Lecture 6: Convolutional Neural Networks

Madhavan Mukund and Pranabendu Misra

Advanced Machine Learning 2021 Chennai Mathematical Institute

Deep Neural Networks for Recognizing Images

Last Lecture:

- We trained a Fully-Connected DNN to recognize handwritten digits from the MNIST Dataset
- It performed fairly well (97.5% Test Accuracy)
- Similar networks, but perhaps with larger number of neurons, can be built for more complex image classification tasks.
- However, we also saw that the Fully-Connected Network doesn't use Visual Information.
- We fixed an arbitrary permutation, and scrambled all training and test images using it. The resulting images were no longer recognizable as digits (by us humans).
- However the Fully-Connected network still managed a 97.5% Test accuracy. This means this network was not using visual information.
- More importantly, it seems difficult to improve the network performance without using some visual information in the images.

How the brain recognizes images

- Visual cortex processes images
- Experiments on cats and monkeys [Hubel, Wiesel 1959], Nobel Prize 1981
- Visual cortex organized in layers

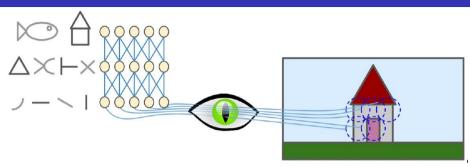
How the brain recognizes images

- Visual cortex processes images
- Experiments on cats and monkeys [Hubel, Wiesel 1959], Nobel Prize 1981
- Visual cortex organized in layers
 - Each layer detects features
 - Initial layers detect simple features — edges
 - Later layers combine features of earlier layers — detect contours, shapes, entire object



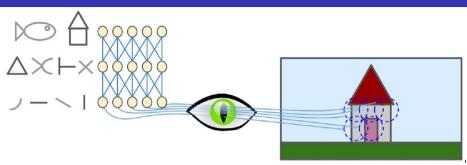
How the brain recognizes images

- Visual cortex processes images
- Experiments on cats and monkeys [Hubel, Wiesel 1959], Nobel Prize 1981
- Visual cortex organized in layers
 - Each layer detects features
 - Initial layers detect simple features — edges
 - Later layers combine features of earlier layers — detect contours, shapes, entire object
- Convolutional neural network (CNN) — layered network

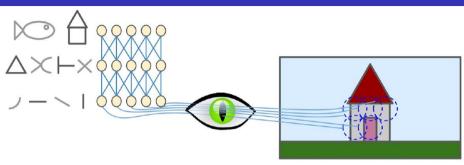


■ Each neuron focuses on a small region — receptive field

4/1

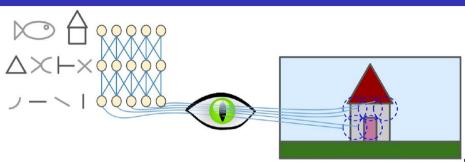


- Each neuron focuses on a small region — receptive field
- Vanilla neural network reads entire image as input
 - MNIST 28 × 28 pixels



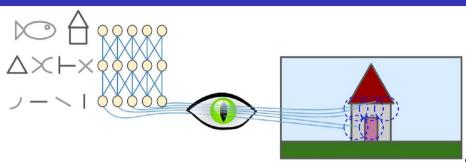
- Each neuron focuses on a small region receptive field
- Vanilla neural network reads entire image as input
 - MNIST 28 × 28 pixels

■ Colour image, 200×200



- Each neuron focuses on a small region — receptive field
- Vanilla neural network reads entire image as input
 - MNIST 28 × 28 pixels

- Colour image, 200×200
 - Three colours $200 \times 200 \times 3$ inputs
 - Each neuron in first layer has 120,000 input weights
 - Multiple such neurons



- Each neuron focuses on a small region — receptive field
- Vanilla neural network reads entire image as input
 - MNIST 28 × 28 pixels

- Colour image, 200 × 200
 - Three colours $200 \times 200 \times 3$ inputs
 - Each neuron in first layer has 120,000 input weights
 - Multiple such neurons
- Parameter blowup, overfitting

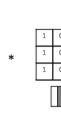
Filters and convolution

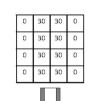
- Aggregate values over a region
 - Smoothening take average
 - Vertical lines difference between adjacent columns
 - Horizontal lines difference between adjacent rows
- Pass a filter f over the image
 - Convolution / * f
 - Sometimes, filter is called a convolution kernel — / * K

Filters and convolution

- Aggregate values over a region
 - Smoothening take average
 - Vertical lines difference between adjacent columns
 - Horizontal lines difference between adjacent rows
- Pass a filter f over the image
 - \blacksquare Convolution I * f
 - Sometimes, filter is called a convolution kernel — I * K
- Light to dark vertical edges

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0





Filters and convolution

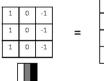
- Aggregate values over a region
 - Smoothening take average
 - Vertical lines difference between adjacent columns
 - Horizontal lines difference between adjacent rows
- Pass a filter f over the image
 - Convolution I * f
 - Sometimes, filter is called a convolution kernel — / * K
- Light to dark vertical edges
- Dark to light vertical edges

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

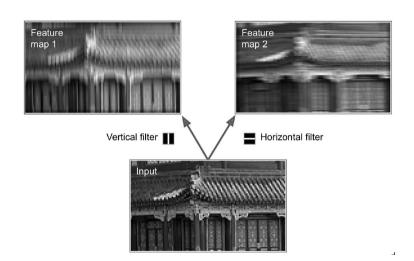
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1
		ī

* 1	0
* 1	0
1	0

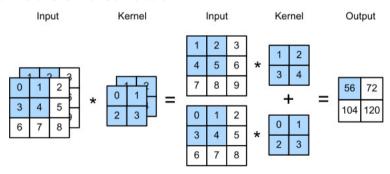


Filters produce feature maps

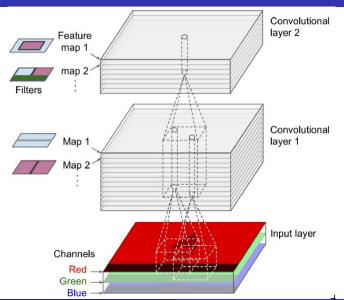


Multi-Channel Inputs

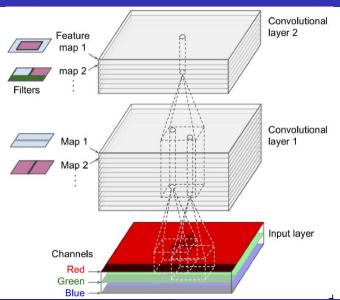
- Real World Images are in color (3-channels)
- Similarly convolution filters in higher layer will need to work with feature maps produced by multiple lower layer convolutions.
- So we need Multi-Channel Convolution



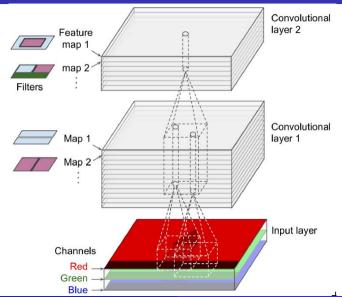
- Filters produce feature maps
- Colour images are split by channel



- Filters produce feature maps
- Colour images are split by channel
- Each layer has many feature maps
 - Array of filters, each connected to a different region

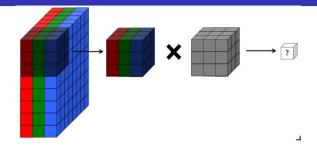


- Filters produce feature maps
- Colour images are split by channel
- Each layer has many feature maps
 - Array of filters, each connected to a different region
- Higher layers combine features discovered by lower layers



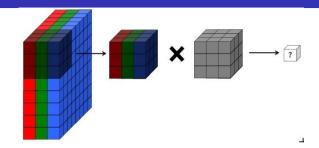
Volumetric view

Each filter processes a volume of inputs



Volumetric view

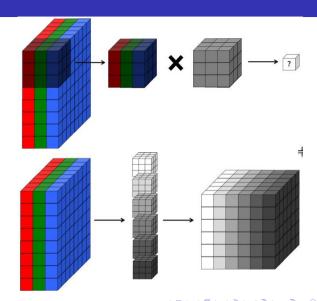
- Each filter processes a volume of inputs
- Each layer has sublayers
 - A sublayer is an array of such filters



Volumetric view

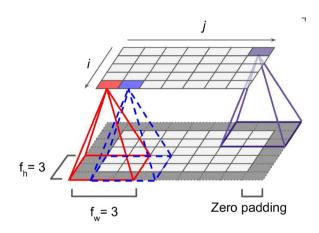
- Each filter processes a volume of inputs
- Each layer has sublayers
 - A sublayer is an array of such filters

 Each layer produces a block of outputs

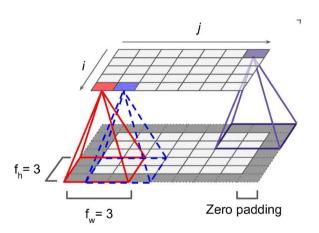


- Each filter f has height f_h , width f_w
 - Receptive field of *f*

- Each filter f has height f_h , width f_w
 - Receptive field of *f*
- Need to extend the boundary for filter to work properly at the edges
 - Zero padding

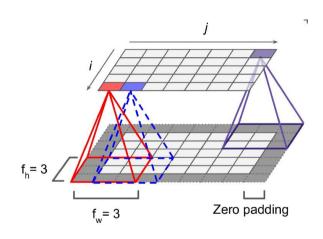


- Each filter f has height f_h , width f_w
 - Receptive field of f
- Need to extend the boundary for filter to work properly at the edges
 - Zero padding
- With padding, feature map has same dimension as input

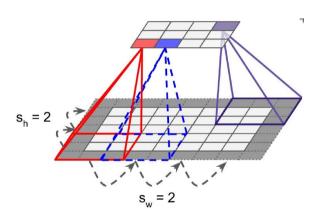


10 / 1

- Each filter f has height f_h , width f_w
 - Receptive field of f
- Need to extend the boundary for filter to work properly at the edges
 - Zero padding
- With padding, feature map has same dimension as input
- Note: In an actual CNN, filters are not designed by hand
 - Fix f_h and f_w , but weights are learned from training data

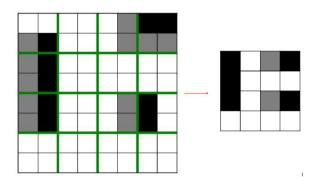


- Each filter f has height f_h , width f_w
 - Receptive field of f
- Need to extend the boundary for filter to work properly at the edges
 - Zero padding
- With padding, feature map has same dimension as input
- To reduce dimension, we can space out the receptive fields
 - Horizontal and vertical stride



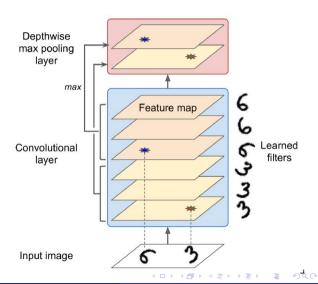
- Filters process overlapping regions
- Pooling processes partitions
 - Subsampling, reduce dimensionality

- Filters process overlapping regions
- Pooling processes partitions
 - Subsampling, reduce dimensionality
- Most common is max-pool over 2 × 2 window



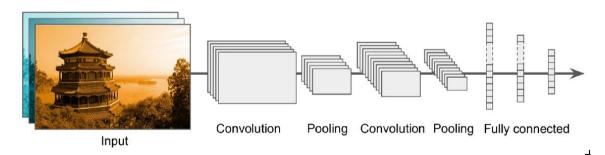
- Filters process overlapping regions
- Pooling processes partitions
 - Subsampling, reduce dimensionality
- Most common is max-pool over 2 × 2 window
- Here, max-pooling reduces an image to half its size

- Filters process overlapping regions
- Pooling processes partitions
 - Subsampling, reduce dimensionality
- Most common is max-pool over 2 × 2 window
- Here, max-pooling reduces an image to half its size
- Can also pool depthwise for instance, to learn features invariant to rotation



Typical CNN Architecture

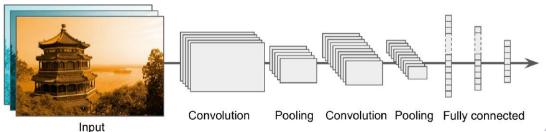
- A typical CNN has multiple iterations of convolution followed by pooling
- After final pooling, conventional completely connected network



15/1

Parameter sharing

- A filter is a layer of identical nodes operating on different regions (receptive fields)
- All these nodes should behave the same
- While training, their weights are tied to each other parameter sharing
- Thus, backward pass of backpropagation calculation is reduced
- Forward pass needs to compute individual outputs still expensive



- LeNet-5 Yann LeCun, 1998
 - Handwritten digits, MNIST data set from US postal service

- LeNet-5 Yann LeCun, 1998
 - Handwritten digits, MNIST data set from US postal service
- AlexNet Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, 2012
 - ImageNet, 14 million images, 20,000 categories, hand annotated
 - Top-five error rate at least one of top 5 prediced labels is correct

- LeNet-5 Yann LeCun, 1998
 - Handwritten digits, MNIST data set from US postal service
- AlexNet Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, 2012
 - ImageNet, 14 million images, 20,000 categories, hand annotated
 - Top-five error rate at least one of top 5 prediced labels is correct
 - 2012 ImageNet challenge, AlexNet reduced top-five error rate from 26% to 17%

- LeNet-5 Yann LeCun, 1998
 - Handwritten digits, MNIST data set from US postal service
- AlexNet Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, 2012
 - ImageNet, 14 million images, 20,000 categories, hand annotated
 - Top-five error rate at least one of top 5 prediced labels is correct
 - 2012 ImageNet challenge, AlexNet reduced top-five error rate from 26% to 17%
 - First to add multiple convolution layers between pooling layers
 - Also some normalization layers

- LeNet-5 Yann LeCun, 1998
 - Handwritten digits, MNIST data set from US postal service
- AlexNet Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, 2012
 - ImageNet, 14 million images, 20,000 categories, hand annotated
 - Top-five error rate at least one of top 5 prediced labels is correct
 - 2012 ImageNet challenge, AlexNet reduced top-five error rate from 26% to 17%
 - First to add multiple convolution layers between pooling layers
 - Also some normalization layers
- GoogLeNet Christian Szegedy et al, 2014
 - 2014 ImageNet challenge, reduced top-five error rate to 7%

- LeNet-5 Yann LeCun, 1998
 - Handwritten digits, MNIST data set from US postal service
- AlexNet Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton, 2012
 - ImageNet, 14 million images, 20,000 categories, hand annotated
 - Top-five error rate at least one of top 5 prediced labels is correct
 - 2012 ImageNet challenge, AlexNet reduced top-five error rate from 26% to 17%
 - First to add multiple convolution layers between pooling layers
 - Also some normalization layers
- GoogLeNet Christian Szegedy et al, 2014
 - 2014 ImageNet challenge, reduced top-five error rate to 7%
 - \blacksquare Inception layer with 1×1 filters, operates in depth dimension, cross-channel features

- ResNet Kaiming He et al, 2015
 - 2014 ImageNet challenge, reduced top-five error rate to under 3.6%
 - 152 layers!

- ResNet Kaiming He et al, 2015
 - 2014 ImageNet challenge, reduced top-five error rate to under 3.6%
 - 152 layers!
 - Skip connections to speed up learning
 - Input to a layer is added to output of a higher layer
 - Higher layer learns h(x) x rather than h(x) residual learning
 - Accelerates learning through multiple layers

- ResNet Kaiming He et al, 2015
 - 2014 ImageNet challenge, reduced top-five error rate to under 3.6%
 - 152 layers!
 - Skip connections to speed up learning
 - Input to a layer is added to output of a higher layer
 - Higher layer learns h(x) x rather than h(x) residual learning
 - Accelerates learning through multiple layers
- Xception, Chollet, 2016
- SENet, Hu et al, 2017

- CNN architecture mimics the visual cortex
 - Processing is done in layers
 - Filters aggregate information across a small receptive field to capture features
 - Higher layers combine features at lower levels

- CNN architecture mimics the visual cortex
 - Processing is done in layers
 - Filters aggregate information across a small receptive field to capture features
 - Higher layers combine features at lower levels
- Pooling layers use subsampling for dimension reduction

- CNN architecture mimics the visual cortex
 - Processing is done in layers
 - Filters aggregate information across a small receptive field to capture features
 - Higher layers combine features at lower levels
- Pooling layers use subsampling for dimension reduction
- Within a filter layer, parameter sharing reduces number of parameters to be learned

- CNN architecture mimics the visual cortex
 - Processing is done in layers
 - Filters aggregate information across a small receptive field to capture features
 - Higher layers combine features at lower levels
- Pooling layers use subsampling for dimension reduction
- Within a filter layer, parameter sharing reduces number of parameters to be learned
- AlexNet signalled resurgence of CNNs with huge margin of victory in ImageNet 2012

- CNN architecture mimics the visual cortex
 - Processing is done in layers
 - Filters aggregate information across a small receptive field to capture features
 - Higher layers combine features at lower levels
- Pooling layers use subsampling for dimension reduction
- Within a filter layer, parameter sharing reduces number of parameters to be learned
- AlexNet signalled resurgence of CNNs with huge margin of victory in ImageNet 2012
- CNNs continue to evolve with specialized hacks