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Ill conditioning

Ill conditioning — small change in input produces a

large change in output

Gradient r✓ =
@

@✓i
J(✓)

Impact of update ✓ � ✏r✓ on cost J(✓)?

Depends on curvature, given by second derivative

Hessian: H✓ =
�2

�✓i�✓j
J(✓)

Using Taylor expansion, impact of update ✓ � ✏r✓,

J(✓)�rT
✓ r✓ +

1

2
rT

✓ H✓r✓

Analyze H✓ to check for ill conditioning
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Directing gradient descent

Locally steepest direction of descent may

be far from the optimum

Elliptical contours vs circular contours

Gradient changes rapidly along the

direction of steepest descent

Taking large steps is problematic

Ill-conditioned Hessian H — second

derivatives

Computing Hessian is expensive

“Second order” methods are not used in

practice

Instead, heuristics like momentum and

adaptive learning rates
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Momentum

SGD convergence can be very slow

Momentum in physics — mass ⇥ velocity

Introduce velocity v in SGD — assume unit mass

Moving average of past gradients, exponential decay

If gradient remains steady, velocity increases

Update rule

v  ↵v � ✏r✓

 
1

m

mX

i=1

L(f (xi ; ✓), yi )

!

✓  ✓ + v

Hyperparameter ↵ 2 [0, 1) — “friction”, exponentially decaying history

With constant gradient g , in the limit
✏g

1� ↵
, geometric progression
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Nesterov momentum optimization

Measure cost function slightly

ahead, in direction of momentum

Update rule

v  ↵v�

✏r✓

 
1

m

mX

i=1

L(f (xi ; ✓ + �m), yi )

!

✓  ✓ + v

Controls sideways oscillations

better
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Adjusting the trajectory

If features have di↵erent scales, gradient descent is steeper in some dimensions

How can we correct for this?
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Adagrad

Adagrad update rule

g  1

m
r✓

mX

i=1

L(f (xi ; ✓), yi )

r  r + g · g

�✓  ✏

� +
p
r
· g , where

� ⇡ 10
�7

, for numerical

stability

✓  ✓ +�✓

Shrink learning rate in each

dimention according to entire

history of squared gradient
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Adaptive learning rates

RMSProp

Using entire history shrinks learning rate too much

Exponentially decaying average, discard extreme past

Update rule

g  1

m
r✓

mX

i=1

L(f (xi ; ✓), yi )

r  ⇢r + (1� ⇢)(g · g), where ⇢ is decay rate

�✓  ✏p
� + r

· g , where � ⇡ 10
�6

✓  ✓ +�✓

New hyperparameter ⇢
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Adam

Adaptive moments — combines RMSProp and moments

Update rule

Step size ✏; two decay rates ⇢1, ⇢2; two moments, s = r = 0; time step t = 0

g  1

m
r✓

mX

i=1

L(f (xi ; ✓), yi )

s  ⇢1s + (1� ⇢1)g ; r  ⇢2r + (1� ⇢2)(g · g)

Correct bias in first and second moments: ŝ  s

1� ⇢t1
, r̂  r

1� ⇢t2

�✓ = �✏ ŝp
r̂ + �

; ✓  ✓ +�✓

No clear theoretical justification for combinining momentum and scaling

Fairly robust with respect to values of hyperparameters
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Adaptive learning rates

Choosing a fixed learning rate is hard

Make a learning rate a function of iteration number

Power scheduling, exponential scheduling, piecewise constant scheduling
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Regularization

`1 and `2 regularization, as usual

Dropout

Disable nodes with probability

p

Analogy — multifunctional

employees

Scale weights after training
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Local minima

The loss function for regression is convex

Gradient descent converges to global

optimum

Loss function for neural networks is not

convex

In general, gradient descent only finds

local minima

How many local minima are there?

How does it a↵ect gradient descent?
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Model identifiability

Is the model that fits the data unique?

Non-identifiable — two or more settings

of the parameters are observationally

equivalent

Symmetry

Fully connected network, permutations of

a layer are indistinguishable

Piecewise linear activation — ReLU

Scale inputs by k , multiply output by 1/k

Large numbers of local minima!
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How problematic are local minima?

How to measure the impact of local

minima?

Training process will see local ups and

downs, but “bumpy” surface may not give

a good picture

Instead [Goodfellow et al]

Random initialization ✓i

SGD finds an optimum value ✓f

Check loss along the linearly

interpolation ✓↵ = ↵ · ✓f + (1� ↵) · ✓i
Are there problematic local minima along

the path?

Typically, no!
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Saddle points

Critical points — zero gradient

Minimum, maximum or inflection point

k critical points ! k/3 are minima

In d dimensions

Should be minimum in d directions

k critical points ! k/3d are minima

Large fraction of critical values are saddle

points

Does not seem to be a problem for SGD

Solving directly for zero gradient is

problematic
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