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Markov Decision Processes

m Set of states S, actions A, rewards R

m At time t, agent in state S; selects action

A¢, moves to state S; ;1 and receives state | | reward

Sl RY

reward R;i1

Trajectory So, Ao, R1, 51, A1, R, So, . ..

m Probabilistic transition function:
p(s',r|s,a)
m Probability of moving to state s’ with
reward r if we choose a at s

m Foreach (s,a), > ., >, p(s',r|s,a)=1 .
m Backup diagram ) Vi
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m Typically assume finite MDPs — S, A and 8,
R are finite
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MDP Example: Robot that collects empty cans

m State — battery charge: high, low 1, Tuate e

\
m Actions: search for a can, wait for /wm}( searN

someone to bring can, recharge battery i /,,,
recharge

m No recharge when high \hlgh“-

m o, 3, probabilities associated with change /k%m}‘ / walt/

of battery state while searching

o, Tseazch 1 &, T'search 1, 7yase
=L
m 1 unit of reward per can collected 5 n v p(s'|s,a) | r(s,a,s")
high search high [e% T'search
B lscarch > hwait — cans collected while g HIEh tow L T'search
X . low search high | 1 -7 -3
searching, waiting low  search lov | B Tsearch
high wait high 1 Twait
. e high wait low 0 &
m Negative reward for requiring rescue (low 7 i high | 0 i
to high while searching) low  wait lov | 1 Tyait
low recharge  high | 1 0
low recharge  low 0 -

a1
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Long term rewards

m How do we formalize long term rewards?

Assume that each trajectory is a finite episode

) . ) A
Episode with T steps, expected reward at time t: Gt = Ryy1 + Reao + -+ Rr

m Each episode is independent: rewards are reset after each episode

m In some situations, trajectories may be (potentially) infinite

oo
m Discounted rewards: G; = Ry11 + YRipo + “/2Rr+3 4= Zﬁ/kRHkHv 0<~r<1
k=0

m Inductive calculation of expected reward
Gt = Rey1+YRei2 + Y Ress + PRz + -+
= Rey1+7(Rey2 +YRey3 + 7 Regz + - -)
= Rep1 +7Get1
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Long term rewards

m Can make all episodes infinite by adding a self-loop with reward 0

m Allow v = 1 only if sum converges

-
. A P
m Alternatively, G; = Z Wk t le,
k=t+1

where we allow T = oo and v = 1, but not both at the same time

1
m If T =00, Ry = +1 for each k, v < 1, then Gt:]_i
-7
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Policies and value functions

m A policy m describes how the agent chooses actions at a state

m 7(a|s) — probability of choosing a in state s, Zﬂ(a [s)=1

a

m State value function at s, following policy 7

D V*Revkrr| S = 5]

k=0

ve(s) 2 EA[Ge | S; = 5] = Ex

m Action value function on choosing a at s and then following policy 7

ZWth-s-kH | St =5, Ar = a]
k=0

g=(s,a) = E;[G:| St =s,Ar=a]=E,

m Note that v, (s) = Zw(a | s)g=(s,a)

a

m Goal is to find an optimal policy, that maximizes state/action value at every state
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Bellman equation

m vo(s) 2 E.[G, | S; = 5]
= Er[Ret1 +7Gev1 | St = 5]

= Zw(a | s) ZZp(s/, r|s,a)[r+9Ez[Ges1 | Se1 = 5]
- Zw(a | s) ZZp(s’, r|s,a)[r+yve(s)]

m Bellman equation relates state value at s to state values at successors of s

m Value function v, is unique solution to the equation
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Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation
Reward is 0, except at boundaries
Colliding with boundary — position unchanged, reward —1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy m — choose each action with uniform probability 0.25
Solving Bellman equations, we obtain v, for each square
Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value
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Optimal policies and value functions

m Compare policies 7, 7': m > 7" if v;(s) > v/ (s) for every state s

Optimal policy 7., m, > 7 for every 7
m Always exists, but may not be unique

. : A
m Optimal state value function, vi(s) = max v(s) = v,.(s)
™

. : . A
Optimal action value function, g.(s, a) = max g.(s, a) = g, (s, a)
s

m Bellman optimality equation for v,
vi(s) = max Gr. (s, a)
=maxE, [G: | St =s,Ar = 4]
= m:aXEm[Rtﬂ +7Gey1 | St =5, At = 4]
= m;xE[RtH + viu(Set1) | St = 5, A = 3]
= maaxz p(s',r|s,a)r+yv(s)]

s/ r
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Bellman optimality equations

mv(s)= mfxE[RtH + i (St41) | St =5, Ar = 3

=max > p(s',r | 5, 2)[r + (5]

s’.r

Likewise, for action value function

q«(s,a) = E[Re1 + v mjx Gx(St+1,3) | Se = t, A = 4

= 3 p(s'sr | 5. 2)lr + maxyau(s’, )]
a/

s’.r

For finite state MDPs, can solve explicitly for v,
m 1 states, n equations in n unknowns, (assuming we know p)

m However, n is usually large, computationally infeasible
m State space of a game like chess or Go

m Instead, we will explore iterative methods to approximate v,
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