
Markov Decision Processes

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning
September–December 2021

Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s 0, r | s, a)

Probability of moving to state s 0 with
reward r if we choose a at s

For each (s, a),
P

s0
P

r p(s
0, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 2 / 16

Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s 0, r | s, a)

Probability of moving to state s 0 with
reward r if we choose a at s

For each (s, a),
P

s0
P

r p(s
0, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 2 / 16

t#
Choose FA 08

Dubon
0.1#→ 0 . I

Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s 0, r | s, a)

Probability of moving to state s 0 with
reward r if we choose a at s

For each (s, a),
P

s0
P

r p(s
0, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 2 / 16

Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s 0, r | s, a)

Probability of moving to state s 0 with
reward r if we choose a at s

For each (s, a),
P

s0
P

r p(s
0, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 2 / 16

Markov Decision Processes

Set of states S , actions A, rewards R

At time t, agent in state St selects action
At , moves to state St+1 and receives
reward Rt+1

Trajectory S0,A0,R1, S1,A1,R2, S2, . . .

Probabilistic transition function:
p(s 0, r | s, a)

Probability of moving to state s 0 with
reward r if we choose a at s

For each (s, a),
P

s0
P

r p(s
0, r | s, a) = 1

Backup diagram

Typically assume finite MDPs — S , A and
R are finite

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 2 / 16

MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

↵, �, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 3 / 16

MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

↵, �, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 3 / 16

MDP Example: Robot that collects empty cans

State — battery charge: high, low

Actions: search for a can, wait for
someone to bring can, recharge battery

No recharge when high

↵, �, probabilities associated with change
of battery state while searching

1 unit of reward per can collected

rsearch > rwait — cans collected while
searching, waiting

Negative reward for requiring rescue (low
to high while searching)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 3 / 16

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+3 + · · ·

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 16

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+3 + · · ·

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 16

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+3 + · · ·

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 16

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+3 + · · ·

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 16

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+3 + · · ·
= Rt+1 + �(Rt+2 + �Rt+3 + �2Rt+3 + · · ·)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 16

Long term rewards

How do we formalize long term rewards?

Assume that each trajectory is a finite episode

Episode with T steps, expected reward at time t: Gt
4
= Rt+1 + Rt+2 + · · ·+ RT

Each episode is independent: rewards are reset after each episode

In some situations, trajectories may be (potentially) infinite

Discounted rewards: Gt = Rt+1 + �Rt+2 + �2Rt+3 + · · · =
1X

k=0

�kRt+k+1, 0  �  1

Inductive calculation of expected reward

Gt = Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+3 + · · ·
= Rt+1 + �(Rt+2 + �Rt+3 + �2Rt+3 + · · ·)
= Rt+1 + �Gt+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 4 / 16

Long term rewards

Can make all episodes infinite by adding a self-loop with reward 0

Allow � = 1 only if sum converges

Alternatively, Gt
4
=

TX

k=t+1

�k�t�1Rk ,

where we allow T = 1 and � = 1, but not both at the same time

If T = 1, Rk = +1 for each k , � < 1, then Gt =
1

1� �

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 5 / 16

Long term rewards

Can make all episodes infinite by adding a self-loop with reward 0

Allow � = 1 only if sum converges

Alternatively, Gt
4
=

TX

k=t+1

�k�t�1Rk ,

where we allow T = 1 and � = 1, but not both at the same time

If T = 1, Rk = +1 for each k , � < 1, then Gt =
1

1� �

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 5 / 16

Long term rewards

Can make all episodes infinite by adding a self-loop with reward 0

Allow � = 1 only if sum converges

Alternatively, Gt
4
=

TX

k=t+1

�k�t�1Rk ,

where we allow T = 1 and � = 1, but not both at the same time

If T = 1, Rk = +1 for each k , � < 1, then Gt =
1

1� �

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 5 / 16

Long term rewards

Can make all episodes infinite by adding a self-loop with reward 0

Allow � = 1 only if sum converges

Alternatively, Gt
4
=

TX

k=t+1

�k�t�1Rk ,

where we allow T = 1 and � = 1, but not both at the same time

If T = 1, Rk = +1 for each k , � < 1, then Gt =
1

1� �

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 5 / 16

Policies and value functions

A policy ⇡ describes how the agent chooses actions at a state

⇡(a | s) — probability of choosing a in state s,
X

a

⇡(a | s) = 1

State value function at s, following policy ⇡

v⇡(s)
4
= E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1 | St = s

#

Action value function on choosing a at s and then following policy ⇡

q⇡(s, a)
4
= E⇡[Gt | St = s,At = a] = E⇡

" 1X

k=0

�kRt+k+1 | St = s,At = a

#

Note that v⇡(s) =
X

a

⇡(a | s)q⇡(s, a)

Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 6 / 16

Policies and value functions

A policy ⇡ describes how the agent chooses actions at a state

⇡(a | s) — probability of choosing a in state s,
X

a

⇡(a | s) = 1

State value function at s, following policy ⇡

v⇡(s)
4
= E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1 | St = s

#

Action value function on choosing a at s and then following policy ⇡

q⇡(s, a)
4
= E⇡[Gt | St = s,At = a] = E⇡

" 1X

k=0

�kRt+k+1 | St = s,At = a

#

Note that v⇡(s) =
X

a

⇡(a | s)q⇡(s, a)

Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 6 / 16

o-i.EE#---::

Policies and value functions

A policy ⇡ describes how the agent chooses actions at a state

⇡(a | s) — probability of choosing a in state s,
X

a

⇡(a | s) = 1

State value function at s, following policy ⇡

v⇡(s)
4
= E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1 | St = s

#

Action value function on choosing a at s and then following policy ⇡

q⇡(s, a)
4
= E⇡[Gt | St = s,At = a] = E⇡

" 1X

k=0

�kRt+k+1 | St = s,At = a

#

Note that v⇡(s) =
X

a

⇡(a | s)q⇡(s, a)

Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 6 / 16

② *
,

Policies and value functions

A policy ⇡ describes how the agent chooses actions at a state

⇡(a | s) — probability of choosing a in state s,
X

a

⇡(a | s) = 1

State value function at s, following policy ⇡

v⇡(s)
4
= E⇡[Gt | St = s] = E⇡

" 1X

k=0

�kRt+k+1 | St = s

#

Action value function on choosing a at s and then following policy ⇡

q⇡(s, a)
4
= E⇡[Gt | St = s,At = a] = E⇡

" 1X

k=0

�kRt+k+1 | St = s,At = a

#

Note that v⇡(s) =
X

a

⇡(a | s)q⇡(s, a)

Goal is to find an optimal policy, that maximizes state/action value at every state

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 6 / 16

Bellman equation

v⇡(s)
4
= E⇡[Gt | St = s]

Bellman equation relates state value at s to state values at successors of s

Value function v⇡ is unique solution to the equation

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 7 / 16

Bellman equation

v⇡(s)
4
= E⇡[Gt | St = s]

= E⇡[Rt+1 + �Gt+1 | St = s]

Bellman equation relates state value at s to state values at successors of s

Value function v⇡ is unique solution to the equation

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 7 / 16

=

Bellman equation

v⇡(s)
4
= E⇡[Gt | St = s]

= E⇡[Rt+1 + �Gt+1 | St = s]

=
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �E⇡[Gt+1 | St+1 = s 0]

⇤

Bellman equation relates state value at s to state values at successors of s

Value function v⇡ is unique solution to the equation

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 7 / 16

¥-000

Bellman equation

v⇡(s)
4
= E⇡[Gt | St = s]

= E⇡[Rt+1 + �Gt+1 | St = s]

=
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �E⇡[Gt+1 | St+1 = s 0]

⇤

=
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

Bellman equation relates state value at s to state values at successors of s

Value function v⇡ is unique solution to the equation

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 7 / 16

-

mm

.-

Bellman equation

v⇡(s)
4
= E⇡[Gt | St = s]

= E⇡[Rt+1 + �Gt+1 | St = s]

=
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �E⇡[Gt+1 | St+1 = s 0]

⇤

=
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

Bellman equation relates state value at s to state values at successors of s

Value function v⇡ is unique solution to the equation

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 7 / 16

=

☐ _M
=

Alternatively - sample & estimate

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

00

I

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

0

E-

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

:

Gridworld Example

Actions in each cell are {N,S,E,W}, with usual interpretation

Reward is 0, except at boundaries

Colliding with boundary — position unchanged, reward �1

Special squares A and B — all four actions move as
indicated, with rewards +10 and +5, respectively

Policy ⇡ — choose each action with uniform probability 0.25

Solving Bellman equations, we obtain v⇡ for each square

Values at boundary are negative

Value at A is less than 10 because next move takes agent to
boundary square with negative value

Value at B is more than 5 because next move is to a square
with positive value

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 8 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

0
--
=

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E⇡⇤ [Gt | St = s,At = a]

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E⇡⇤ [Gt | St = s,At = a]

= max
a

E⇡⇤ [Rt+1 + �Gt+1 | St = s,At = a]

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E⇡⇤ [Gt | St = s,At = a]

= max
a

E⇡⇤ [Rt+1 + �Gt+1 | St = s,At = a]

= max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

Optimal policies and value functions

Compare policies ⇡, ⇡0: ⇡ � ⇡0 if v⇡(s) � v⇡0(s) for every state s

Optimal policy ⇡⇤, ⇡⇤ � ⇡ for every ⇡
Always exists, but may not be unique

Optimal state value function, v⇤(s)
4
= max

⇡
v⇡(s) = v⇡⇤(s)

Optimal action value function, q⇤(s, a)
4
= max

⇡
q⇡(s, a) = q⇡⇤(s, a)

Bellman optimality equation for v⇤

v⇤(s) = max
a

q⇡⇤(s, a)

= max
a

E⇡⇤ [Gt | St = s,At = a]

= max
a

E⇡⇤ [Rt+1 + �Gt+1 | St = s,At = a]

= max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 9 / 16

o

Bellman optimality equations

v⇤(s) = max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) = E[Rt+1 + �max
a0

q⇤(St+1, a
0) | St = t,At = a]

=
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible
State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 10 / 16

Bellman optimality equations

v⇤(s) = max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) = E[Rt+1 + �max
a0

q⇤(St+1, a
0) | St = t,At = a]

=
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible
State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 10 / 16

Bellman optimality equations

v⇤(s) = max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) = E[Rt+1 + �max
a0

q⇤(St+1, a
0) | St = t,At = a]

=
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible
State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 10 / 16

Bellman optimality equations

v⇤(s) = max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) = E[Rt+1 + �max
a0

q⇤(St+1, a
0) | St = t,At = a]

=
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible
State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 10 / 16

Bellman optimality equations

v⇤(s) = max
a

E[Rt+1 + �v⇤(St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)[r + �v⇤(s
0)]

Likewise, for action value function

q⇤(s, a) = E[Rt+1 + �max
a0

q⇤(St+1, a
0) | St = t,At = a]

=
X

s0,r

p(s 0, r | s, a)[r +max
a0

�q⇤(s
0, a0)]

For finite state MDPs, can solve explicitly for v⇤
n states, n equations in n unknowns, (assuming we know p)

However, n is usually large, computationally infeasible
State space of a game like chess or Go

Instead, we will explore iterative methods to approximate v⇤
Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 10 / 16

0

Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 11 / 16

Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 11 / 16

Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 11 / 16

Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 11 / 16

Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 11 / 16

Policy evaluation

Given a policy ⇡, compute its state value function v⇡

Bellman equations: v⇡(s) =
X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

For MDP with n states, n equations in n unknowns

Can solve to get v⇡, but computationally infeasible for large n

Instead, use the Bellman equations as update rules

Initialize v0
⇡(s): set v

0
⇡(term) = 0 for terminal state term, arbitrary values for other s

Update vk
⇡ to vk+1

⇡ using: vk+1
⇡ (s) =

X

a

⇡(a | s)
X

s0

X

r

p(s 0, r | s, a)
⇥
r + �vk

⇡(s
0)
⇤

Stop when incremental change � = |vk+1
⇡ � vk

⇡ | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 11 / 16

Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=
X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0 is strictly better

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 12 / 16

Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=
X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0 is strictly better

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 12 / 16

Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=
X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0 is strictly better

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 12 / 16

Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=
X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0 is strictly better

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 12 / 16

Policy improvement

Assume a deterministic policy ⇡

Using v⇡, can we find a better policy ⇡0?

Is there a state s where we can substitute ⇡(s) by a better choice a?

q⇡(s, a) = E[Rt+1 + �v⇡(St+1) | St = s,At = a]

=
X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡(s

0)
⇤

If q⇡(s, a) > v⇡(s), modify ⇡ so that ⇡(s) = a

The new policy ⇡0 is strictly better

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 12 / 16

Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0:

If q⇡(s,⇡0(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 13 / 16

Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0:

If q⇡(s,⇡0(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 13 / 16

Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0:

If q⇡(s,⇡0(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 13 / 16

Policy improvement

Policy Improvement Theorem

For deterministic policies ⇡, ⇡0:

If q⇡(s,⇡0(s)) � v⇡(s) for all s, then ⇡0 � ⇡,

If ⇡0 � ⇡ and q⇡(s,⇡0(s)) > v⇡(s) for some s, then v⇡0(s) > v⇡(s).

Proof of the theorem is not di�cult for deterministic policies

The theorem extends to probabilistic policies also

Provides a basis to iteratively improve the policy

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 13 / 16

Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 14 / 16

Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 14 / 16

Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 14 / 16

Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · ·

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 14 / 16

Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · · improve����! ⇡⇤

evaluate�����! v⇡⇤

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 14 / 16

Policy iteration

Start with a random policy ⇡0

Use policy evaluation to compute v⇡0

Use policy improvement to construct a better policy ⇡1

Policy iteration: Alternate between policy evaluation and policy improvement

⇡0
evaluate�����! v⇡0

improve����! ⇡1
evaluate�����! v⇡1

improve����! ⇡2
evaluate�����! · · · improve����! ⇡⇤

evaluate�����! v⇡⇤

Finite MDPs — can improve ⇡ only finitely many times,

Must converge to optimal policy

Nested iteration — each policy evaluation is itself an iteration

Speed up by using v⇡i as initial state to compute v⇡i+1

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 14 / 16

Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 15 / 16

Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 15 / 16

Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 15 / 16

Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 15 / 16

Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 15 / 16

Value iteration

Policy iteration — policy evaluation requires a nested iteration

A partial computation of v⇡k is su�cent to proceed towards ⇡⇤, v⇤

Even a single iteration in the computation of v⇡k will do

Combine policy improvement and one step update at each state

Value iteration

v⇡k+1(s, a) = max
a

E[Rt+1 + �v⇡k (St+1) | St = s,At = a]

= max
a

X

s0,r

p(s 0, r | s, a)
⇥
r + �v⇡k (s

0)
⇤

Again, stop when incremental change � = |v⇡k+1 � v⇡k | is below threshold ✓

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 15 / 16

Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of
⇡⇤ and v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 16 / 16

Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of
⇡⇤ and v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 16 / 16

Dynamic programming

In the literature, policy iteration and value iteration are referred to as dynamic
programming methods

Requires knowledge of the model — p(s 0, r | s, a)

How to combine policy evaluation and policy improvement is flexible

Value iteration is policy iteration with policy evaluation truncated to a single step

Generalized policy iteration — simultaneously maintain and update approximations of
⇡⇤ and v⇤

Madhavan Mukund Markov Decision Processes AML Sep–Dec 2021 16 / 16

