PDF files of Papers

Govind S. Krishnaswami

Theoretical Physics

G. S. Krishnaswami and T. R. Vishnu, Quantum Rajeev-Ranken model as an anharmonic oscillator, J. Math. Phys. 63, 032101 (2022), arXiv:2111.03858 [math-ph].

G. S. Krishnaswami and T. R. Vishnu, The idea of a Lax Pair - Part II: Continuum wave equations, Resonance 26(2), 257, (2021) .

G. S. Krishnaswami and T. R. Vishnu, The idea of a Lax pair - Part I: Conserved quantities for a dynamical system, Resonance 25(12), 1705, (2020) , Springer Nature SharedIT.

G. S. Krishnaswami and T. R. Vishnu, An introduction to Lax pairs and the zero curvature representation, arXiv:2004.05791 [nlin.SI].

G. S. Krishnaswami and S. S. Phatak, The Added Mass Effect and the Higgs Mechanism: How accelerated bodies and elementary particles can gain inertia, Resonance 25(2), 191, (2020) , DOI:10.1007/s12045-020-0936-8 , Springer Nature SharedIT arXiv:2005.04620 [physics.flu-dynhep-ph].

G. S. Krishnaswami and H. Senapati, Ergodicity, mixing and recurrence in the three rotor problem, Chaos 30(4), 043112 (2020), [Editor's Pick]; arXiv:1910.04455 [nlin.CD].

G. S. Krishnaswami, S. S. Phatak, S. Sachdev and A. Thyagaraja, Nonlinear dispersive regularization of inviscid gas dynamics, AIP Advances 10(2), 025303 (2020), arXiv:1910.07836 [physics.flu-dyn].

G. S. Krishnaswami and T. R. Vishnu, Invariant tori, action-angle variables, and phase space structure of the Rajeev-Ranken model, J. Math. Phys. 60, 082902 (2019), arXiv:1906.03141 [nlin.SI].

G. S. Krishnaswami and H. Senapati, Stability and chaos in the classical three rotor problem, Indian Academy of Sciences Conference Series 2(1), 139 (2019), DOI, arXiv:1810.01317 [nlin.CD].

G. S. Krishnaswami and H. Senapati, An Introduction to the Classical Three-Body Problem: From Periodic Solutions to Instabilities and Chaos, Resonance 24, 1, 87--114 January (2019), DOI, arXiv:1901.07289 [nlin.CD]. Mentioned in Physics4me and The Net Advance of Physics.

G. S. Krishnaswami and H. Senapati, Classical three rotor problem: periodic solutions, stability and chaos, Chaos 29(12), 123121 (2019) [Editor's Pick]; DOI, arXiv:1811.05807 [nlin.CD].

G. S. Krishnaswami and T. R. Vishnu, On the Hamiltonian formulation, integrability and algebraic structures of the Rajeev-Ranken model, J. Phys. Commun. 3, 025005 (2019), arXiv:1804.02859 [hep-th].

G. S. Krishnaswami, S. Sachdev and A. Thyagaraja, Conservative regularization of compressible dissipationless two-fluid plasmas, Phys. Plasmas 25, 022306 (2018), arXiv:1711.05236 [physics.plasm-ph].

G. S. Krishnaswami and H. Senapati, Curvature and geodesic instabilities in a geometrical approach to the planar three-body problem, J. Math. Phys. 57, 102901 (2016), (Featured Article) arXiv:1606.05091 [math-ph,nlin.CD,math.DS].

G. S. Krishnaswami and S. Sachdev, Algebra and geometry of Hamilton's quaternions, Resonance 21(6), 529--544 June (2016), arXiv:1606.03315 [math.HO,physics.ed-ph].

G. S. Krishnaswami, Editorial, Resonance, 21, 6, 489 June (2016) .

G. S. Krishnaswami, S. Sachdev and A. Thyagaraja, Local conservative regularizations of compressible magnetohydrodynamic and neutral flows, Phys. Plasmas 23, 022308 (2016), arXiv:1602.04323 [physics.plasm-ph].

G. S. Krishnaswami, S. Sachdev and A. Thyagaraja, Conservative regularization of compressible flow and ideal magnetohydrodynamics, arXiv:1510.01606v2 (12 Nov 2016) [physics.flu-dyn].

G. S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja, A critique of recent semi-classical spin-half quantum plasma theories, Contrib. Plasma Phys. 55, No 1, 3-11, (2015) (Invited Paper) arXiv:1407.6865 [physics.plasm-ph].

G. S. Krishnaswami and S. S. Phatak, Higgs Mechanism and the Added-Mass Effect, Proc. R. Soc. A 471: 20140803, (2015) arXiv:1407.2689 [hep-th, physics.flu-dyn].

G. S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja, Comment on "Spin-Gradient-Driven Light Amplification in a Quantum Plasma", Phys. Rev. Lett. 112, 129501 (2014), arXiv:1403.0228 [physics.plasm-ph].

G. S. Krishnaswami, R. Nityananda, A. Sen, A. Thyagaraja, A critique of recent theories of spin-half quantum plasmas, arXiv:1306.1774 [physics.plasm-ph].

A. Sen, D. Ahalpara, A. Thyagaraja, G. S. Krishnaswami, A KdV-like advection-dispersion equation with some remarkable properties, Communications in Nonlinear Science and Numerical Simulation 17 (2012), pp. 4115-4124, arXiv:1109.3745 [nlin.PS].

G. S. Krishnaswami, On lightest baryon and its excitations in large-N 1+1-dimensional QCD, J. Phys. A: Math. Theor. 43 (2010) 395401 arXiv:1005.4942 [hep-th].

G. S. Krishnaswami, Possible large-N fixed-points and naturalness for O(N) scalar fields, J. Phys. A: Math. Theor. 42 (2009) 345403; arXiv:0904.4799 [hep-th].

G. S. Krishnaswami, Schwinger-Dyson operators as invariant vector fields on a matrix-model analogue of the group of loops, J.Math.Phys.49:062303, (2008); arXiv:0803.0487 [hep-th].

G. S. Krishnaswami, Schwinger-Dyson operator of Yang-Mills matrix models with ghosts and derivations of the graded shuffle algebra, J. Phys. A: Math. Theor. 41 (2008) 145402, arXiv:0708.3056 [hep-th].

G. S. Krishnaswami,
Naturalness via scale invariance and non-trivial UV fixed points in a 4d O(N) scalar field model in the large-N limit, [arXiv:hep-th/0701102].

L.Akant, G. S. Krishnaswami, Non-anomalous `Ward' identities to supplement large-N multi-matrix loop equations for correlations, JHEP 02 (2007) 073, [arXiv:hep-th/0611350].

G. S. Krishnaswami, Multi-matrix loop equations: algebraic & differential structures and an approximation based on deformation quantization, JHEP 08 (2006) 035, [arXiv:hep-th/0606224].

G. S. Krishnaswami, Phase transition in matrix model with logarithmic action: Toy-model for gluons in baryons, JHEP 0603 (2006) 067, [arXiv:hep-th/050728].

G. S. Krishnaswami,
2+1 Abelian `Gauge Theory' Inspired by Ideal Hydrodynamics, Int. J. Mod. Phys. A 21, 3771 (2006), [arXiv:hep-th/0507283].

G. S. Krishnaswami, Large-N Limit as a Classical Limit: Baryon Two-dimensional QCD and Multi-Matrix Models, PhD Thesis, University of Rochester 2004 [arXiv:hep-th/0409279].

G. S. Krishnaswami, Variational ansatz for gaussian + Yang-Mills two matrix model compared with Monte-Carlo simulations in 't Hooft limit, [arXiv:hep-th/0310110].

A. Agarwal, L. Akant, G. S. Krishnaswami and S. G. Rajeev, Collective potential for large-N Hamiltonian matrix models and free Fisher information Int. J. Mod. Phys. A 18, 917 (2003) [arXiv:hep-th/0207200] .

L. Akant, G. S. Krishnaswami and S.G.Rajeev, Entropy of operator-valued random variables: A variational principle for large N matrix models, Int. J. Mod. Phys. A 17, 2413 (2002) [arXiv:hep-th/0111263] .

V. John, G. S. Krishnaswami and S. G. Rajeev, Parton model from bi-local solitonic picture of the baryon in two-dimensions, Phys. Lett. B492, 63 (2000). [arXiv:hep-th/0310014] .

V. John, G. S. Krishnaswami and S. G. Rajeev, An interacting parton model for quark and anti-quark distributions in the baryon, Phys. Lett. B487, 125 (2000). [arXiv:hep-ph/0310027] .

G. S. Krishnaswami, A model of interacting partons for hadronic structure functions Undergraduate Thesis, University of Rochester 2004 [arXiv:hep-ph/9911538].

G. S. Krishnaswami and S. G. Rajeev, A model of interacting partons for hadronic structure functions Phys. Lett. B441, 429 (1998) [hep-ph/9807345].

Experimental Particle Physics: Neutrino-Nucleon Deep Inelastic Scattering

V.V.Abramov et al. [CMS-HCAL Collaboration], Studies of the response of the prototype CMS hadron calorimeter, including magnetic field effects, to pion, electron, and muon beams Nucl. Instrum. Meth. A457, 75 (2001) [arXiv:hep-ex/0007045].

D.A.Harris et al. [NuTeV Collaboration], Precision calibration of the NuTeV calorimeter Nucl. Instrum. Meth. A447, 377 (2000) [hep-ex/9908056].

Mathematics: Number Theory

S. M. Gonek, G. S. Krishnaswami and V. L. Sondhi, The distribution of inverses modulo a prime in short intervals, Acta. Arithmetica, 102, no. 4, 315 (2002).