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Linear separators and perceptrons

m Perceptrons define linear separators X. W
xTw+b wy W 2 :'
m x"w+ b >0, classify Yes (+1) \ : ‘.t
m x"w+ b <0, classify No (—1) Ao, Wy, il lw
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Linear separators and perceptrons

m Perceptrons define linear separators
xTw+ b
m x"w+ b >0, classify Yes (+1)
m x"w+ b <0, classify No (—1)

m Network of perceptrons still defines only a

) output
linear separator
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Linear separators and perceptrons

m Perceptrons define linear separators T T
XTW + b 1

m x"w+ b >0, classify Yes (+1)

m x"w+ b <0, classify No (—1)

m Network of perceptrons still defines only a
linear separator

xr2

m Linear separators cannot describe XOR

Il
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Linear separators and perceptrons

-

m Perceptrons define linear separators
xTw+ b
m x"w+ b >0, classify Yes (+1)
m x"w+ b <0, classify No (—1)

m Network of perceptrons still defines only a
linear separator

m Linear separators cannot describe XOR

m Introduce a non-linear activation function

m Traditionally sigmoid,
o(z)=1/(1+e7?)
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(Feed forward) Neural networks

m Acyclic network of
perceptrons with non-linear
activation functions

m Ingredients

m Output layer activation
function

m Loss function for gradient
descent

m Hidden layer activation
functions

m Network architecture:
Interconnection of layers

m Initial values of weights
and biases
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Training a neural network

m Backpropagation — efficient implementation of
gradient descent for neural networks

m Forward pass, compute outputs, activation values

Cow»[mbe Z.0

m Backward pass, use chain rule to compute all
gradients in one scan

m Stochastic gradient descent (SGD) <
C'\ufwb't ?C 'M 9C
Yol ALt
m Epoch: set of minibatches that covers entire (Bwls gb“_
training data

m Update parameters in minibatches

m Difficulties: slow convergence, vanishing and
exploding gradients
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Unstable gradients

m Vanishing gradients — gradients become smaller

towards lower layers (closer to input) COMPMKC Z &
m Gradient descent updates leave these layers’ >
parameters virtually unchanged
m Also exploding gradients, recurrent neural -
ploding g e ?C ‘ac S)C
networks with feedback edges 1 (b ( —
. . W,
m In general, unstable gradients, different layers y gbu,
learn at different SpeedS 12 Sigmoid activation function

m [Xavier Glorot and Joshua Bengio, 2010] T s ST S y AN

0.8}

/

m Random initialization, traditionally Gaussian | saturating

distribution A/(0,1) T

. . i . . 0.4 . \ :
m Variance keeps increasing going forward Saturating .
. . . . 02 = inear
m Saturating sigmoid function 1 e
0.0 .
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Initializing neural networks

m Want “signal” to flow well in both directions
during backpropagation

m Signal should not die out, explode, saturate Sigmoid activation function

m [Glorot,Bengio| Gradients should have equal £ R N S A A |
variance before and after flowing through a layer 08
in both directions 06

: . o4r ing \ !
m Equal variance requires fan;, = fan,,: P i Linear
0.01 ,’/

m Let fan,g = (fanj, + fanout)/2

; Saturating |

-0.2

—4 -2 0 2 4

m Initialize with
m Gaussian, N(0,1/fan,,)

3
fan,vg

m Uniform, U(—r,r), r =
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Initializing neural networks

m Let fan,g = (fanj, + fanout)/2

m [nitialize with

. Sigmoid activation function
m Gaussian, N(0,1/fan,,) 12 i —
10k -] -
3 .
1 _ — 0.8} + b
[ | Unlform, Z/{( r, r), r = P Saturating
aNavg 0.6

m [Yann LeCun, 1990s| earlier proposed the same *4 Saturating \ ’
H 0.2} i i Linear
with fan,,, replaced by fanj, 1

m Equivalent if fan;, = fany,:

-0.2

= = 0 2 7
m Other choices for specific activation function
m ReLU, [He et al, 2015], A°(0,2/fan;,)
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Non-saturating activation functions

m Sigmoid was initially chosen as a
“smooth” step

m Rectified linear unit (ReLU):
g(z) = max(0, 2)
m Fast to compute
m Non-differentiable point not a bottleneck
m “Dying RelLU"

m Neuron dies — weighted sum of outputs
is negative for all training samples

m With a large learning rate, half the
network may die!
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Non-saturating activation functions

m Leaky RelLU, max(az, z)

m “Leak” « is a hyperparameter

Leaky ReLU activation function
m RReLU — random leak 4 4 —
m Pick a from a random range during 5
training
m Fix to an average value when testing 21

m Seems to work well, act as a regularizer

Leak
m PReLU — parametric ReLU [He et al, W T
2015]
m « is learned during training S S

m Often outperforms RelLU, but could lead
to overfitting
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Non-saturating activation functions

m ELU — Exponential Linear Unit
[Clevert et al, 2015]

FLU(2) = {a(ezl) if z<0 |

z if z>0

ELU activation function (a=1)

m Training converges faster 17

m Computing exponential is slower

m In practice, slower than ReLU
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Non-saturating activation functions

m SELU — Scaled ELU
[Klambauer et al, 2017]
ver —1) if 0

SELU,(z) = A4~ 1) ifz<
z if z>0

m Self-normalizing — output of each layer
preserves mean 0 and standard deviation
1 during training

m Use LeCun initialization, N'(0,1/fan;,)
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ELU activation function (a=1)
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Batch normalization [Joffe, Szegedy 2015]

m Good activation function and m At input, BN layer avoids need for
initialization mitigates standardizing
vanishing/exploding gradients ey
g/exp g8 m Difficulties
m May still recur during training m Mean and variance differ across
minibatches

m Add batch normalization (BN) layers
m How to estimate parameters for entire

m Estimate mean 15 and variance 0% for
s B dataset?

inputs across minibatch _ _ o _
m Practical solution: maintain a moving

average of means and standard
Xj — [ o
g — N 1B deviations for each layer

i \/O’QB+€

m Scale and shift z; = A\ - X + (8

m Zero-centre and normalize each input

m Batch normalization greatly speeds up
learning rate
m Learn optimal scaling and shifting

parameters for each layer m Even works as a regularizer!
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Transfer learning

m Reuse trained layers across deep neural
networks (DNNs)

objects (animals, plants, vehicles, . .. i
jects { P ) fy e
i . Reuse weights
m New DNN to classify types of vehicles

Hidden 2 [ Hidden2 |
Hidden 1

m Old DNN trained on images of daily

m Tasks similar, even overlapping —_ | e
' Ixe
@ weights

—> [ Hiddent i

m Lower layers identify basic features, upper
layers combine them to classify

Input layer | =——3> Input layer
. Existing DNN New DNN for
m Freeze weights of lower layers, re-learn for ol similar task B

upper layers

m Unfreeze in stages to determine how much
to reuse
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Still to come

m Optimizing rate of updates in backpropagation
m How problematic are local minima?

m ldentifying and dealing with unstable gradients
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