Lecture 2: VC Dimension

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

PAC learning guarantee

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

Uniform convergence

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$. If a training set S of size $n \geq \frac{1}{2\epsilon^2}(\ln |\mathcal{H}| + \ln(2/\delta))$ is drawn using D, then with probability $\geq 1 - \delta$, every $h \in \mathcal{H}$ satisfies $|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \leq \epsilon$.

\blacksquare $|\mathcal{H}|$ is representational capacity, when \mathcal{H} is finite

• How do we adapt and apply these bounds when $\mathcal H$ is infinite?

Shattering

- Set system: (X, \mathcal{H})
 - X is a set instance space
 - *H*, set of subsets of *X* set of possible classifiers / hypotheses
- $A \subseteq X$ is shattered by \mathcal{H} if every subset of A is given by $A \cap h$ for some $h \in \mathcal{H}$
 - Every way of splitting A is captured by a hypothesis in H
 - $2^{|A|}$ different subsets of A
- Example:
 - $X = \mathbb{R} \times \mathbb{R}$
 - \mathcal{H} : Axis-parallel rectangles
 - A : Four points forming a diamond
 - H shatters A

VC-Dimension [Vapnik-Chervonenkis]

- VC-Dimension of *H* size of the largest subset of *X* shattered by *H*
 - For axis-parallel rectangles, VC-dimension is at least 4
 - Not a universal requirement some sets of size 4 may not be shattered
- No set of size 5 can be shattered by axis-parallel rectangles
 - Draw a bounding box rectangle each edge touches a boundary point
 - At least one point lies inside the bounding box
 - Any set that includes the boundary points also includes the interior point

VC-Dimension, Examples

- Intervals of reals have VC-dimension 2
 - $X = \mathbb{R}, \ \mathcal{H} = \{[a, b] \mid a \leq b \in \mathbb{R}\}$
 - Cannot shatter 3 points: consider subset with first and third point
- Pairs of intervals of reals have VC-dimension 4
 - $X = \mathbb{R}$, $\mathcal{H} = \{[a, b] \cup [c, d] \mid a \leq b, c \leq d \in \mathbb{R}\}$
 - Cannot shatter 5 points: consider subset with first, third and fifth point
- Finite sets of real numbers

• $X = \mathbb{R}, \ \mathcal{H} = \{Z \mid Z \subseteq \mathbb{R}, |Z| < \infty\}$

- Can shatter any finite set of reals VC-dimension is infinite
- Convex polygons, $X = \mathbb{R} \times \mathbb{R}$
 - For any *n*, place *n* points on unit circle
 - Each subset of these points is a convex polygon VC-dimension is infinite

PAC learning guarantee

Let \mathcal{H} be a hypothesis class, $\delta, \epsilon > 0$ and S a training set of size $n \ge \frac{1}{\epsilon} (\ln |\mathcal{H}| + \ln(1/\delta))$ drawn using D. With probability $\ge 1 - \delta$, every $h \in \mathcal{H}$ with true error $\operatorname{err}_D > \epsilon$ has training error $\operatorname{err}_S > 0$.

• We can rewrite this using VC-dimension. Can similarly restate uniform convergence.

Sample bound using VC-dimension

For any class \mathcal{H} and distribution D, if a training sample S is drawn using D of size $O\left(\frac{1}{\epsilon}\left[\mathsf{VC}\text{-dim}(\mathcal{H})\ln\frac{1}{\epsilon}+\ln\frac{1}{\delta}\right]\right)$, then with probability $\geq 1-\delta$, • every $h \in \mathcal{H}$ with true error $\operatorname{err}_D(h) \geq \epsilon$ has training error $\operatorname{err}_S(h) > 0$, • i.e., every $h \in \mathcal{H}$ with training error $\operatorname{err}_S(h) = 0$. has true error $\operatorname{err}_D(h) < \epsilon$

- PAC learning and uniform convergence use size of finite hypothesis set as measure of representational capacity
- VC-dimension provides a way of measuring capacity for infinite hypothesis sets
- VC-dimension may be finite or infinite
- For finite VC-dimension, we have analogues of PAC learning guarantee and uniform convergence
- Note that these theoretical bounds are hard to use in practice
- Difficult, if not impossible, to compute VC-dimension for complex models