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Conditional probabilities

Boolean variables x1, x2, . . . , xn

Joint probabilities P(v1, v2, . . . , vn)

2
n
combinations of x1, x2, . . . , xn

2
n � 1 parameters

Näıve Bayes assumption — complete independence

P(xi = 1) for each xi

n parameters

Can we strive for something in between?

“Local” dependencies between some variables
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Probabilistic graphical models

Judea Pearl [Turing Award 2011]

Represent local dependencies using

directed graph

Example: Burglar alarm

Pearl’s house has a burglar alarm

Neighbours John and Mary call if

they hear the alarm

John is prone to mistaking

ambulances etc for the alarm

Mary listens to loud music and

sometimes fails to hear the alarm

The alarm may also be triggered by

an earthquake (California!)
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Probabilistic graphical models

Each node has a local (conditional)

probability table

Fundamental assumption:

A node is conditionally independent

of non-descendants, given its parents

Graph is a DAG, no cyclic

dependencies
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Student example

Example due to Nir Friedman and

Daphne Koller

Student asks teacher for a reference

letter

Teacher has forgotten the student, so

letter is entirely based on student’s

grade in the course
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Evaluating a network

John and Mary call Pearl. What is the probability that there has been a

burglary?

P(b,m, j), where b: burglary, j : John calls, m: Mary calls

P(b,m, j) =
1X

a=0

1X

e=0

P(b, j ,m, a, e), where a: alarm rings, e: earthquake

Bayes Rule: P(A,B) = P(A | B)P(B)

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2, x3, . . . , xn)

Recursively:

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn�1 | xn)P(xn)
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Evaluating a network

P(x1, x2, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn�1 | xn)P(xn)

Can choose any ordering of x1, x2, . . . , xn

Use topological ordering in a Bayesian network

P(m, j , a, b, e) = P(m | a)P(j | a)P(a | b, e)P(b)P(e)

P(m, j , b) =
1X

a=0

1X

e=0

P(m | a)P(j | a)P(a | b, e)P(b)P(e)

P(m, j , b) = P(b)
1X

e=0

P(e)
1X

a=0

P(m | a)P(j | a)P(a | b, e)
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Evaluation tree
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Alternative networks
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Conditional independence

X ? Y — X and Y are independent

P(X [ Y ) = P(X )P(Y )

X ? Y | Z — X and Y are independent if Z is known

How does dependence “flow” through a network?

Construct trails between nodes

Path in the underlying undirected graph
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Basic trails

V-structure in (d) allows influence to flow

In all other cases, Z blocks flow between X and Y
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Conditional independence

X ? Y — X and Y are independent

P(X [ Y ) = P(X )P(Y )

X ? Y | Z — X and Y are independent if Z is known

How does dependence “flow” through a network?

Construct trails between nodes

Path in the underlying undirected graph

X and Y are conditionally independent given Z if Z blocks every trail between

X and Y

Adapt breadth-first search to check this
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Conditional independence, example

Is SAT independent of Di�culty

given Intelligence?

Is SAT independent of Di�culty

given Grade?
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