergence can be very slow
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m Introduce velocity v in SGD — assume unit mass
m Moving average of past gradients, exponential decay

m If gradient remains steady, velocity increases
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Momentum

m SGD convergence can be very slow

=
m Momentum in physics — mass X velocity ,‘é $ —)

m Introduce velocity v in SGD — assume unit mass N
m Moving average of past gradients, exponential decay

m If gradient remains steady, velocity increases
m Update rule T)_(e:)
lV(—@»eV9<1i@z‘(x;;9, ,)) Q & 9 —QWQT
m < ———

X<\
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Momentum

m SGD convergence can be very slow
m Momentum in physics — mass X velocity

m Introduce velocity v in SGD — assume unit mass
m Moving average of past gradients, exponential decay M =0. q

m If gradient remains steady, velocity increases

Update rule
1 m
BV av—eVy (m;L(f(X;,H).,y;)) (-A
ml—0+v
m Hyperparameter o € [0,1) — “friction”, exponentially decaying history

m With constant gradient g, in the limit 17g geometric progression
—
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Nesterov momentum optimization

m Measure cost function slightly
ahead, in direction of momentum
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Nesterov momentum optimization

m Measure cost function slightly
ahead, in direction of momentum

m Update rule

BV av—
1 m
- — L(f ;;9 3 s Vi
Eve(m,z; (F(x +xm)y))

mlO<—0+v
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Nesterov momentum optimization

m Measure cost function slightly

ahead, in direction of momentum ‘Zi Cost
Starting __mm—
m Update rule point Regular
BV < av— momentum update
L )
€V (m Z; L(f(xi; 0+ ﬂm),y,-))
=
mo—0+v o
)

m Controls sideways oscillations
better
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Adjusting the trajectory

m If features have different scales, gradient descent is steeper in some dimensions

m How can we correct for this?
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Adagrad

m Adagrad update rule
1 m
— L(f(x;; , Vi
u g—F mv9§ ( (lee),.y)
mr<r+g-g

€
m AO <« —
6 +/r
§ ~ 107, for numerical
stability

m 0«0+ A0

- g, where
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Adagrad

m Adagrad update rule
1 m
— L(f(x;; , Vi
u g—F mv9§ ( (lee),.y)
mjr<r+g-g

m A« ST - g, where
§ ~ 107, for numerical
stability

m 0+ 0+ A0

m Shrink learning rate in each
dimengon according to entire
history of squared gradient
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m Adagrad update rule

1 m
m g ;VHZ L(f(x:; 0), yi)
i=1 0, (steep dimension) St

mr«r+g-g ¥

AD € h AdaGrad
= < —— - g, where z

s+ & @

§ ~ 107, for numerical ,

stability
w0 0+A0 Grad{ent
. . i Descent

m Shrink learning rate in each (flatter dimension)

dimention according to entire al

history of squared gradient
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Adaptive learning rates

RMSProp

m Using entire history shrinks learning rate too much
m Exponentially decaying average, discard extreme past

m Update rule

m

.5 V0D L 0).)

i=1

mr pr+(L—p)(g-g), where pis decay rate

, where § ~ 10°°

m New hyperparameter p
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Adam

m Adaptive moments — combines RMSProp and moments
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m Adaptive moments — combines RMSProp and moments

m Update rule

m Step size ¢; two decay rates p1, po; two moments, s = r = 0; time step t =0

Vv — €Ngd

1 m
| — fo,-;9,,-
8 Vo 2 LFGsi). ) gM Prop

—_—
Vlowh,® s < pis+(1—pi)gi rpor T (L —12)(g - 8) I

—_— . . r J
m Correct bias in first and second moments: § < F < l

o AT e (en)
o

Madhavan Mukund Lecture 5: Training Deep Neural Networks Il AML Sep—Dec 2021 9/15






m Adaptive moments — combines RMSProp and moments

m Update rule

m Step size ¢; two decay rates p1, po; two moments, s = r = 0; time step t =0

1 m
g ;V(a;L(f(Xiﬁ),Y/)

m s pis+(1—p1)gir par+(1—p2)(g-8)
m Correct bias in first and second moments: § < =, F ! .
1—pi 1—p;
§
A= —c——; 00+ A0
VP44

m No clear theoretical justification for combinining momentum and scaling

m Fairly robust with respect to values of hyperparameters
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Adaptive learning rates

m Choosing a fixed learning rate is hard
m Make a learning rate a function of iteration number

m Power scheduling, exponential scheduling, piecewise constant sche

Loss
A
n way too high: diverges

n too small: slow
. 1 too high: suboptimal

---------- just right
+ —= nJ 9 > Epoch

Start with a high learning rate then reduce it: perfect!
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Regularization

m /1 and ¢, regularization, as usual

m Dropout

m Disable nodes with probability
p

m Analogy — multifunctional
employees

m Scale weights after training
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Local minima

m The loss function for regression is convex .
rror

m Gradient descent converges to global ‘
optimum SATT
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Local minima

m The loss function for regression is convex

Error

m Gradient descent converges to global
optimum

m Loss function for neural networks is not
convex

m In general, gradient descent only finds
local minima
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Local minima

m The loss function for regression is convex

Error

m Gradient descent converges to global
optimum

m Loss function for neural networks is not
convex

m In general, gradient descent only finds
local minima

m How many local minima are there?
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Local minima

m The loss function for regression is convex

Error

m Gradient descent converges to global
optimum

m Loss function for neural networks is not
convex

m In general, gradient descent only finds
local minima

m How many local minima are there?

m How does it affect gradient descent?

w,
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Model identifiability

m Is the model that fits the data unique?
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m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent
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Model identifiability

m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent

m Symmetry

m Fully connected network, permutations of
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m Piecewise linear activation — RelLU

m Scale inputs by k, multiply output by 1/k
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Model identifiability

m Is the model that fits the data unique?

m Non-identifiable — two or more settings
of the parameters are observationally
equivalent

m Symmetry

m Fully connected network, permutations of
a layer are indistinguishable

m Piecewise linear activation — RelLU

m Scale inputs by k, multiply output by 1/k

m Large numbers of local minimal

Madhavan Mukund Lecture 5: Training Deep Neural Networks Il AML Sep—Dec 2021 13/15



How problematic are local minima?

m How to measure the impact of local
minima?
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture

14 /15
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture
m Instead [Goodfellow et al]
m Random initialization 6;

m SGD finds an optimum value 0y
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture

m Instead [Goodfellow et al]

Incurred Error
©

m Random initialization 6;
m SGD finds an optimum value 0y

m Check loss along the linearly ;
interpolation 6, = o - 0 + (1 — ) - 6;

Alpha
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture

m Instead [Goodfellow et al]

Incurred Error
©

m Random initialization 6;
m SGD finds an optimum value 0y

m Check loss along the linearly ;
interpolation 6, = o - 0 + (1 — ) - 6;

Alpha

m Are there problematic local minima along
the path?
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How problematic are local minima?

m How to measure the impact of local
minima?

m Training process will see local ups and
downs, but “bumpy"” surface may not give
a good picture

m Instead [Goodfellow et al]

Incurred Error
©

m Random initialization 6;
m SGD finds an optimum value 0y

m Check loss along the linearly ;
interpolation 6, = o - 0 + (1 — ) - 6;

Alpha

m Are there problematic local minima along
the path?

m Typically, no!
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point /

m k critical points — k/3 are minima [‘
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point /

m k critical points — k/3 are minima [‘

m In d dimensions

m Should be minimum in d directions

m k critical points — k/39 are minima
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Saddle points
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m Large fraction of critical values are saddle
points
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Saddle points

m Critical points — zero gradient
m Minimum, maximum or inflection point

m k critical points — k/3 are minima

m In d dimensions

m Should be minimum in d directions

m k critical points — k/39 are minima

m Large fraction of critical values are saddle
points

m Does not seem to be a problem for SGD
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Saddle points
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m In d dimensions
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m Large fraction of critical values are saddle
points

m Does not seem to be a problem for SGD

m Solving directly for zero gradient is
problematic
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