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Deep Neural Networks for Recognizing Images

Last Lecture:

m We trained a Fully-Connected DNN to recognize handwritten digits from the MNIST
Dataset

m It performed fairly well (97.5% Test Accuracy)

m Similar networks, but perhaps with larger number of neurons, can be built for more
complex image classification tasks.

m However, we also saw that the Fully-Connected Network doesn't use Visual Information.

m We fixed an arbitrary permutation, and scrambled all training and test images using it.
The resulting images were no longer recognizable as digits (by us humans).

m However the Fully-Connected network still managed a 97.5% Test accuracy. This means
this network was not using visual information.

m More importantly, it seems difficult to improve the network performance without using
some visual information in the images.
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How the brain recognizes images

m Visual cortex processes images

m Experiments on cats and
monkeys [Hubel, Wiesel 1959],
Nobel Prize 1981

m Visual cortex organized in layers
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m Visual cortex processes images

m Experiments on cats and
monkeys [Hubel, Wiesel 1959],
Nobel Prize 1981

m Visual cortex organized in layers
m Each layer detects features

m Initial layers detect simple
features — edges

m Later layers combine features
of earlier layers — detect
contours, shapes, entire object

m Convolutional neural network
(CNN) — layered network
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Receptive field

m Each neuron focuses on a small
region — receptive field
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m Each neuron focuses on a small m Colour image, 200 x 200

region — receptive field m Three colours — 200 x 200 x 3 inputs

m Vanilla neural network reads entire m Each neuron in first layer has 120, 000
image as input input weights
m MNIST — 28 x 28 pixels m Multiple such neurons
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m Each neuron focuses on a small m Colour image, 200 x 200

region — receptive field m Three colours — 200 x 200 x 3 inputs

m Vanilla neural network reads entire m Each neuron in first layer has 120, 000
image as input input weights
m MNIST — 28 x 28 pixels m Multiple such neurons

m Parameter blowup, overfitting

Madhavan Mukund and Pranabendu Misra Lecture 6: Convolutional Neural Networks AML 2021 4/1



Filters and convolution

m Aggregate values over a region
m Smoothening — take average

m Vertical lines — difference
between adjacent columns

m Horizontal lines — difference
between adjacent rows
m Pass a filter f over the image
m Convolution — [ x f

m Sometimes, filter is called a
convolution kernel — [ x K
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Feature maps

m Filters produce feature

maps Feature ) Feature
map 1 AN map 2
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Multi-Channel Inputs

m Real World Images are in color (3-channels)

m Similarly convolution filters in higher layer will need to work with feature maps produced
by multiple lower layer convolutions.

m So we need Multi-Channel Convolution
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Feature maps

Convolutional

m Filters produce feature
maps

m Colour images are split
by channel
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Feature maps

Convolutional

m Filters produce feature
maps

m Colour images are split
by channel

m Each layer has many
feature maps

m Array of filters, each
connected to a
different region
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Feature maps

m Filters produce feature
maps
m Colour images are split
by channel
m Each layer has many
feature maps
m Array of filters, each

connected to a
different region

m Higher layers combine
features discovered by

lower layers
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Volumetric view

m Each filter processes a volume of
oo
d
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Volumetric view

m Each filter processes a volume of
inputs
m Each layer has sublayers

m A sublayer is an array of such
filters
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Volumetric view

m Each filter processes a volume of
inputs
m Each layer has sublayers

m A sublayer is an array of such
filters

Al

m Each layer produces a block of
outputs
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Zero padding, stride

m Each filter f has height f,, width f,
m Receptive field of
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Zero padding, stride

m Each filter f has height f,, width f, -
m Receptive field of £

m Need to extend the boundary for
filter to work properly at the edges

m Zero padding

f=3 Zero padding
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Zero padding, stride

m Each filter f has height f,, width f, -
m Receptive field of £

m Need to extend the boundary for
filter to work properly at the edges

m Zero padding

m With padding, feature map has same
dimension as input

m Note: In an actual CNN, filters are
not designed by hand

f=3 Zero padding
m Fix f, and f,,, but weights are
learned from training data

Madhavan Mukund and Pranabendu Misra Lecture 6: Convolutional Neural Networks AML 2021 10/1



Zero padding, stride

m Each filter f has height f,, width f,
m Receptive field of £

m Need to extend the boundary for
filter to work properly at the edges

m Zero padding

m With padding, feature map has same
dimension as input

m To reduce dimension, we can space
out the receptive fields

m Horizontal and vertical stride
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Pooling

m Filters process overlapping regions

m Pooling processes partitions

m Subsampling, reduce dimensionality

Madhavan Mukund and Pranabendu Misra Lecture 6: Convolutional Neural Networks AML 2021 12/1



Pooling

m Filters process overlapping regions

m Pooling processes partitions

m Subsampling, reduce dimensionality

m Most common is max-pool over 2 x 2
window

Madhavan Mukund and Pranabendu Misra Lecture 6: Convolutional Neural Networks AML 2021 12/1



Pooling

m Filters process overlapping regions

m Pooling processes partitions

m Subsampling, reduce dimensionality

m Most common is max-pool over 2 x 2
window

m Here, max-pooling reduces an image
to half its size
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m Filters process overlapping regions

m Pooling processes partitions DGptiwibe
max pooling
m Subsampling, reduce dimensionality layer
m Most common is max-pool over 2 x 2 e G
window
m Here, max-pooling reduces an image (o
. p & & Convolutional 6‘ Learned
to half its size layer < filters
m Can also pool depthwise — for K
instance, to learn features invariant lb
to rotation

Input image
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Typical CNN Architecture

m A typical CNN has multiple iterations of convolution followed by pooling

m After final pooling, conventional completely connected network

]
3|

L

Pooling Convolution Pooling Fully connected

Convolution
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Parameter sharing

m A filter is a layer of identical nodes operating on different regions (receptive fields)
m All these nodes should behave the same
m While training, their weights are tied to each other — parameter sharing

m Thus, backward pass of backpropagation calculation is reduced

Forward pass needs to compute individual outputs — still expensive

Convolution Pooling Convolution Pooling Fully connected
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CNNs through the ages

m LeNet-5 — Yann LeCun, 1998
m Handwritten digits, MNIST data set from US postal service
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m AlexNet — Alex Krizhevsky, llya Sutskever, Geoffrey Hinton, 2012
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m Top-five error rate — at least one of top 5 prediced labels is correct
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CNNs through the ages

m LeNet-5 — Yann LeCun, 1998
m Handwritten digits, MNIST data set from US postal service

m AlexNet — Alex Krizhevsky, llya Sutskever, Geoffrey Hinton, 2012
m ImageNet, 14 million images, 20,000 categories, hand annotated
m Top-five error rate — at least one of top 5 prediced labels is correct
m 2012 ImageNet challenge, AlexNet reduced top-five error rate from 26% to 17%
m First to add multiple convolution layers between pooling layers

m Also some normalization layers

m GoogleNet — Christian Szegedy et al, 2014
m 2014 ImageNet challenge, reduced top-five error rate to 7%

m Inception layer with 1 x 1 filters, operates in depth dimension, cross-channel features
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CNNs through the ages

m ResNet — Kaiming He et al, 2015
m 2014 ImageNet challenge, reduced top-five error rate to under 3.6%

m 152 layers!
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CNNs through the ages

m ResNet — Kaiming He et al, 2015

m 2014 ImageNet challenge, reduced top-five error rate to under 3.6%
m 152 layers!

m Skip connections to speed up learning

m Input to a layer is added to output of a higher layer

m Higher layer learns h(x) — x rather than h(x) — residual learning

B Accelerates learning through multiple layers
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CNNs through the ages

m ResNet — Kaiming He et al, 2015
m 2014 ImageNet challenge, reduced top-five error rate to under 3.6%
m 152 layers!
m Skip connections to speed up learning
m Input to a layer is added to output of a higher layer
m Higher layer learns h(x) — x rather than h(x) — residual learning

B Accelerates learning through multiple layers
m Xception, Chollet, 2016
m SENet, Hu et al, 2017
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Summary

m CNN architecture mimics the visual cortex
m Processing is done in layers
m Filters aggregate information across a small receptive field to capture features

m Higher layers combine features at lower levels
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m CNN architecture mimics the visual cortex
m Processing is done in layers
m Filters aggregate information across a small receptive field to capture features

m Higher layers combine features at lower levels
m Pooling layers use subsampling for dimension reduction
m Within a filter layer, parameter sharing reduces number of parameters to be learned
m AlexNet signalled resurgence of CNNs with huge margin of victory in ImageNet 2012

m CNNs continue to evolve with specialized hacks
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