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Monte Carlo methods

If we know the model, use generalized policy iteration (dynamic programming) to
approximate π∗, v∗

What if the model is a black box?

Generate random episodes to estimate the given quantities

Learning through experience

Monte Carlo algorithms — compute estimates through random sampling
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Monte Carlo policy evaluation — estimating vπ

Estimate vπ for
a given policy π

Generate an
episode following
π, compute
vπ(s) backwards
from end

Average out
values across
episodes

First-visit MC — compute average for first visit to s in each episode

Every-visit MC — remove Unless condition
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Action value estimate — qπ(s, a)

In the absence of a model, useful to directly estimate action values qπ(s, a)

Policy improvement requires qπ(s, a)

vπ(s) =
∑
a

π(a | s)qπ(s, a)

Need to ensure that all pairs (s, a) are visited

Exploring starts Each pair (s, a) has non-zero probability of being start of an episode

Will look at ways to avoid this

With exploring starts, algorithm for estimating qπ is similar to the one for vπ
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Monte Carlo Policy Iteration

As before, alternate between policy evaluation and policy improvement

π0
evaluate−−−−−→ qπ0

improve−−−−→ π1
evaluate−−−−−→ qπ1

improve−−−−→ π2
evaluate−−−−−→ · · ·

Improve: Given estimate qπk
, update πk+1(s) = arg max

a
qπk

(s, a)

Evaluate: Estimate qπk
from πk

Iterate over large number of episodes to estimate average values

Exploring starts
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Monte Carlo Policy Iteration, estimating π∗
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ε-soft policies

To avoid exploring starts, use a version of ε greedy

ε-soft policy

Let A(s) be set of actions available at state s

Choose non-greedy action with probability
ε

|A(s)|
— uniform

Choose greedy action with probability (1− ε) +
ε

|A(s)|
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Monte Carlo Policy Iteration with ε-soft policies
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Off policy methods

Use a different policy b to generate episodes to estimate vπ

Coverage If π(a | s) > 0 then b(a | s) > 0

Consider the probability of a trajectory At ,St+1,At+1, . . . ,ST from St

For π, π(At | St)p(St+1 | St ,At)π(At+1 | St+1) · · · p(ST | ST−1,AT−1)

=
T−1∏
k=t

π(Ak | Sk)p(Sk+1 | Sk ,Ak)

For b, b(At | St)p(St+1 | St ,At)b(At+1 | St+1) · · · p(ST | ST−1,AT−1)

=
T−1∏
k=t

b(Ak | Sk)p(Sk+1 | Sk ,Ak)

p(s ′ | s, a) are unknown model probabilities

Take ratio, these cancel out

∏T−1
k=t π(Ak | Sk)p(Sk+1 | Sk ,Ak)∏T−1
k=t b(Ak | Sk)p(Sk+1 | Sk ,Ak)

=

∏T−1
k=t π(Ak | Sk)∏T−1
k=t b(Ak | Sk)
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Weighted sampling

Use ratio ρt:T =

∏T−1
k=t π(Ak | Sk)∏T−1
k=t b(Ak | Sk)

to “adjust” estimates learnt via b

Let Gt be an estimate learn by exploring using b

The corresponding estimate with respect to π is ρt:TGt

Importance sampling

Generate episodes using b

Compute adjusted estimates to update qπ, π

Contribution of each episode is proportional to its likelihood with respect to π

Variations — ordinary importance sampling (above), weighted importance sampling

Off policy methods still to be fully analyzed
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