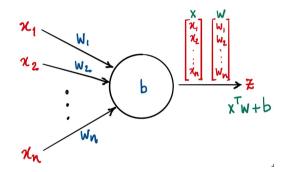
Lecture 4: Training Deep Neural Networks

Madhavan Mukund

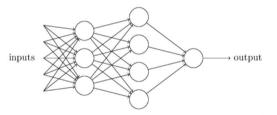
https://www.cmi.ac.in/~madhavan

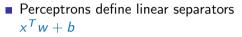
Advanced Machine Learning September–December 2021

- Perceptrons define linear separators $x^T w + b$
 - $x^T w + b > 0$, classify Yes (+1)
 - $x^T w + b < 0$, classify No (-1)

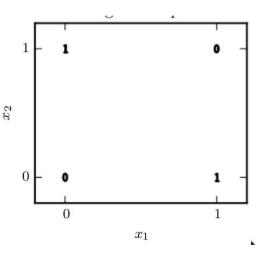


- Perceptrons define linear separators $x^T w + b$
 - $x^T w + b > 0$, classify Yes (+1)
 - $x^T w + b < 0$, classify No (-1)
- Network of perceptrons still defines only a linear separator

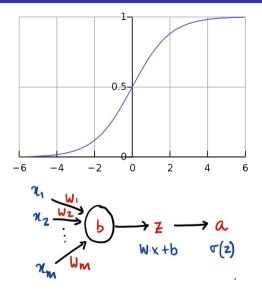




- $x^T w + b > 0$, classify Yes (+1) • $x^T w + b < 0$, classify No (-1)
- Network of perceptrons still defines only a linear separator
- Linear separators cannot describe XOR

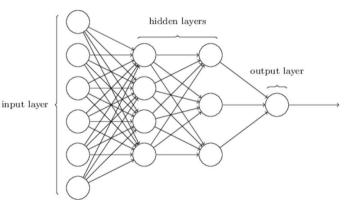


- Perceptrons define linear separators $x^T w + b$
 - $x^T w + b > 0$, classify Yes (+1) • $x^T w + b < 0$, classify No (-1)
- Network of perceptrons still defines only a
 - linear separator
- Linear separators cannot describe XOR
- Introduce a non-linear activation function
 - Traditionally sigmoid, σ(z) = 1/(1 + e^{-z})



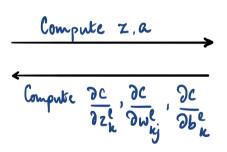
(Feed forward) Neural networks

- Acyclic network of perceptrons with non-linear activation functions
- Ingredients
 - Output layer activation function
 - Loss function for gradient descent
 - Hidden layer activation functions
 - Network architecture: Interconnection of layers
 - Initial values of weights and biases



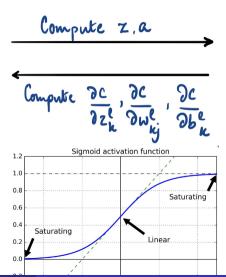
Training a neural network

- Backpropagation efficient implementation of gradient descent for neural networks
- Forward pass, compute outputs, activation values
- Backward pass, use chain rule to compute all gradients in one scan
- Stochastic gradient descent (SGD)
 - Update parameters in minibatches
 - Epoch: set of minibatches that covers entire training data
- Difficulties: slow convergence, vanishing and exploding gradients



Unstable gradients

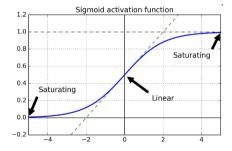
- Vanishing gradients gradients become smaller towards lower layers (closer to input)
 - Gradient descent updates leave these layers' parameters virtually unchanged
- Also exploding gradients, recurrent neural networks with feedback edges
- In general, unstable gradients, different layers learn at different speeds
- [Xavier Glorot and Joshua Bengio, 2010]
 - Random initialization, traditionally Gaussian distribution $\mathcal{N}(0,1)$
 - Variance keeps increasing going forward
 - Saturating sigmoid function



Initializing neural networks

- Want "signal" to flow well in both directions during backpropagation
 - Signal should not die out, explode, saturate
- [Glorot, Bengio] Gradients should have equal variance before and after flowing through a layer in both directions
 - Equal variance requires fanin = fanout
- Let $fan_{avg} = (fan_{in} + fan_{out})/2$
- Initialize with
 - Gaussian, $\mathcal{N}(0, 1/fan_{avg})$

• Uniform,
$$\mathcal{U}(-r, r)$$
, $r = \sqrt{\frac{3}{fan_{avg}}}$



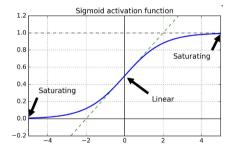
Initializing neural networks

- Let $fan_{avg} = (fan_{in} + fan_{out})/2$
- Initialize with
 - Gaussian, $\mathcal{N}(0, 1/fan_{avg})$

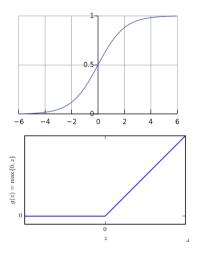
• Uniform,
$$\mathcal{U}(-r, r)$$
, $r = \sqrt{\frac{3}{fan_{avg}}}$

- [Yann LeCun, 1990s] earlier proposed the same with fan_{avg} replaced by fan_{in}
 - Equivalent if fanin = fanout
- Other choices for specific activation function

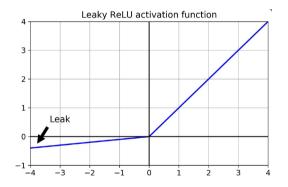
■ ReLU, [He et al, 2015], *N*(0, 2/*fan_{in}*)



- Sigmoid was initially chosen as a "smooth" step
- Rectified linear unit (ReLU): g(z) = max(0, z)
 - Fast to compute
 - Non-differentiable point not a bottleneck
- "Dying ReLU"
 - Neuron dies weighted sum of outputs is negative for all training samples
 - With a large learning rate, half the network may die!



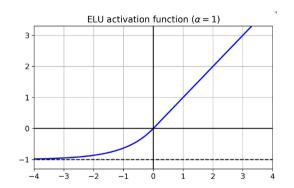
- Leaky ReLU, $max(\alpha z, z)$
 - "Leak" α is a hyperparameter
- RReLU random leak
 - Pick α from a random range during training
 - Fix to an average value when testing
 - Seems to work well, act as a regularizer
- PReLU parametric ReLU [He et al, 2015]
 - α is learned during training
 - Often outperforms ReLU, but could lead to overfitting



ELU — Exponential Linear Unit [Clevert et al, 2015]

 $ELU_{lpha}(z) = egin{cases} lpha(e^z-1) & ext{if } z < 0 \ z & ext{if } z \geq 0 \end{cases}$

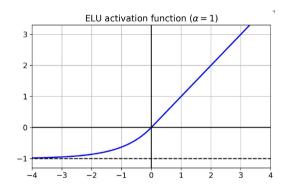
- Training converges faster
- Computing exponential is slower
- In practice, slower than ReLU



 SELU — Scaled ELU [Klambauer et al, 2017]

$$SELU_{lpha}(z) = \lambda egin{cases} lpha(e^z-1) & ext{if } z < 0 \ z & ext{if } z \geq 0 \end{cases}$$

- Self-normalizing output of each layer preserves mean 0 and standard deviation 1 during training
- Use LeCun initialization, $\mathcal{N}(0, 1/fan_{in})$



Batch normalization [Joffe, Szegedy 2015]

- Good activation function and initialization mitigates vanishing/exploding gradients
- May still recur during training
- Add batch normalization (BN) layers
 - Estimate mean μ_B and variance σ²_B for inputs across minibatch
 - Zero-centre and normalize each input

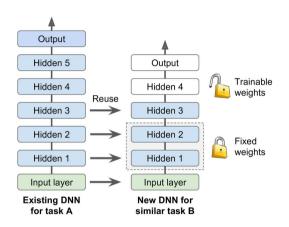
 $\hat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$

- Scale and shift $z_i = \lambda \cdot \hat{x}_i + \beta$
- Learn optimal scaling and shifting parameters for each layer

- At input, BN layer avoids need for standardizing
- Difficulties
 - Mean and variance differ across minibatches
 - How to estimate parameters for entire dataset?
 - Practical solution: maintain a moving average of means and standard deviations for each layer
- Batch normalization greatly speeds up learning rate
- Even works as a regularizer!

Transfer learning

- Reuse trained layers across deep neural networks (DNNs)
- Old DNN trained on images of daily objects (animals, plants, vehicles, ...)
- New DNN to classify types of vehicles
- Tasks similar, even overlapping
- Lower layers identify basic features, upper layers combine them to classify
- Freeze weights of lower layers, re-learn upper layers
- Unfreeze in stages to determine how much to reuse



Still to come

- Optimizing rate of updates in backpropagation
- How problematic are local minima?
- Identifying and dealing with unstable gradients