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Supervised learning

m Set of possible input instances X
m Categories C, say {0,1}

m Build a classification model M : X — C

Restrict the types of models

m Hypothesis space # — e.g., linear separators
m Search for best M € H

How do we find the best M?
m Labelled training data
m Choose M to minimize error (loss) with respect to this set

m Why should M generalize well to arbitrary data?
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No free lunch

m ML algorithms minimize training loss

m Goal is to minimize generalization loss

No Free Lunch Theorem [Wolpert, Macready 1997]

Averaged over all possible data distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.

m Is the situation hopeless?
m NFL theorem refers to prediction inputs coming from all possible distributions

m ML assumes training set is “representative” of overall data

m Prediction instances follow roughly the same distribution as training set
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A theoretical framework for ML

m X is the space of input instances m 7 is a set of hypotheses
m C C X is the target concept to be m Each h € H identifies a subset of X
learned m Choose the best h € H as model
meg, Xis ?” emails, C is the set of m True error: Probability that h
spam emails incorrectly classifies x € X drawn
m X is equipped with a probability randomly according to D
distribution D m errp(h) = Prob(hAC)
m Any random sample from X is m hAC = (h\ C)U(C\ h) is the
drawn using D symmetric difference

m In particular, training set and test

m Training error: Given a (finite)
set are such random samples

training sample S C X
m errs(h) = |SN(hAC)|/|S|
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A theoretical framework for ML

m X, inputs with distribution D m Overfitting Low training error but

high true error
m C C X, target concept

m Underfitting Cannot achieve low

m h € H, hypothesis (model) for C training/true error

m True error: errp(h) = Prob(hAC) m Related to the representational
m Training error: capacity of H
errs(h) = |S N (hAC)|/|S]| m How expressive is 77 How many
different concepts can it capture?
Goal

m Capacity too high — overfitting
Minimizing training error should

e = m Capacity too low — underfitting
correspond to minimizing true error
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Probably Approximately Correct (PAC) learning

m Assume 7 is finite — use |7{| for capacity

m Probably Approximately Correct learning

With high probability, the hypothesis h that fits the sample S also fits the
concept approximately correctly

Theorem (PAC learning guarantee)

1

Let ,e > 0. Let S be a training set of size n > —(In || + In(1/6)) drawn using D.
€

With probability > 1 — §, every h € H with training error zero has true error < e.

m Size of the sample required for PAC guarantee determined by parameters ¢, ¢
m Smaller § means higher probability of find a good hypothesis

m Smaller ¢ means better performance with respect to generalization
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Probably Approximately Correct (PAC) learning

Theorem (Uniform convergence)

1

Let ,¢ > 0. Let S be a training set of size n > 2—2(|n || + In(2/6)) drawn using
€

D. With probability > 1 — §, every h € H satisfies |errs(h) — errp(h)| < e.

m Stronger guarantee: even if we cannot achieve zero training error, the
additional generalization error is bounded

m What if H is not finite?
m Other measures of capacity — e.g. VC-dimension

m Analogous convergence theorems in terms of VC-dimension
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Overfitting and underfitting

. Underfitting Appropriate capacity Overfitting
Example: Regression

m Hy is set of polynomials of .
L]

degree d y /( _ N

m Increasing d increases o
expressiveness — higher
representational capacity

m Using too high a d results in m Random points lying along a quadratic
overfitting

m Linear function underfits
m Using too low a d results in

underfitting m Quadratic fits and generalizes well

m Degree 9 polynomial overfits
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Capacity and error
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m As capacity increases, training m At some point, generalization error starts
error decreases increasing
m Initially, generalization error also m Optimum capacity is not where training
decreases error is minimum
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Theory and practice

m Deep learning models are too
complex to compute representational
capacity explicitly

m May not even be able to achieve true
representational capacity

m Effective capacity limited by
capabilities of parameter estimation
algorithm (backpropagation with
optimization)

m Parameter estimation is a complex
nonlinear optimization

Regularization

m Add a penalty for model complexity
to the loss function

m Trade off lower training error against
penalty

Hyperparameters
m Settings that adjust the capacity —
e.g., degree of polynomial

m Set externally, not learned

m Search hyperparameter combinations
for optimal settings

Madhavan Mukund

Lecture 1: Theoretical foundations of ML

AML Sep—-Dec 2021 10/11



m Supervised learning builds a model that minimize training error
m Real goal is to minimize generalization error
m PAC learning provides a theoretical framework to justify this

m Discrepancies in representational capacity of models can cause underfitting or overfitting

In practice, use regularization and hyperparameter search to identify optimum capacity
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