# PDF files of Papers

### Theoretical Physics

G. S. Krishnaswami and T. R. Vishnu,
Quantum Rajeev-Ranken model as an anharmonic oscillator,
J. Math. Phys. 63, 032101 (2022),
arXiv:2111.03858 [math-ph].
G. S. Krishnaswami and T. R. Vishnu,
The idea of a Lax Pair - Part II: Continuum wave equations,
Resonance 26(2), 257, (2021) .
G. S. Krishnaswami and T. R. Vishnu,
The idea of a Lax pair - Part I: Conserved quantities for a dynamical system,
Resonance 25(12), 1705, (2020) ,
Springer Nature SharedIT.
G. S. Krishnaswami and T. R. Vishnu,
An introduction to Lax pairs and the zero curvature representation,
arXiv:2004.05791 [nlin.SI].
G. S. Krishnaswami and S. S. Phatak,
The Added Mass Effect and the Higgs Mechanism: How accelerated bodies and elementary particles can gain inertia,
Resonance 25(2), 191, (2020) ,
DOI:10.1007/s12045-020-0936-8 ,
Springer Nature SharedIT
arXiv:2005.04620 [physics.flu-dynhep-ph].
G. S. Krishnaswami and H. Senapati,
Ergodicity, mixing and recurrence in the three rotor problem,
Chaos 30(4), 043112 (2020),
[Editor's Pick];
arXiv:1910.04455 [nlin.CD].
G. S. Krishnaswami, S. S. Phatak, S. Sachdev and A. Thyagaraja,
Nonlinear dispersive regularization of inviscid gas dynamics,
AIP Advances 10(2), 025303 (2020),
arXiv:1910.07836 [physics.flu-dyn].
G. S. Krishnaswami and T. R. Vishnu,
Invariant tori, action-angle variables, and phase space structure of the Rajeev-Ranken model,
J. Math. Phys. 60, 082902 (2019),
arXiv:1906.03141 [nlin.SI].
G. S. Krishnaswami and H. Senapati,
Stability and chaos in the classical three rotor problem,
Indian Academy of
Sciences Conference Series 2(1), 139 (2019),
DOI,
arXiv:1810.01317 [nlin.CD].
G. S. Krishnaswami and H. Senapati,
An Introduction to the Classical Three-Body Problem: From Periodic Solutions to Instabilities and Chaos,
Resonance 24, 1, 87--114 January (2019),
DOI,
arXiv:1901.07289 [nlin.CD].
Mentioned in Physics4me and The Net Advance of Physics.
G. S. Krishnaswami and H. Senapati,
Classical three rotor problem: periodic solutions, stability and chaos,
Chaos 29(12), 123121 (2019) [Editor's Pick];
DOI,
arXiv:1811.05807 [nlin.CD].
G. S. Krishnaswami and T. R. Vishnu,
On the Hamiltonian formulation, integrability and algebraic structures of
the Rajeev-Ranken model,
J. Phys. Commun. 3, 025005 (2019),
arXiv:1804.02859 [hep-th].
G. S. Krishnaswami, S. Sachdev and A. Thyagaraja,
Conservative regularization of compressible dissipationless two-fluid plasmas,
Phys. Plasmas 25, 022306 (2018),
arXiv:1711.05236 [physics.plasm-ph].
G. S. Krishnaswami and H. Senapati,
Curvature and geodesic instabilities in a geometrical approach to the planar three-body problem,
J. Math. Phys. 57, 102901 (2016), (Featured Article)
arXiv:1606.05091 [math-ph,nlin.CD,math.DS].
G. S. Krishnaswami and S. Sachdev,
Algebra and geometry of Hamilton's quaternions,
Resonance 21(6), 529--544 June (2016),
arXiv:1606.03315 [math.HO,physics.ed-ph].
G. S. Krishnaswami,
Editorial,
Resonance,
21, 6, 489 June (2016) .
G. S. Krishnaswami, S. Sachdev and A. Thyagaraja,
Local conservative regularizations of compressible magnetohydrodynamic and neutral flows,
Phys. Plasmas 23, 022308 (2016),
arXiv:1602.04323 [physics.plasm-ph].
G. S. Krishnaswami, S. Sachdev and A. Thyagaraja,
Conservative regularization of compressible flow and ideal magnetohydrodynamics,
arXiv:1510.01606v2 (12 Nov 2016) [physics.flu-dyn].
G. S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja,
A critique of recent semi-classical spin-half quantum plasma theories,
Contrib. Plasma Phys. 55, No 1, 3-11, (2015)
(Invited Paper) arXiv:1407.6865 [physics.plasm-ph].
G. S. Krishnaswami and S. S. Phatak,
Higgs Mechanism and the Added-Mass Effect,
Proc. R. Soc. A 471: 20140803, (2015)
arXiv:1407.2689 [hep-th, physics.flu-dyn].
G. S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja,
Comment on "Spin-Gradient-Driven Light Amplification in a Quantum Plasma",
Phys. Rev. Lett. 112, 129501 (2014),
arXiv:1403.0228 [physics.plasm-ph].
G. S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja,
A critique of recent theories of spin-half quantum plasmas,
arXiv:1306.1774 [physics.plasm-ph].
A. Sen, D. Ahalpara, A. Thyagaraja, G. S. Krishnaswami,
A KdV-like advection-dispersion equation with some remarkable properties,
Communications in Nonlinear Science and Numerical Simulation 17 (2012), pp. 4115-4124,
arXiv:1109.3745 [nlin.PS].
G. S. Krishnaswami,
On lightest baryon and its excitations in large-N 1+1-dimensional QCD,
J. Phys. A: Math. Theor. 43 (2010) 395401
arXiv:1005.4942 [hep-th].
G. S. Krishnaswami,
Possible large-N fixed-points and naturalness for O(N) scalar fields,
J.
Phys. A: Math. Theor. 42 (2009) 345403;
arXiv:0904.4799
[hep-th].
G. S. Krishnaswami,
Schwinger-Dyson operators as invariant vector fields on a matrix-model
analogue of the group of loops,
J.Math.Phys.49:062303, (2008); arXiv:0803.0487 [hep-th].
G. S. Krishnaswami,
Schwinger-Dyson operator of Yang-Mills matrix models with ghosts and
derivations of the graded shuffle algebra, J. Phys. A:
Math. Theor. 41 (2008) 145402, arXiv:0708.3056 [hep-th].
G. S. Krishnaswami,
Naturalness via scale invariance and non-trivial
UV fixed points in a 4d O(N) scalar field model in the large-N limit,
[arXiv:hep-th/0701102].
L.Akant, G. S. Krishnaswami,
Non-anomalous
`Ward' identities to supplement large-N multi-matrix loop equations for
correlations, JHEP 02 (2007) 073, [arXiv:hep-th/0611350].

G. S. Krishnaswami,
Multi-matrix loop equations: algebraic & differential
structures and an approximation based on deformation quantization,
JHEP 08 (2006) 035, [arXiv:hep-th/0606224].

G. S. Krishnaswami,
Phase transition in matrix model with logarithmic action: Toy-model for gluons in baryons,
JHEP 0603 (2006) 067,
[arXiv:hep-th/050728].
G. S. Krishnaswami,
2+1 Abelian `Gauge Theory' Inspired by Ideal Hydrodynamics,
Int. J. Mod. Phys. A 21, 3771 (2006), [arXiv:hep-th/0507283].
G. S. Krishnaswami,
Large-N Limit as a Classical Limit: Baryon
Two-dimensional QCD and Multi-Matrix Models,
PhD Thesis, University of Rochester 2004
[arXiv:hep-th/0409279].
G. S. Krishnaswami,
Variational ansatz for gaussian + Yang-Mills two matrix model compared with Monte-Carlo simulations
in 't Hooft limit,
[arXiv:hep-th/0310110].
A. Agarwal, L. Akant, G. S. Krishnaswami and S. G. Rajeev,
Collective potential for large-N Hamiltonian matrix models and
free Fisher information Int. J. Mod. Phys. A 18, 917 (2003)
[arXiv:hep-th/0207200] .
L. Akant, G. S. Krishnaswami and S.G.Rajeev,
Entropy of operator-valued random variables: A variational
principle for large N matrix models, Int. J. Mod. Phys. A 17, 2413 (2002)
[arXiv:hep-th/0111263] .
V. John, G. S. Krishnaswami and S. G. Rajeev,
Parton model from bi-local solitonic picture of the baryon in two-dimensions, Phys. Lett. B492, 63 (2000).
[arXiv:hep-th/0310014] .
V. John, G. S. Krishnaswami and S. G. Rajeev,
An interacting parton model for quark and anti-quark distributions in
the baryon, Phys. Lett. B487, 125 (2000).
[arXiv:hep-ph/0310027] .
G. S. Krishnaswami,
A model of interacting partons for hadronic structure functions
Undergraduate Thesis, University of Rochester 2004
[arXiv:hep-ph/9911538].
G. S. Krishnaswami and S. G. Rajeev,
A model of interacting partons for hadronic structure functions Phys. Lett. B441, 429 (1998)
[hep-ph/9807345].
### Experimental Particle Physics: Neutrino-Nucleon Deep
Inelastic
Scattering

V.V.Abramov et al. [CMS-HCAL Collaboration],
Studies of the response of the prototype CMS hadron calorimeter, including magnetic field effects,
to pion, electron, and muon beams Nucl. Instrum. Meth. A457, 75 (2001)
[arXiv:hep-ex/0007045].
D.A.Harris et al. [NuTeV Collaboration],
Precision calibration of the NuTeV calorimeter Nucl. Instrum. Meth. A447, 377 (2000)
[hep-ex/9908056].
### Mathematics: Number Theory

S. M. Gonek, G. S. Krishnaswami and V. L. Sondhi,
The distribution of inverses modulo a prime in short intervals,
Acta. Arithmetica, 102, no. 4, 315 (2002).