Reinforcement Learning

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Supervised learning — use labelled examples to learn a classifier

- Supervised learning use labelled examples to learn a classifier
- Unsupervised learning search for patterns, structure in data

- Supervised learning use labelled examples to learn a classifier
- Unsupervised learning search for patterns, structure in data
- Reinforcement learning learning through interaction
 - Choose actions in an uncertain environment
 - Actions change state, yield rewards
 - Learn optimal strategies to maximize long term rewards

- Supervised learning use labelled examples to learn a classifier
- Unsupervised learning search for patterns, structure in data
- Reinforcement learning learning through interaction
 - Choose actions in an uncertain environment
 - Actions change state, yield rewards
 - Learn optimal strategies to maximize long term rewards

Examples

- Playing games AlphaGo, reward is result of the game
- Motion planning robot searching for an optimal path with obstacles
- Feedback control balancing an object

Policy What action to take in the current state

"Strategy", can be probabilistic

э

▶ ∢ ⊒

- Policy What action to take in the current state
 - "Strategy", can be probabilistic
- Reward In response to taking an action
 - Short-term outcome, may be negative or positive

- Policy What action to take in the current state
 - "Strategy", can be probabilistic
- Reward In response to taking an action
 - Short-term outcome, may be negative or positive
- Value Accumulation of rewards over future actions
 - Long-term outcome, goal is to maximize value

- Policy What action to take in the current state
 - "Strategy", can be probabilistic
- Reward In response to taking an action
 - Short-term outcome, may be negative or positive
- Value Accumulation of rewards over future actions
 - Long-term outcome, goal is to maximize value
- Environment Model How the environment will behave
 - Given a state and action, what is the next state, reward?
 - Probabilistic, in general
 - Use models for *planning*
 - Can also use RL without models, trial-and-error learners

- 4×3 grid
- Rewards are attached to states
 - \blacksquare Two terminal states with rewards $+1,\,-1$
 - All other states have reward -0.04
 - Move till you reach a terminal state
 - Maximize the sum of the rewards seen

- 4×3 grid
- Rewards are attached to states
 - \blacksquare Two terminal states with rewards $+1,\,-1$
 - All other states have reward -0.04
 - Move till you reach a terminal state
 - Maximize the sum of the rewards seen
- Policy which direction to move from a given square in the grid

- 4×3 grid
- Rewards are attached to states
 - Two terminal states with rewards +1, -1
 - All other states have reward -0.04
 - Move till you reach a terminal state
 - Maximize the sum of the rewards seen
- Policy which direction to move from a given square in the grid
- Outcome of action is nondeterministic
 - With probability 0.8, go in intended direction
 - With probability 0.2, deflect at right angles
 - Collision with boundary keeps you stationary

- Optimal policy learned by repeatedly moving on the board
 - From bottom right, conservatively follow the long route around the obstacle to avoid −1

- Optimal policy learned by repeatedly moving on the board
 - From bottom right, conservatively follow the long route around the obstacle to avoid −1
- Optimal policies for different value of R(s), reward for non-final states
 - If *R*(*s*) < −1.6284, terminate as fast as possible
 - If -0.4278 < R(s) < -0.0850, risk going past -1 to reach +1 quickly
 - If -0.0221 < R(s) < 0, take no risks, avoid -1 at all cost
 - If *R*(*s*) > 0 avoid terminating

Policy evolves by experience

э

▶ ∢ ⊒

- Policy evolves by experience
- Greedy strategy is to always choose best known option

- Policy evolves by experience
- Greedy strategy is to always choose best known option
- Using this we may get stuck in a local optimum
 - Greedy strategy only allows the mouse to discover water with reward +1
 - Mouse never discovers a path to cheese with +100 because of negative rewards en route

- Policy evolves by experience
- Greedy strategy is to always choose best known option
- Using this we may get stuck in a local optimum
 - Greedy strategy only allows the mouse to discover water with reward +1
 - Mouse never discovers a path to cheese with +100 because of negative rewards en route
- How to balance exploitation (greedy) vs exploration?

- Policy evolves by experience
- Greedy strategy is to always choose best known option
- Using this we may get stuck in a local optimum
 - Greedy strategy only allows the mouse to discover water with reward +1
 - Mouse never discovers a path to cheese with +100 because of negative rewards en route
- How to balance exploitation (greedy) vs exploration?
- Formalize these ideas using Markov Decision Processes

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a
 - A_t is action chosen at time t, with reward R_t

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a
 - A_t is action chosen at time t, with reward R_t
 - If we knew $q_*(a)$ we would always choose $A_t = \arg \max_a q_*(a)$

- One-armed bandit slang for a slot machine in a casino
 - Put in a coin and pull a lever (the arm)
 - With high probability, lose your coin (the bandit steals your money)
 - With low probability, get varying reward, rewards follow some probability distribution

- Each arm has a different reward probability
- Goal is to maximize total reward over a sequence of plays
- Action corresponds to choosing the arm
 - For each action a, $q_*(a)$ is expected reward if we choose a
 - A_t is action chosen at time t, with reward R_t
 - If we knew $q_*(a)$ we would always choose $A_t = \arg \max_a q_*(a)$
 - Assume $q_*(a)$ is unknown build an estimate $Q_t(a)$ of $q_*(a)$ at time t

• Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

- Greedy policy chooses $\arg \max_a Q_t(a)$
- How will we learn about all actions?

Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

- Greedy policy chooses $\arg \max_a Q_t(a)$
- How will we learn about all actions?
- ε-greedy policy
 - With small probability ε , choose a random action (uniform distribution)
 - With probability 1ε , follow greedy

Build $Q_t(a)$, estimate of $q_*(a)$ at time t, from past observations (sample average)

- Greedy policy chooses $\arg \max_a Q_t(a)$
- How will we learn about all actions?
- *ε*-greedy policy
 - With small probability ε , choose a random action (uniform distribution)
 - With probability 1ε , follow greedy
- ε -greedy is a simple way to balance exploitation with exploration
 - Theoretically, explores all actions infinitely often
 - Practical effectiveness depends

10 bandit experiment 3 Each bandit's 2 reward follows $-q_{*}(3)$ $-q_{*}(5)$ Gaussian 1 $q_{*}(9)$ $-q_{*}(4)$ distribution Reward $-q_{*}(1)$ 0 $-\overline{q}_{*}(7)^{\dagger}$ distribution $q_{*}(10)$ Same $q_{*}(2)$ -1 $q_{*}(8)$ variance, $q_{*}(6)$ -2 mean is chosen -3 randomly 2 3 5 8 9 10 Action 4 < A э

• Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$

• Focus on a single action *a*. Sample average is
$$\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$$

- R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after *a* has been selected n-1 times

< □ > < 同

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after a has been selected n − 1 times
 Q_n = R₁ + R₂ + · · · + R_{n-1}/n = 1

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after *a* has been selected n-1 times
- $Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$ • $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time
- Q_n estimate of action value after *a* has been selected n-1 times

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$
 $= \frac{1}{n} \left(R_n + (n-1) Q_n \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- **\square** R_i reward when *a* is selected for *i*th time

•
$$Q_n = \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

• $Q_{n+1} = \frac{1}{n} \sum_{i=1}^n R_i = \frac{1}{n} \left(R_n + \sum_{i=1}^{n-1} R_i \right) = \frac{1}{n} \left(R_n + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_i \right)$
 $= \frac{1}{n} \left(R_n + (n-1) Q_n \right) = \frac{1}{n} \left(R_n + n Q_n - Q_n \right)$

- Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$
- R_i reward when *a* is selected for *i*th time

$$Q_{n} = \frac{R_{1} + R_{2} + \dots + R_{n-1}}{n-1 + 1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i} = \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right) = \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right) \quad \text{upto}$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right) = \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right) = Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right]$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right) = \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right) = Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right]$$

• Focus on a single action *a*. Sample average is $\frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_t=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_t=a}}$

\square R_i — reward when *a* is selected for *i*th time

• Q_n — estimate of action value after *a* has been selected n-1 times

$$Q_{n} = \frac{R_{1} + R_{2} + \dots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i} = \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right) = \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right) = \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right) = Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right]$$

We will see this pattern often: NewEstimate = OldEstimate - Step Target - OldEstimate

• Non-stationary: Reward probabilities change over time

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$
- $Q_{n+1} = Q_n + \alpha [R_n Q_n] = \alpha R_n + (1 \alpha)Q_n$

3

4 E N

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

= $\alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

= $\alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
= $\alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

$$= (1-\alpha)^n Q_1 + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} R_i$$

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

$$= (1-\alpha)^n Q_1 + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} R_i$$

Exponentially decaying weighted average of rewards

- Non-stationary: Reward probabilities change over time
- Use a constant step $\alpha \in (0,1]$ $Q_{n+1} = Q_n + \alpha [R_n Q_n]$

•
$$Q_{n+1} = Q_n + \alpha [R_n - Q_n] = \alpha R_n + (1 - \alpha)Q_n$$

 $= \alpha R_n + (1 - \alpha)[\alpha R_{n-1} + (1 - \alpha)Q_{n-1}]$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + (1 - \alpha)^2 Q_{n-1}$
 $= \alpha R_n + \alpha (1 - \alpha)R_{n-1} + \alpha (1 - \alpha)^2 R_{n-2} + \dots + \alpha (1 - \alpha)^{n-1} R_1 + (1 - \alpha)^n Q_1$

$$= (1-\alpha)^n Q_1 + \sum_{i=1}^n \alpha (1-\alpha)^{n-i} R_i$$

- Exponentially decaying weighted average of rewards
- Initial value Q_1 affects the calculation different heuristics possible

Summary

- k-armed bandit is the simplest interesting situation to analyze
- ε -greedy strategy balances exploration and exploitation
- Incremental update rule for estimates
 NewEstimate = OldEstimate + Step [Target OldEstimate]
- Exponentially decaying weighted average when rewards change over time (non-stationary)
- UCB action selection explore actions selectively