Monte Carlo Methods

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning September–December 2021

Monte Carlo methods

- If we know the model, use generalized policy iteration (dynamic programming) to approximate π_* , v_*
- What if the model is a black box?
- Generate random episodes to estimate the given quantities
- Learning through experience
- Monte Carlo algorithms compute estimates through random sampling

Monte Carlo policy evaluation — estimating v_{π}

- Estimate v_{π} for a given policy π
- Generate an episode following π , compute $v_{\pi}(s)$ backwards from end
- Average out values across episodes

First-visit MC prediction, for estimating $V \approx v_{\pi}$

```
Input: a policy \pi to be evaluated Initialize: V(s) \in \mathbb{R}, \text{ arbitrarily, for all } s \in \mathbb{S} Returns(s) \leftarrow \text{ an empty list, for all } s \in \mathbb{S} Loop forever (for each episode): Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T G \leftarrow 0 Loop for each step of episode, t = T-1, T-2, \ldots, 0: G \leftarrow \gamma G + R_{t+1} Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
```

■ First-visit MC — compute average for first visit to s in each episode

Append G to $Returns(S_t)$

 $V(S_t) \leftarrow \text{average}(Returns(S_t))$

■ Every-visit MC — remove Unless condition

Action value estimate — $q_{\pi}(s, a)$

- In the absence of a model, useful to directly estimate action values $q_{\pi}(s,a)$
 - Policy improvement requires $q_{\pi}(s, a)$
- Need to ensure that all pairs (s, a) are visited
- **Exploring starts** Each pair (s, a) has non-zero probability of being start of an episode
 - Will look at ways to avoid this
- lacktriangle With exploring starts, algorithm for estimating q_π is similar to the one for v_π

Monte Carlo Policy Iteration

As before, alternate between policy evaluation and policy improvement

$$\pi_0 \xrightarrow{\text{evaluate}} q_{\pi_0} \xrightarrow{\text{improve}} \pi_1 \xrightarrow{\text{evaluate}} q_{\pi_1} \xrightarrow{\text{improve}} \pi_2 \xrightarrow{\text{evaluate}} \cdots$$

- Improve: Given estimate q_{π_k} , update $\pi_{k+1}(s) = \arg\max_a q_{\pi_k}(s,a)$
- **Evaluate**: Estimate q_{π_k} from π_k
 - Iterate over large number of episodes to estimate average values
 - Exploring starts

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi_*$

```
Initialize:
     \pi(s) \in \mathcal{A}(s) (arbitrarily), for all s \in \mathcal{S}
     Q(s,a) \in \mathbb{R} (arbitrarily), for all s \in S, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{emptv list, for all } s \in S, a \in \mathcal{A}(s)
Loop forever (for each episode):
     Choose S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0) randomly such that all pairs have probability > 0
     Generate an episode from S_0, A_0, following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
               Append G to Returns(S_t, A_t)
               Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
               \pi(S_t) \leftarrow \operatorname{argmax}_a Q(S_t, a)
```

6/10

ε -soft policies

- To avoid exploring starts, use a version of ε greedy
- \bullet ε -soft policy
 - Let A(s) be set of actions available at state s
 - \blacksquare Choose non-greedy action with probability $\frac{\epsilon}{|\mathcal{A}(s)|}$ uniform
 - lacktriangle Choose greedy action with probability $(1-arepsilon)+rac{\epsilon}{|\mathcal{A}(s)|}$

Monte Carlo Policy Iteration with ε -soft policies

On-policy first-visit MC control (for ε -soft policies), estimates $\pi \approx \pi_*$ Algorithm parameter: small $\varepsilon > 0$ Initialize: $\pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$ $Q(s,a) \in \mathbb{R} \text{ (arbitrarily), for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ $Returns(s,a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)$ Repeat forever (for each episode): Generate an episode following π : $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$

Generate an episode following
$$\pi$$
: $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}$

Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$:

$$G \leftarrow \gamma G + R_{t+1}$$

Unless the pair S_t, A_t appears in $S_0, A_0, S_1, A_1, \dots, S_{t-1}, A_{t-1}$:

Append G to $Returns(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$$

$$A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$$

(with ties broken arbitrarily)

For all $a \in \mathcal{A}(S_t)$:

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}$$

Off policy methods

- Use a different policy b to generate episodes to estimate v_{π}
- Coverage If $\pi(a \mid s) > 0$ then $b(a \mid s) > 0$
- Consider the probability of a trajectory $A_t, S_{t+1}, A_{t+1}, \dots, S_T$ from S_t

■ For
$$\pi$$
, $\pi(A_t \mid S_t)p(S_{t+1} \mid S_t, A_t)\pi(A_{t+1} \mid S_{t+1})\cdots p(S_T \mid S_{T-1}, A_{T-1})$

$$= \prod_{k=1}^{T-1} \pi(A_k \mid S_k)p(S_{k+1} \mid S_k, A_k)$$

■ For b, $b(A_t \mid S_t)p(S_{t+1} \mid S_t, A_t)b(A_{t+1} \mid S_{t+1}) \cdots p(S_T \mid S_{T-1}, A_{T-1})$

$$= \prod_{k=t}^{T-1} b(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)$$

- $p(s' \mid s, a)$ are unknown model probabilities
- Take ratio, these cancel out $\frac{\prod_{k=t}^{T-1} \pi(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k \mid S_k) p(S_{k+1} \mid S_k, A_k)} = \frac{\prod_{k=t}^{T-1} \pi(A_k \mid S_k)}{\prod_{k=t}^{T-1} b(A_k \mid S_k)}$

Madhavan Mukund Monte Carlo Methods AML Sep-Dec 2021 9/10

Weighted sampling

- Use ratio $\rho_{t:T} = \frac{\prod_{k=t}^{T-1} \pi(A_k \mid S_k)}{\prod_{k=t}^{T-1} b(A_k \mid S_k)}$ to "adjust" estimates learnt via b
 - Let G_t be an estimate learn by exploring using b
 - The corresponding estimate with respect to π is $\rho_{t:T}G_t$
- Importance sampling
 - Generate episodes using b
 - Compute adjusted estimates to update q_{π} , π
 - $lue{}$ Contribution of each episode is proportional to its likelihood with respect to π
- Variations ordinary importance sampling (above), weighted importance sampling
- Off policy methods still to be fully analyzed

10 / 10