
Lecture 4: Training Deep Neural Networks

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Advanced Machine Learning
September–December 2021

https://www.cmi.ac.in/~madhavan


Linear separators and perceptrons

Perceptrons define linear separators
xTw + b

xTw + b > 0, classify Yes (+1)
xTw + b < 0, classify No (−1)

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 2 / 14



Linear separators and perceptrons

Perceptrons define linear separators
xTw + b

xTw + b > 0, classify Yes (+1)
xTw + b < 0, classify No (−1)

Network of perceptrons still defines only a
linear separator

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 3 / 14



Linear separators and perceptrons

Perceptrons define linear separators
xTw + b

xTw + b > 0, classify Yes (+1)
xTw + b < 0, classify No (−1)

Network of perceptrons still defines only a
linear separator

Linear separators cannot describe XOR

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 4 / 14



Linear separators and perceptrons

Perceptrons define linear separators
xTw + b

xTw + b > 0, classify Yes (+1)
xTw + b < 0, classify No (−1)

Network of perceptrons still defines only a
linear separator

Linear separators cannot describe XOR

Introduce a non-linear activation function

Traditionally sigmoid,
σ(z) = 1/(1 + e−z)

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 5 / 14



(Feed forward) Neural networks

Acyclic network of
perceptrons with non-linear
activation functions

Ingredients

Output layer activation
function

Loss function for gradient
descent

Hidden layer activation
functions

Network architecture:
Interconnection of layers

Initial values of weights
and biases

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 6 / 14



Training a neural network

Backpropagation — efficient implementation of
gradient descent for neural networks

Forward pass, compute outputs, activation values

Backward pass, use chain rule to compute all
gradients in one scan

Stochastic gradient descent (SGD)

Update parameters in minibatches

Epoch: set of minibatches that covers entire
training data

Difficulties: slow convergence, vanishing and
exploding gradients

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 7 / 14



Unstable gradients

Vanishing gradients — gradients become smaller
towards lower layers (closer to input)

Gradient descent updates leave these layers’
parameters virtually unchanged

Also exploding gradients, recurrent neural
networks with feedback edges

In general, unstable gradients, different layers
learn at different speeds

[Xavier Glorot and Joshua Bengio, 2010]

Random initialization, traditionally Gaussian
distribution N (0, 1)

Variance keeps increasing going forward

Saturating sigmoid function

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 8 / 14



Initializing neural networks

Want “signal” to flow well in both directions
during backpropagation

Signal should not die out, explode, saturate

[Glorot,Bengio] Gradients should have equal
variance before and after flowing through a layer
in both directions

Equal variance requires fanin = fanout

Let fanavg = (fanin + fanout)/2

Initialize with

Gaussian, N (0, 1/fanavg )

Uniform, U(−r , r), r =

√
3

fanavg

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 9 / 14



Initializing neural networks

Let fanavg = (fanin + fanout)/2

Initialize with

Gaussian, N (0, 1/fanavg )

Uniform, U(−r , r), r =

√
3

fanavg

[Yann LeCun, 1990s] earlier proposed the same
with fanavg replaced by fanin

Equivalent if fanin = fanout

Other choices for specific activation function

ReLU, [He et al, 2015], N (0, 2/fanin)

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 10 / 14



Non-saturating activation functions

Sigmoid was initially chosen as a
“smooth” step

Rectified linear unit (ReLU):
g(z) = max(0, z)

Fast to compute

Non-differentiable point not a bottleneck

“Dying ReLU”

Neuron dies — weighted sum of outputs
is negative for all training samples

With a large learning rate, half the
network may die!

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 11 / 14



Non-saturating activation functions

Leaky ReLU, max(αz , z)

“Leak” α is a hyperparameter

RReLU — random leak

Pick α from a random range during
training

Fix to an average value when testing

Seems to work well, act as a regularizer

PReLU — parametric ReLU [He et al,
2015]

α is learned during training

Often outperforms ReLU, but could lead
to overfitting

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 12 / 14



Non-saturating activation functions

ELU — Exponential Linear Unit
[Clevert et al, 2015]

ELUα(z) =

{
α(ez − 1) if z < 0

z if z ≥ 0

Training converges faster

Computing exponential is slower

In practice, slower than ReLU

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 13 / 14



Non-saturating activation functions

SELU — Scaled ELU
[Klambauer et al, 2017]

SELUα(z) = λ

{
α(ez − 1) if z < 0

z if z ≥ 0

Self-normalizing — output of each layer
preserves mean 0 and standard deviation
1 during training

Use LeCun initialization, N (0, 1/fanin)

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 14 / 14



Batch normalization [Joffe, Szegedy 2015]

Good activation function and
initialization mitigates
vanishing/exploding gradients

May still recur during training

Add batch normalization (BN) layers

Estimate mean µB and variance σ2
B for

inputs across minibatch

Zero-centre and normalize each input

x̂i =
xi − µB√
σ2
B + ε

Scale and shift zi = λ · x̂i + β

Learn optimal scaling and shifting
parameters for each layer

At input, BN layer avoids need for
standardizing

Difficulties

Mean and variance differ across
minibatches

How to estimate parameters for entire
dataset?

Practical solution: maintain a moving
average of means and standard
deviations for each layer

Batch normalization greatly speeds up
learning rate

Even works as a regularizer!

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 15 / 14



Transfer learning

Reuse trained layers across deep neural
networks (DNNs)

Old DNN trained on images of daily
objects (animals, plants, vehicles, . . . )

New DNN to classify types of vehicles

Tasks similar, even overlapping

Lower layers identify basic features, upper
layers combine them to classify

Freeze weights of lower layers, re-learn
upper layers

Unfreeze in stages to determine how much
to reuse

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 16 / 14



Still to come

Optimizing rate of updates in backpropagation

How problematic are local minima?

Identifying and dealing with unstable gradients

Madhavan Mukund Lecture 4: Training Deep Neural Networks AML Sep–Dec 2021 17 / 14


