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Conditional probabilities

m Boolean variables x1, xo, ..., X,
m Joint probabilities P(vi, vo,. .., v,)
m 2" combinations of x1,x, ..., X,

m 2" — 1 parameters

m Naive Bayes assumption — complete independence
m P(x; = 1) for each x;
H 1 parameters

m Can we strive for something in between?

m “Local” dependencies between some variables
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Probabilistic graphical models

m Judea Pearl [Turing Award 2011]

m Represent local dependencies using
directed graph
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Probabilistic graphical models
m Judea Pearl [Turing Award 2011] ?
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.002

m Represent local dependencies using
directed graph

m Example: Burglar alarm E| Pd)
t | 95

m Pearl's house has a burglar alarm S| 94

) . t | 29

m Neighbours John and Mary call if /1 oo

they hear the alarm

m John is prone to mistaking
ambulances etc for the alarm

A |P(M)
flo1

m Mary listens to loud music and
sometimes fails to hear the alarm

m The alarm may also be triggered by
an earthquake (Californial)
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Probabilistic graphical models

m Each node has a local (conditional)
probability table
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Probabilistic graphical models

m Each node has a local (conditional)
probability table

m Fundamental assumption:
A node is conditionally independent
of non-descendants, given its parents
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Probabilistic graphical models

m Each node has a local (conditional)
probability table

m Fundamental assumption:
A node is conditionally independent
of non-descendants, given its parents

m Graph is a DAG, no cyclic
dependencies
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Student example

m Example due to Nir Friedman and Ll & I | o]t
Daphne Koller 06| 0a 07| 03
m Student asks teacher for a reference Difficulty Intelligence
letter
Grade SAT
m Teacher has forgotten the student, so
letter is entirely based on student’s R
grade in the course Letter 7 dos 005
it{p2 |08
10 |4t I)
gt|o1 |09 (
@[04 [os

. g3| 099 001 J—g
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Evaluating a network

m John and Mary call Pearl. What is the probability that there has been a
burglary?
m P(b, m,j), where b: burglary, j: John calls, m: Mary calls

11
m P(b,m,j)= ZZ P(b,j, m, a,e), where a: alarm rings, e: earthquake
a=0 e=0

m Bayes Rule: P(A,B) = P(A| B)P(B)
B P(x1,x2,...,xp) = P(x1 | x2,...,xn)P(x2,X3,...,Xpn)

m Recursively:
P(x1,x2,...,xn) = P(x1 | x2,...,%n)P(x2 | x3,...,Xn) - P(Xn—1 | Xn)P(xn)
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Evaluating a network

B P(x1,x2,...,xn) = P(x1 | X2, s x0)P(x2 | X3, ...y Xn) - P(Xn—1 | Xn) P(xn)

m Can choose any ordering of/xi, x2, ..., X,

m Use topological orderingin a Bayesian network

m P(m.j, a,be)=P(mfa) ma) (2| b )P(b)P(e)
plwa,ped) p(|a,0¥
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Evaluating a network

Palt 2) P(ile) Ple)

P(x1,Xx2,...,xn) = P(x1 [ X2, ..., xn)P(x2 | X3,...,Xn) -+ P(Xn=1 | Xn) P(xn)
Can choose any ordemn
Use topological ordering in a Bayesian network b_ <
P(m,j,a, b,e) = P(m|a)P(j | a)P(a| b,e)P(b)P(e) ¢
ST N\
P(m.j.b) =" > P(m| a)P( | 2)P(a| b.e)P(b)P(e) S| m
a=0 e=0
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Evaluating a network

B P(x1,x2,...,xn) = P(x1 | x2,...,xn)P(x2 | X3,...,Xn) -+ P(Xn—1 | Xn) P(xn)
m Can choose any ordering of x1,x2,..., X,

m Use topological ordering in a Bayesian network
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Alternative networks

MaryCalls
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Conditional independence

m X L Y — X and Y are independent
m P(XUY)=P(X)P(Y)
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Conditional independence
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Conditional independence

m X L Y — X and Y are independent
m P(XUY)=P(X)P(Y)

m X L Y|Z— XandY are independent if Z is known

m How does dependence “flow” through a network?
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Conditional independence

m X L Y — X and Y are independent
m P(XUY)=P(X)P(Y)

m X L Y|Z— XandY are independent if Z is known

m How does dependence “flow” through a network?

m Construct trails between nodes

m Path in the underlying undirected graph
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Basic trails
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Basic trails

(a) (b) () (d)

m V-structure in (d) allows influence to flow

m In all other cases, Z blocks flow between X and Y
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Conditional independence

m X LY — X and Y are independent
m P(XUY)=P(X)P(Y)

m X L Y|Z—XandY are independent if Z is known

m How does dependence “flow” through a network?

m Construct trails between nodes

® Path in the underlying undirected graph

m X and Y are conditionally independent given Z if Z blocks every trail between
X and Y

m Adapt breadth-first search to check this
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Conditional independence, example

m Is SAT independent of Difficulty
given Intelligence?

gl
i%d°| 03
i%d | 0.05
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Conditional independence, example

m Is SAT independent of Difficulty s
given Intelligence? 06| 04

gl

i%a° [ 03

i%d | 0.0

m Is SAT independent of Difficulty iLd| 09
given Grade? it,d' | os
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