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An alternative approach to learning

Supervised learning — use labelled examples to learn a classifier

Unsupervised learning — search for patterns, structure in data

Reinforcement learning — learning through interaction

Choose actions in an uncertain environment

Actions change state, yield rewards

Learn optimal strategies to maximize long term rewards

Examples

Playing games — AlphaGo, reward is result of the game

Motion planning — robot searching for an optimal path with obstacles

Feedback control — balancing an object
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The components

Policy What action to take in the current state

“Strategy”, can be probabilistic

Reward In response to taking an action

Short-term outcome, may be negative or positive

Value Accumulation of rewards over future actions

Long-term outcome, goal is to maximize value

Environment Model How the environment will behave

Given a state and action, what is the next state, reward?

Probabilistic, in general

Use models for planning

Can also use RL without models, trial-and-error learners
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Motion planning example

4⇥ 3 grid

Rewards are attached to states

Two terminal states with rewards +1, �1

All other states have reward �0.04

Move till you reach a terminal state

Maximize the sum of the rewards seen

Policy — which direction to move from a given
square in the grid

Outcome of action is nondeterministic

With probability 0.8, go in intended direction

With probability 0.2, deflect at right angles

Collision with boundary keeps you stationary
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Motion planning example

Optimal policy learned by repeatedly moving
on the board

From bottom right, conservatively follow the
long route around the obstacle to avoid �1

Optimal policies for di↵erent value of R(s),
reward for non-final states

If R(s) < �1.6284, terminate as fast as
possible

If �0.4278 < R(s) < �0.0850, risk going past
�1 to reach +1 quickly

If �0.0221 < R(s) < 0, take no risks, avoid
�1 at all cost

If R(s) > 0 avoid terminating
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Exploration vs exploitation

Policy evolves by experience

Greedy strategy is to always choose best
known option

Using this we may get stuck in a local
optimum

Greedy strategy only allows the mouse to
discover water with reward +1

Mouse never discovers a path to cheese with
+100 because of negative rewards en route

How to balance exploitation (greedy) vs
exploration?

Formalize these ideas using Markov Decision
Processes
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Bandits

One-armed bandit — slang for a slot machine in a casino

Put in a coin and pull a lever (the arm)

With high probability, lose your coin (the bandit steals your money)

With low probability, get varying reward, rewards follow some probability distribution

k-armed bandit

Each arm has a di↵erent reward probability

Goal is to maximize total reward over a sequence of plays

Action corresponds to choosing the arm

For each action a, q⇤(a) is expected reward if we choose a

At is action chosen at time t, with reward Rt

If we knew q⇤(a) we would always choose At = argmaxa q⇤(a)

Assume q⇤(a) is unknown — build an estimate Qt(a) of q⇤(a) at time t
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Exploration and exploitation

Build Qt(a), estimate of q⇤(a) at time t, from past observations (sample average)

sum of rewards when a taken prior to t

number of times a taken prior to t
=

Pt�1
i=1 Ri · At=aPt�1

i=1 At=a

Greedy policy chooses argmaxa Qt(a)

How will we learn about all actions?

"-greedy policy

With small probability ", choose a random action (uniform distribution)

With probability 1� ", follow greedy

"-greedy is a simple way to balance exploitation with exploration

Theoretically, explores all actions infinitely often

Practical e↵ectiveness depends
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Exploration and exploitation

10 bandit
experiment

Each bandit’s
reward follows
Gaussian
distribution

Same
variance,
mean is
chosen
randomly
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Exploration and exploitation

Performance of
"-greedy strategies

Pure greedy
strategy is
sub-optimal

Initial
“learning
rate” is more
or less equal
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Exploration and exploitation

Discovery of
optimal actions

Pure greedy
strategy
discovers
optimal
action only
1/3 of the
time
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Incremental calculation

Focus on a single action a. Sample average is

Pt�1
i=1 Ri · At=aPt�1

i=1 At=a

Ri — reward when a is selected for ith time

Qn — estimate of action value after a has been selected n � 1 times

Qn =
R1 + R2 + · · ·+ Rn�1

n � 1

Qn+1 =
1

n

nX

i=1

Ri

We will see this pattern often:

NewEstimate = OldEstimate + Step [Target - OldEstimate]
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Stationary vs non-stationary

Non-stationary: Reward probabilities change over time

Use a constant step ↵ 2 (0, 1] — Qn+1 = Qn + ↵[Rn � Qn]

Qn+1 = Qn + ↵[Rn � Qn]

Exponentially decaying weighted average of rewards

Initial value Q1 a↵ects the calculation — di↵erent heuristics possible
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Summary

k-armed bandit is the simplest interesting situation to analyze

"-greedy strategy balances exploration and exploitation

Incremental update rule for estimates
NewEstimate = OldEstimate + Step [Target - OldEstimate]

Exponentially decaying weighted average when rewards change over time
(non-stationary)

UCB action selection — explore actions selectively
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