
Markov Decision Processes

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning
September–December 2021

https://www.cmi.ac.in/~madhavan

Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s ′, r | s, a)

Probability of moving to state s ′ with
reward r if we choose a at s

For each (s, a),
∑

s′
∑

r p(s ′, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 2 / 10

MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

α, β, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 3 / 10

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1, 0 ≤ γ ≤ 1

Inductive calculation of expected reward

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+3 + · · ·
= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+3 + · · ·)
= Rt+1 + γGt+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 10

Long term rewards

Can make all episodes infinite by adding a self-loop with reward 0

Allow γ = 1 only if sum converges

Alternatively, Gt
4
=

T∑
k=t+1

γk−t−1Rk ,

where we allow T =∞ and γ = 1, but not both at the same time

If T =∞, Rk = +1 for each k, γ < 1, then Gt =
1

1− γ

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 5 / 10

Policies and value functions

A policy π describes how the agent chooses actions at a state

π(a | s) — probability of choosing a in state s,
∑
a

π(a | s) = 1

State value function at s, following policy π

vπ(s)
4
= Eπ[Gt | St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
Action value function on choosing a at s and then following policy π

qπ(s, a)
4
= Eπ[Gt | St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
Note that vπ(s) =

∑
a

π(a | s)qπ(s, a)

Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 6 / 10

Bellman equation

vπ(s)
4
= Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p(s ′, r | s, a)
[
r + γEπ[Gt+1 | St+1 = s ′]

]
=
∑
a

π(a | s)
∑
s′

∑
r

p(s ′, r | s, a)
[
r + γvπ(s ′)

]
Bellman equation relates state value at s to state values at successors of s

Value function vπ is unique solution to the equation

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 7 / 10

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward −1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy π — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain vπ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 10

Optimal policies and value functions

Compare policies π, π′: π ≥ π′ if vπ(s) ≥ vπ′(s) for every state s

Optimal policy π∗, π∗ ≥ π for every π

Always exists, but may not be unique

Optimal state value function, v∗(s)
4
= max

π
vπ(s) = vπ∗(s)

Optimal action value function, q∗(s, a)
4
= max

π
qπ(s, a) = qπ∗(s, a)

Bellman optimality equation for v∗

v∗(s) = max
a

qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

E[Rt+1 + γv∗(St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s ′, r | s, a)[r + γv∗(s
′)]

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 10

Bellman optimality equations

v∗(s) = max
a

E[Rt+1 + γv∗(St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s ′, r | s, a)[r + γv∗(s
′)]

Likewise, for action value function

q∗(s, a) = E[Rt+1 + γmax
a′

q∗(St+1, a
′) | St = t,At = a]

=
∑
s′,r

p(s ′, r | s, a)[r + max
a′

γq∗(s
′, a′)]

For finite state MDPs, can solve explicitly for v∗
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible

State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v∗
Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 10 / 10

