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We study a possibly integrable model of Abelian gauge fields on a two-dimensional
surface M , with volume form µ. It has the same phase-space as ideal hydrodynamics, a
coadjoint orbit of the volume-preserving diffeomorphism group of M . Gauge field Poisson
brackets differ from the Heisenberg algebra, but are reminiscent of Yang–Mills theory
on a null surface. Enstrophy invariants are Casimirs of the Poisson algebra of gauge
invariant observables. Some symplectic leaves of the Poisson manifold are identified.
The Hamiltonian is a magnetic energy, similar to that of electrodynamics, and depends
on a metric whose volume element is not a multiple of µ. The magnetic field evolves by
a quadratically nonlinear “Euler” equation, which may also be regarded as describing
geodesic flow on SDiff(M, µ). Static solutions are obtained. For uniform µ, an infinite
sequence of local conserved charges beginning with the Hamiltonian are found. The
charges are shown to be in involution, suggesting integrability. Besides being a theory
of a novel kind of ideal flow, this is a toy-model for Yang–Mills theory and matrix field
theories, whose gauge-invariant phase-space is conjectured to be a coadjoint orbit of the
diffeomorphism group of a noncommutative space.
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1. Introduction and Summary

The classical theory of gauge fieldsa A1(x
1, x2, t) and A2(x

1, x2, t) we study in this

paper, may be summarized in four equations. The Hamiltonian is a gauge-invariant

magnetic energy,

H =

∫
(

B

ρ

)2

σρ d2x , (1)

where B = ∂1A2 − ∂2A1 is the magnetic field. ρ is a given volume element and

gij a fixed metric on a two-dimensional surface M such that σ = ρ2/g is not a

aAfter gauge-fixing, there will be a single propagating field degree of freedom.
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constant (g = det gij). The Poisson bracket between gauge fields is a Lie algebra

(independent of the metric)

{Ai(x), Aj (y)} = δ2(x− y)

[

Aj(y)
∂

∂yi
ρ−1(y) −Ai(x)

∂

∂xj
ρ−1(x)

]

. (2)

Hamilton’s equation for time evolution of gauge-invariant observables, ḟ = {H, f}
implies that the magnetic field evolves according to a nonlinear “Euler” equation

Ḃ = ∇(B/ρ) ×∇(Bσ/ρ) . (3)

Viewed as a rigid body for the group of volume-preserving diffeomorphisms of M ,

the inverse of the inertia tensor is a twisted version of the Laplace operator

H =
1

2

∫

Aih
ilAlρ d

2x with hil =
εijεkl

ρ

[(

∂j
σ

ρ

)

∂k +
σ

ρ
∂j∂k

]

. (4)

This theory has the same phase-space and Poisson brackets as 2+1 ideal (inviscid

and volume-preserving) hydrodynamics, but a different Hamiltonian. It may

be integrable, since we find an infinite number of conserved quantities Hn =
∫

(B/ρ)nσρ d2x as well as an infinite number of Casimirs In =
∫

(B/ρ)nρd2x for

uniform ρ. It is remarkable that one can make this modification to 2 + 1 ideal

flow, which is sometimes studied as a toy-model for turbulence, to get a potentially

integrable system. However, our original motivation for studying this model was

different. We argue below that it is the simplest “gauge theory” that shares some

quite deep, though unfamiliar, mathematical features of Yang–Mills theory.

The formulation of Yang–Mills theory in terms of gauge-invariant observables,

and the development of methods for its solution are important and challenging

problems of theoretical physics, since all the experimentally observed asymptotic

states of the strong interactions are color-singlets. This problem has a long history

stretching at least as far back as the work of Mandelstam.1 Wilson loops are a

natural choice for gauge-invariant variables, but they have trivial Poisson brackets

on a spatial initial value surface, since the gauge field is canonically conjugate to

the electric field on such a surface. More recently, it has been shown by Rajeev

and Turgut,2,3 that Wilson loops of (3 + 1)-dimensional Yang–Mills theory on a

null initial value hypersurface satisfy a quadratic Poisson algebra with no need for

electric field insertions. This is because the transverse components of the gauge field

satisfy a nontrivial Poisson algebra among themselves, as opposed to the situation

on a spatial surface. The Poisson algebra of Wilson loops is degenerate due to

Mandelstam-like constraints. The gauge-invariant phase-space of Yang–Mills theory

is conjectured to be a coadjoint orbit of this Poisson algebra. It is still a challenge to

write the Hamiltonian in terms of these variables. However, this has been possible

in dimensionally reduced versionsb such as adjoint scalar field theories coupled to

bSee also the work of Karabali, Nair and Kim who have made significant progress with a gauge-
invariant Hamiltonian approach to 2 + 1 Yang–Mills theory.4
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quarks in 1 + 1 dimensions, as shown by Lee and Rajeev.5,6 In conjunction with

’t Hooft’s large N approximation,7 viewed as an alternative classical limit, this

is an approach to better understand the nonperturbative dynamics, especially of

nonsupersymmetric gauge theories. In such an approach to 1 + 1 QCD, the phase-

space of gauge-invariant meson variables is an infinite Grassmannian, a coadjoint

orbit of an infinite dimensional unitary group.8 This allows one to understand

baryons as well as mesons in the large N limit, going beyond the early work of

’t Hooft.9,8,10,11

However, the groups and Lie algebras whose coadjoint orbits are relevant to

matrix field theories and Yang–Mills theory are poorly understood noncommutative

versions of diffeomorphism groups.c In the case of a multimatrix model, the group

is, roughly speaking, an automorphism group of a tensor algebra. The Lie algebra

is a Cuntz-type algebra which can be thought of as an algebra of vector fields

on a noncommutative space.12,5,6,13,14 However, it is still very challenging to find

the proper mathematical framework for these theories and develop approximation

methods to solve them even in the large N limit. To develop the necessary tools, it

becomes worthwhile to practice on simpler theories whose gauge-invariant phase-

space is the coadjoint orbit of a less formidable group. Here, we take a step in this

direction by studying an Abelian gauge theory whose phase-space is a coadjoint

orbit of the volume-preserving diffeomorphism group of a two-dimensional surface.

To put these remarks in perspective, recall the common classical formulation of

Eulerian rigid body dynamics, ideal hydrodynamics, the KdV equation15–17 and the

large N limit of two-dimensional QCD.8 The phase-space of each of these theories

is a symplectic leaf of a degenerate Poisson manifold, which is the dual G∗ of a

Lie algebra. G∗ always carries a natural Poisson structure. Symplectic leaves are

coadjoint orbits of a groupG acting on the dual of its Lie algebra G∗. On any leaf, the

symplectic structure is given by the Kirillov form. The appropriate groups in these

examples are SO(3), the volume-preserving diffeomorphism group of the manifold

upon which the fluid flows, and the central extensions of Diff(S1) and of an infinite

dimensional unitary group, respectively. The coadjoint orbits for the rigid body and

2D QCD are well-known symplectic manifolds: concentric spheres and the infinite

dimensional Grassmannian manifold. The observables in each case are real-valued

functions on G∗. The Poisson algebra of observables is degenerate, i.e. has a center

consisting of Casimirs. The symplectic leaves can also be characterized as the level

sets of a complete set of Casimirs. In each case, the Hamiltonian is a quadratic

function on the phase-space and classical time evolution is given by Hamilton’s

equations. Hamilton’s equations are nonlinear despite a quadratic Hamiltonian,

since the Poisson brackets of observables are more complicated than the Heisenberg

algebra. In exceptional cases such as the rigid body and the KdV equation, these

nonlinear equations are exactly integrable. In other cases, it is useful to develop

cThis is not the structure group (sometimes called the gauge group) of the theory, which is still
SU(N) or U(N). The gauge group plays little role in a gauge-invariant formulation of the theory.
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approximation methods to solve them, that are adapted to the geometry of the

phase-space.

Our earlier remarks indicate that it may be fruitful to regard Yang–Mills theory

and matrix field theories as Hamiltonian dynamical systems along the lines of the

more well-known ones listed in the last paragraph. As a toy-model in this direction,

we seek a gauge theory where the gauge fields satisfy a closed Poisson algebra, with-

out any need for electric fields. We want a theory whose phase-space is a coadjoint

orbit of an ordinary diffeomorphism group, which is simpler than its noncommuta-

tive cousins. We would also like to understand in more detail the structure of the

Poisson algebra of gauge-invariant observables, work out the equations of motion

and try to solve them.

In this paper, we identify a classical theory of Abelian gauge fields in two spatial

dimensions, different from Maxwell theory. In particular, it is not Lorentz covariant,

indeed, time plays the same role as in Newtonian relativity. The theory is defined

by a two-dimensional manifold M , a volume form µ and a metric gij whose volume

element Ωg is not a multiple of µ. The Hamiltonian is a gauge-invariant magnetic

energy, much like that of Maxwell theory. Unlike in electrodynamics, the gauge field

is a one-form on space, rather than on space–time. Thus, even before any gauge fix-

ing, the gauge field has no time component. There is a magnetic field B, but no

electric field, so to speak. After gauge fixing, there remains only one dynamical

component of the gauge field. In this sense, the theory has the same number of

degrees of freedom as 2 + 1 electrodynamics. However, though the Hamiltonian is

quadratic in the gauge fields, the classical theory is nonlinear due to the “non-

canonical” Poisson algebra of gauge fields. Equations of motion are nonlinear and

comparable to those of a (2 + 1)-dimensional non-Abelian gauge theory or ideal

hydrodynamics.

The phase-space of the theory is a coadjoint orbit of the volume-preserving dif-

feomorphism group SDiff(M,µ) of the spatial two-dimensional manifold. Roughly

speaking, this means that SDiff(M,µ) is a symmetry group of the Poisson algebra

of observables. The gauge group (structure group) of the theory is U(1). The

inspiration for this lies in ideal hydrodynamics. Indeed, even before the diffeo-

morphism group of a manifold appeared in general relativity, it was relevant as

the configuration space of a fluid. The theory we study is not the same as, but is

motivated by (2 + 1)-dimensional ideal hydrodynamics, regarded as a Hamiltonian

system.18,19,15,20–22 Though we arrived at it as a toy-model for Yang–Mills theory,

it turns out to have a nice geometric and possibly even integrable structure. We

find two infinite sequences of conserved charges. The first set are Casimirs, ana-

logues of the enstrophy invariants of ideal hydrodynamics. In addition, we find

another infinite set of conserved charges which are not Casimirs but are in invo-

lution. The theory we study here can also be regarded as a theory of geodesics of

a right-invariant metric on the volume-preserving diffeomorphism group of a two-

dimensional manifold. However, the right invariant metric on SDiff(M,µ) implied

by our Hamiltonian is different from that arising in ideal hydrodynamics (the L2
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metric leading to ideal Euler flow) as well as the H1 metric leading to averaged

Euler flow.23

Another way to view the current work is to recall that adding supersymmetry

usually gives greater analytical control over gauge theories. But there may be other

modifications of gauge theories that also lead to interesting toy-models or enhanced

solvability. Our investigation concerns one such novel modification of gauge field

Poisson brackets.

In Sec. 2 we introduce the space of Abelian gauge fields Aidx
i on a two-

dimensional surface M as the dual of the Lie algebra SVect(M,µ) of vector

fields preserving a volume element µ = ρ d2x. This “duality” is known in hydro-

dynamics.15 The differentials df i = ρ−1 δf
δAi

of differentiable gauge-invariant observ-

ables f(A) are shown to be volume-preserving vector fields. In Sec. 3 we give the

Poisson structure on gauge-invariant observables

{f, g} =

∫

d2xρAi

[

ρ−1 δf

δAj
∂j

(

ρ−1 δg

δAi

)

− ρ−1 δg

δAj
∂j

(

ρ−1 δf

δAi

)]

(5)

turning the space of gauge fields into a Poisson manifold. The Poisson brackets of

gauge fields are obtained explicitly (35) and compared with those of Yang–Mills

theory on a spatial and null initial value hypersurface.

In Sec. 4 we give the coadjoint action of SDiff(M,µ) and its Lie algebra

SVect(M,µ) on the Poisson manifold of gauge fields SVect(M,µ)∗, and show that

the action is canonical, i.e. preserves the Poisson structure. The moment maps

generate the coadjoint action. The symplectic leaves of the Poisson manifold are

coadjoint orbits. The enstrophy invariants of hydrodynamics In =
∫

M (dA/µ)nµ

are an infinite sequence of Casimirs of the Poisson algebra. The coadjoint orbits

of closed gauge field one-forms are shown to be finite dimensional. Single-point

orbits for simply connected M are found. We argue that all other orbits are infinite

dimensional and try to characterize their isotropy subalgebras as well as tangent

spaces.

In Sec. 5 we first review the choice of Hamiltonian leading to ideal Eulerian

hydrodynamics in 2 + 1 dimensions. Then we propose a different gauge-invariant

Hamiltonian depending on both µ and a metric gij , by analogy with the magnetic

energy of Maxwell theory,

H =
1

2

∫

M

(

F ∧ ∗F
Ωg

)

µ =

∫
(

B

ρ

)2

σρ d2x , (6)

where F = dA is the field strength, ∗F is its Hodge dual, and Ωg is the volume

element of the metric gij . Here σ = (µ/Ωg)
2 = ρ2/g, g = det gij and ρ is the density

associated to µ. H is shown to determine a nonnegative inner product on the dual

of the Lie algebra SVect(M,µ)∗ and an inverse “inertia tensor” by analogy with the

rigid body. If M is simply connected, the inverse inertia operator is nondegenerate

and could be inverted to get an inner product on the Lie algebra SVect(M,µ). This

could be extended to the diffeomorphism group SDiff(M,µ) by right translations.
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Thus, the magnetic energy should define geodesic flow on SDiff(M,µ) with respect

to a right-invariant metric different from that coming from Eulerian hydrodynamics.

In Sec. 6 we find the equation of motion for the magnetic field B = εij∂iAj ,

Ḃ = ∇(B/ρ)×∇(Bρ/g). This simple quadratically nonlinear evolution equation is

strikingly similar to the Euler equation of a rigid body L̇ = L× Ω, L = IΩ. It can

be regarded as the “Euler equation” for the group SDiff(M,µ) with Hamiltonian

given above. Remarkably, for a uniform measure µ we find an infinite sequence Hn

of conserved charges in involution, which are not Casimirs. The Hamiltonian is H2

2 ,

Hn =

∫

M

(

dA

µ

)n

σµ , n = 1, 2, 3, . . . . (7)

In Sec. 7 we find some static solutions of the equations of motion. We show that

for circularly symmetric ρ and g, every circularly symmetric magnetic field is a

static solution. We generalize this to the nonsymmetric case as well. We also find

a one-parameter family of static solutions that are local extrema of energy even

with respect to variations that are not restricted to the symplectic leaf on which

the extremum lies. Some ideas for further study are given in Sec. 8.

Volume-preserving diffeomorphisms and gauge theories have appeared together

previously in the literature (see, for example, Refs. 24 and 25). Our investigation

seems quite different, since SDiff(M,µ) is not the gauge group of our theory but

rather a symmetry of the Poisson algebra.

2. Volume-Preserving Vector Fields to Gauge-Invariant Observables

2.1. Lie algebra of volume-preserving vector fields

Let M be a surface with local coordinates xi, to be thought of as the space on

which a fluid flows. A vector field on M is regarded as the velocity field of a fluid at

a particular time. The space of all vector fields on M forms a Lie algebra Vect(M)

with Lie bracket

[u, v]i = uj∂jv
i − vj∂ju

i . (8)

Vect(M) is the Lie algebra of the diffeomorphism group Diff(M). Conservation of

the mass of the fluid during its flow implies the continuity equation for its density

ρ(x, t):

∂ρ(x, t)

∂t
+ ∇ · (ρu) = 0 . (9)

We are interested in flows where the density at any point of space does not depend

on time. Using the continuity equation, this becomes ∇ · (ρu) = 0. We call such

a flow volume-preserving. Geometrically, we are considering a flow that generates

diffeomorphisms of M that preserve a given volume formd Luµ = 0. The density is

dA volume form must be nondegenerate. In two dimensions it is the same as an area form or a
symplectic form.
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constant along integral curves of u. To see the equivalence of this with the continuity

equation for a volume-preserving flow, recall that

Luµ = (diu + iud)µ = d(iuµ) , (10)

where iu is the contraction with u. Here dµ = 0 since µ is a volume form. In local

coordinates µ = 1
2µij dx

i ∧ dxj where µij = −µji ≡ εijρ and εij is antisymmetric

with ε12 = 1. So µ = ρ(x)d2x where dx1 ∧ dx2 ≡ d2x. Then iuµ = 1
2µij(u

i dxj −
dxi uj) = µiju

i dxj , so that

Luµ = d(iuµ) = ∂k(µiju
i)dxk ∧ dxj = ∂i(ρu

i)dx1 ∧ dx2 . (11)

Thus Luµ = 0 becomes ∇ · (ρu) = 0. We will use the terms volume-preserving

and area preserving interchangeably since M is a two-dimensional surface. Some of

what we say has a generalization to higher (especially even) dimensional M .

The properties Lαu+βv = αLu +βLv and L[u,v] = LuLv −LvLu ensure that the

space of volume-preserving vector fields G = SVect(M,µ) forms a Lie subalgebra of

Vect(M). It is the Lie algebra of the group of volume-preserving diffeomorphisms

G = SDiff(M,µ).

Volume-preserving flow is a special case of incompressible flow, which occurs

when the fluid speed is small compared to the speed of sound.e In particular, shock

waves cannot form in incompressible flow since shock waves involve supersonic flow.

Under ordinary conditions, air flow in the atmosphere is incompressible. Vertical

currents mix regions of high and low density so they are incompressible but not

volume-preserving. Horizontal air currents in the atmosphere are approximately

volume-preserving.

If M is simply connected, the volume-preserving condition ∂i(ρu
i) = 0 may be

solved in terms of a stream function ψ satisfying iuµ = dψ. ψ is a scalar function

on M that serves as a “potential” for the velocity field. In local coordinates

iuµ = dψ ⇒ µiju
i = ∂jψ . (12)

Since µ is nondegenerate (ρ 6= 0), it can be inverted ρ−1εijµjk = −δi
k where εij is

a constant antisymmetric tensor with ε12 = 1, εijεjk = −δi
k. This does not require

a metric on M . Then

ui = ρ−1εij∂jψ . (13)

u determines ψ up to an additive constant, which can be fixed by a boundary

condition. If M is simply connected, then SVect(M,µ) may be identified with the

space of stream functions. Suppose two volume-preserving vector fields u, v have

stream functions ψu and ψv ,

ui = ρ−1εij∂jψu , vi = ρ−1εij∂jψu . (14)

eSome authors consider only the special case where density is a constant, ∇·u = 0. Note also that
the same fluid may support both compressible and incompressible flow under different conditions,
so our definitions refer to the flow and not just to the fluid.
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Then their Lie bracket [u, v] has stream function ρ−1∇ψv ×∇ψu:

[u, v]i = ρ−1εil∂l

{

ρ−1εjk(∂jψv)(∂kψu)
}

,

ψ[u,v] = ρ−1εjk(∂jψv)(∂kψu) .
(15)

2.2. Abelian gauge fields as the dual of SVect(M, µ)

The Lie algebra SVect(M,µ) is akin to the Lie algebra of angular velocities of a

rigid body. The angular momenta are in the dual space to angular velocities, and

satisfy the angular momentum Poisson algebra. As explained in App. A, the dual

of any Lie algebra is a Poisson manifold. This is interesting because the observables

of a classical dynamical system are real-valued functions on a Poisson manifold.

The dual of the Lie algebra G = SVect(M,µ) is the space of Abelian gauge fields

modulo gauge transformations,

G∗ = SVect(M,µ)∗ = Ω1(M)/dΩ0(M) . (16)

This fact is well known in hydrodynamics (see Ref. 15), though it is usually not

thought of in terms of gauge fields. To see this duality, we define the pairing (A, u)

between gauge fields and volume-preserving vector fields by integrating the scalar

A(u) with respect to µ:

(A, u) = µu(A) =

∫

M

A(u)µ =

∫

Aiu
iρ d2x . (17)

The pairing µu(A) is also called the moment map. It is a gauge-invariant pairing.

Under a gauge transformation A 7→ A′ = A+ dΛ for any scalar Λ(x),

µu(A′) − µu(A) =

∫

M

(∂iΛ)uiµ = −
∫

Λ∂i(ρu
i)d2x = 0 , (18)

since u is volume-preserving. We assume that gauge fields and gauge transforma-

tions Λ vanish on the boundary ∂M or at infinity. We make no such assumption

about the vector fields.

Gauge Fixing: it is occasionally convenient to “gauge-fix,” i.e. pick a coset rep-

resentative for Ω1(M)/dΩ0(M). Under a gauge transformation, A′
i = Ai + ∂iΛ.

We can pick Λ such that A′
1 = A1 + ∂iΛ = 0, so that we are left with only one

component of the gauge field A′
2. We can still make an x1-independent “residual”

gauge transformation, A′′
2 = A′

2 + ∂2Λ̃(x2) to eliminate any additive term in A′
2

depending on x2 alone. Suppose we have gauge fixed on a particular spatial initial

value surface at time t = 0. Unlike in Yang–Mills theory, the equations of motion

of our theory are purely dynamical. They only evolve the gauge-fixed fields forward

in time, and do not contain any further constraints. In effect, after gauge fixing, we

will be left with one propagating field degree of freedom.
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2.3. Differentials of gauge invariant charges are

volume-preserving vector fields

We should regard SVect(M,µ)∗, the space of gauge fields modulo gauge transfor-

mations, as the Poisson manifold of some dynamical system. Real-valued functions

on this space (i.e. gauge-invariant functions f(A)) are the observables. Given such

an f(A), we can define its differential df(A):

(df(A))i = ρ−1(x)
δf

δAi(x)
≡ ρ−1δif . (19)

For each equivalence class of gauge fields [A] = {A|A ∼ A + dΛ}, the differentialf

defines a vector field df i∂i on M . If f(A) is nonlinear, the vector field (df(A))i(x)

changes as A ∈ G∗ changes. Suppose f(A) is gauge-invariant and differentiable.

Then we can show that its differential df i is a volume-preserving vector field on M :

∂i(ρdf
i) = 0. To see this, note that gauge invariance implies that the change in f

under any gauge transformation δAi = ∂iΛ must vanish:

0 = δf =

∫

δf

δAi(x)
δAi(x)d

2x

=

∫

δf

δAi(x)
∂iΛd

2x

= −
∫

∂i

(

δf

δAi(x)

)

Λ(x)d2x . (20)

Since Λ(x) is arbitrary, it must follow that ∂i(δf/δAi) = 0. So the differential

of a gauge-invariant function can be regarded as an element of the Lie algebra

G = SVect(M,µ).

The simplest gauge-invariant observable is the field strength 2-form:

F = dA =
1

2
Fij dx

i ∧ dxj , Fij = ∂iAj − ∂jAi = εijB , (21)

where B = εij∂iAj = ∂1A2 − ∂2A1 is the magnetic field. The differential of F ,

((dF )(A))k = ρ−1 δFij(x)

δAk(y)
= ρ−1(δk

j ∂iδ(x− y) − δk
i ∂jδ(x− y)) (22)

is a volume-preserving vector field on M for each A:

∂k(ρ(dF )k) = ∂k(δk
j ∂iδ(x − y) − δk

i ∂jδ(x− y))

= (∂i∂j − ∂j∂i)δ(x− y) = 0 . (23)

fThe differential (df(A))i is regarded as a vector field on M for each A and should not be confused
with the closely related exterior derivative df , which is a one-form on G∗. However, as we will see
later (Sec. 4 and App. A), on any symplectic leaf of SVect(M, µ)∗ with symplectic form ω, the
one-form df determines the canonical vector field Vf via ω(Vf , .) = df(.). Vf is a vector field on
the leaf, and its relation to the differential is Vf (A) = ad∗

df A.
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Similarly, the differential of the magnetic field,

((dB)(A))k = ρ−1 δB(x)

δAk(y)
= ρ−1εij∂iδ

k
j δ(x− y) = ρ−1εik∂iδ(x − y) (24)

is volume-preserving ∂k(ρ(dB)k) = εik∂i∂kδ(x−y) = 0. We can regard the moment

maps µu(A) as linear gauge-invariant observables. The differential of µu(A) is the

volume-preserving vector field u, for all gauge fields A.

Other gauge-invariant observables f(A) we will be interested in are “charges”:

integrals over M with respect to µ, of a local gauge-invariant scalar function F . F
can depend on A only through the field strength two-form F = dA. The analogue of

the Chern–Simons three-form, vanishes identically since A is a one-form on space,

not space–time. The quotient of dA and the nondegenerate volume two-form (dA/µ)

is a scalar function on M . Then

f(A) =

∫

F
(

σ,

(

dA

µ

)

, vi∂i

(

dA

µ

)

, wij∂i∂j

(

dA

µ

)

, . . .

)

µ , (25)

where σ is a scalar function and vi, wij , etc. are arbitrary but fixed contravariant

tensor fields. We can get an explicit formula for the differential of such a gauge-

invariant charge. Using dA/µ = B/ρ and

∂B

∂Ai
= −εij∂jδ

2(x− y) ;
δ∂k(B/ρ)(x)

δAi(y)
= −εij∂k

(

1

ρ
∂jδ

2(x− y)

)

; . . . , (26)

we get upon integrating by parts,

df(A)i = ρ−1 δf

δAi
= ρ−1εij∂j

[(

∂F
∂(B/ρ)

)

−
(

1

ρ
∂k

(

∂F
∂∂k(B/ρ)

))

+ · · ·
]

. (27)

Due to the antisymmetry of εij , it follows that df is volume-preserving ∂i(ρdf
i) = 0.

Moreover, if f is gauge-invariant and of the form assumed above, then its differential

is also gauge-invariant.

Two families of gauge-invariant charges which play an important role in our

theory are In and Hn defined below. Let

In(A) =

∫

M

(

dA

µ

)n

µ =

∫
(

B

ρ

)n

ρ d2x

=

∫

M

(

B

ρ

)n−1

dA , n = 1, 2, 3, . . . ,

(dIn)i =
1

ρ

δIn
δAi

=
1

ρ
nεij∂j

(

(

B

ρ

)n−1
)

.

(28)

Their differentials are volume-preserving ∂i(ρ(dIn(A))i) = 0 since εij is antisym-

metric. Note that I1 =
∫

M
dA = 0. We assume B vanishes sufficiently fast at

infinity and do not consider In for n < 0. Given a scalar function σ on M we can
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construct additional gauge-invariant charges. These are similar to the In, except

that we multiply by σ before integrating over M :

Hn(A) =

∫
(

dA

µ

)n

σµ =

∫
(

B

ρ

)n

σρ d2x . (29)

More generally, one can replace (B/ρ)n by an arbitrary function of B/ρ. The dif-

ferential of Hn is volume-preserving:

(dHn(A))i =
nεij

ρ
∂j

(

σ

(

B

ρ

)n−1
)

. (30)

Gauge-invariant observables depending on the volume form µ and a metric gij on

M will play an important role in determining the dynamics of our theory. They are

given in Subsec. 5.2.

There are other interesting gauge-invariant observables such as the circulation

Cγ(A) =
∫ 1

0
Ai

dγi(s)
ds ds and its exponential, the Wilson loop. Since these observ-

ables are concentrated on one-dimensional curves on M , they may fail to be differ-

entiable and their differentials exist only as distributional vector fields. They require

a more careful analysis and are not considered in this paper. Henceforth, when we

say observable, we will mean gauge-invariant observables that are differentiable, in

which case, their differentials are guaranteed to be volume-preserving vector fields

on M .

3. Poisson Brackets

3.1. Definition of Poisson bracket on G∗ = SVect(M, µ)∗

The Lie algebra structure of volume-preserving vector fields G = SVect(M,µ) can

be used to define a Poisson structure on its dual (see App. A, Refs. 26–28 and

32). The dual space G∗ = SVect(M,µ)∗ = Ω1(M)/dΩ0(M) of gauge field one-

forms then becomes a Poisson manifold. Observables are real-valued functions on

it. The Poisson bracket (p.b.) between gauge-invariant observables f(A) and g(A)

with volume-preserving differentials df and dg, is defined using the pairing (A, u)

between G and G∗ and the Lie algebra bracket [df, dg]:

{f, g}(A) ≡ (A, [df, dg]) =

∫

M

Ai[df, dg]
iµ

=

∫

d2x ρAi[df
j ∂j dg

i − dgj ∂j df
i]

=

∫

d2x ρAi

[

ρ−1 δf

δAj
∂j

(

ρ−1 δg

δAi

)

− ρ−1 δg

δAj
∂j

(

ρ−1 δf

δAi

)]

=

∫

Ai

[

(δjf)∂j(ρ
−1δig) − (δjg)∂j(ρ

−1δif)
]

d2x , (31)
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where δi = δ
δAi

. The antisymmetry, linearity and Jacobi identity follow from the

corresponding properties of the Lie bracket. The Leibnitz rule follows from the

Leibnitz rule for differentials.

The p.b. (31) preserves the class of gauge-invariant functions. Suppose f , g are

gauge-invariant. Then df , dg ∈ SVect(M,µ). Recall (Subsec. 2.3) that if f and g

are gauge-invariant, so are their differentials df i and dgi. It follows that [df, dg]i is

also gauge-invariant. Now, under a gauge transformation A′ = A+ dΛ,

{f, g}(A′) = (A′, [df, dg](A′)) = (A′, [df, dg](A))

=

∫

A′
i([df, dg](A))iµ⇒ {f, g}(A′) − {f, g}(A)

= −
∫

Λ∂i(([df, dg](A))iρ)d2x = 0 . (32)

Thus (31) is a gauge-invariant Poisson bracket.

A gauge-invariant observable f(A) defines canonical transformations on the

Poisson manifold G∗ via the p.b. Suppose g(A) is any observable, then its Lie

derivative under the flow generated by f is LVf
g(A) = {f, g}(A) = (A, [df, dg])

(see Sec. 4).

Example. The p.b. of two moment maps µu(A) and µv(A) is

{µu, µv}(A) = µ[u,v](A) =

∫

M

Ai(u
j∂jv

i − vj∂ju
i)µ . (33)

If u and v are volume-preserving, so is [u, v]; therefore, if µu and µv are gauge-

invariant functions of A, so is µ[u,v]. Moreover, the canonical transformation

generated by the moment map µu is just the Lie algebra coadjoint action (see

App. A and Sec. 4):

LVµu
f(A) = {µu, f}(A) , LVµu

A = ad∗uA . (34)

3.2. Poisson brackets of gauge fields

Equivalence classes of gauge fields are coordinates on our Poisson manifold G∗ =

SVect(M,µ)∗. Thus, an explicit formula for the “fundamental” p.b. between com-

ponents of the gauge field Ai(x) is useful. This will also facilitate a comparison with

electrodynamics. We will show that the p.b. between gauge field components is

{Ai(x), Aj (y)} = δ2(x− y)

[

Aj(y)
∂

∂yi
ρ−1(y) −Ai(x)

∂

∂xj
ρ−1(x)

]

, (35)

where the derivatives act on everything to their right. Though this formula for

{Ai(x), Aj(y)} looks a bit complicated, the right-hand side is linear in gauge fields.

Thus, our Poisson algebra is actually a Lie algebra like the Lie algebra of angular

momenta {Li, Lj} = εijkLk.
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Recall that electrodynamics is based on the Heisenberg algebra between the

spatial components of the gauge field and the spatial components of the electric

field. In two spatial dimensions we have (before any gauge fixing)

{Ai(x, t), E
j(y, t)} = δ2(x − y)δj

i ,

{Ai(x, t), Aj(y, t)} = 0 ,

{Ei(x, t), Ej(y, t)} = 0 .

(36)

While in electrodynamics the electric field is canonically conjugate to the gauge

field, this is not the case in our theory. The components of the gauge field in our

theory obey p.b. relations with each other, without being canonically conjugate.

This is not unusual. For instance, the components of angular momentum form a

closed Poisson algebra though none of them is canonically conjugate to another.

This is a generic feature of degenerate Poisson manifolds where canonically conju-

gate variables can only be chosen on individual symplectic leaves (the concentric

spheres in the case of angular momenta).

Gauge fields obeying p.b. not involving the electric field are not alien to conven-

tional Yang–Mills theory. For example, in a coordinate system where initial values of

fields are specified on a null cone at past timelike infinity, the transverse components

of gauge fields satisfy p.b. among themselves as shown by Rajeev and Turgut2,3

{Aa
ib(z,R), Ac

jd(z
′, R′)} =

1

2
δa
dδ

c
bqij(z)δ(z − z′) sgn(R −R′) , (37)

where zi are transverse angular coordinates, qij is the round metric on S2, R is

a radial coordinate and a, b are color indices. In fact, our original motivation for

studying the dynamical system in this paper was to find a toy-model that shared

this feature with Yang–Mills theory.

Now we will establish (35) using (31) and the relation between the p.b. of func-

tions and those between the “coordinates” Ai(x):

{f, g}(A) =

∫

d2x d2y{Ai(x), Aj(y)}
δf

δAi(x)

δg

δAj(y)
. (38)

We rewrite {f, g}(A) from (31) to make it look as this:
∫

d2xAj

[

δf

δAi
∂i

(

1

ρ

δg

δAj

)

− δg

δAi
∂i

(

1

ρ

δf

δAj

)]

=

∫

d2x d2y δ2(x − y)Aj(y)

[

δf

δAi(x)

∂

∂yi

(

1

ρ(y)

δg

δAj(y)

)

− f ↔ g

]

=

∫

d2x d2y δ2(x − y)Aj(y)
∂

∂yi

[

1

ρ(y)

δf

δAi(x)

δg

δAj(y)
− f ↔ g

]

=

∫

d2x d2y δ2(x − y)

[

Aj(y)
∂

∂yi
ρ−1(y) −Ai(x)

∂

∂xj
ρ−1(x)

]

δf

δAi(x)

δg

δAj(y)
.

(39)

Finally we read off the desired expression (35).
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4. Structure of Poisson Algebra of Observables

In this section we give the canonical action of SDiff(M,µ) (generated via p.b.) on

the Poisson manifold G∗ = SVect(M,µ)∗ (see also App. A and Ref. 15). Symplectic

leaves are coadjoint orbits of SDiff(M,µ). The Poisson algebra of gauge-invariant

observables is degenerate. The enstrophy invariants In of hydrodynamics are an infi-

nite number of Casimirs. They are constant on the coadjoint orbits. Then we try to

identify some of the simpler coadjoint orbits. We show that there is always at least

one single-point orbit, that of the pure gauge configuration. If M has nonvanishing

first cohomology, then we show that there are finite dimensional symplectic leaves

lying inside H1(M) \ {0}. This also shows that In could not be a complete set of

coadjoint orbit invariants. If M is simply connected, we show that the only single-

point orbits consist of the configurations for which dA/µ is constant. For simply

connected M , we also argue that the orbit of [A] ∈ G∗ for which dA/µ is not

constant, is infinite dimensional. We identify the isotropy sub-algebra and tangent

space of such an orbit and give an example where dA/µ is circularly symmetric.

However, this analysis is far from complete. It would be useful to find a nice coor-

dinate system on these orbits and get the symplectic structure in explicit form so

as to study Hamiltonian reduction.

4.1. Coadjoint action of SDiff(M, µ) on Poisson algebra

The Poisson manifold G∗ = Ω1(M)/dΩ0(M) = {A ∈ Ω1(M)|A ∼ A + dΛ} carries

the coadjoint action of SDiff(M,µ). For example, on a simply connected region M ,

G∗ may be identified with the space of scalar functions f = (dA/µ) = (B/ρ) on M .

The coadjoint action is the pull-back action of volume-preserving diffeomorphisms

φ ∈ SDiff(M,µ) on functions φ∗f = f ◦ φ. The action on equivalence classes of

gauge fields is also the pull back Ad∗φ[A] = [φ∗A]. For infinitesimal φ(t) = 1+ut we

get the Lie algebra coadjoint action of u ∈ SVect(M,µ) on G∗:

ad∗uA = −LuA . (40)

This action of SDiff(M,µ) on G∗ is canonical, i.e. there is a function on G∗ (a gauge-

invariant observable) that generates the coadjoint action via the p.b. The generating

function is the moment map µu(A). To see this, suppose u is a volume-preserving

vector field, then

{µu(A), Aj} = −(LuA)j . (41)

To show this we begin with the right-hand side of (41),

LuA = d(iuA) + iu(dA)

= d(uiAi) +
1

2
iu{(∂jAi − ∂iAj)dx

i ∧ dxj}

= (∂jAiu
i +Ai∂ju

i)dxj +
1

2
(∂jAi − ∂iAj)(u

j dxi − dxj ui)

= {Ai∂ju
i + ui∂iAj}dxj . (42)
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On the other hand, using (35), {µu(A), Ak(z)} is equal to
∫

d2x d2y{Ai(x), Aj(y)}
δµu

δAi(x)

δAk(z)

δAj(y)

=

∫

d2x d2y δ2(x− y)

[

Aj(y)
∂

∂yi
ρ−1(y) −Ai(x)

∂

∂xj
ρ−1(x)

]

ρ(x)ui(x)δj
kδ

2(z − y)

=

∫

d2y Ak(y)ρ(y)ui(y)
∂

∂yi
(ρ−1(y)δ2(y − z)) −

∫

d2xAi(x)δ
2(z − x)

∂ui(x)

∂xk

= −ρ−1∂i(Akρu
i) −Ai∂ku

i = −ui∂iAk −Ai∂ku
i = −(LuA)k . (43)

We integrated by parts (A = 0 on ∂M) and used ∂i(ρu
i) = 0. Thus, we obtain (41).

4.2. Center of Poisson algebra

From Subsec. 4.1, the symplectic leaves of SVect(M,µ)∗ are homogeneous sym-

plectic manifolds, identified with coadjoint orbits of SDiff(M,µ). Is the Poisson

algebra of functions on SVect(M,µ)∗ degenerate? What are the Casimirs that con-

stitute its center? Casimirs are unchanged under canonical transformations. So they

are constant on symplectic leaves. A complete set of such Casimirs would allow us to

distinguish between distinct leaves. Since the symplectic leaves are coadjoint orbits

of SDiff(M,µ), it suffices to find observables that commute with the moment maps

µu(A), which generate the coadjoint action.

We first observe that the center of the Poisson subalgebra of linear observables

µu(A) is trivial. {µu, µv}(A) vanishes for all A iff [u, v] = 0. But the center of

SVect(M,µ) is trivial. This is seen by writing u and v in terms of their stream

functions ψu, ψv. Taking some simple choices for ψv in the condition [u, v] = 0 will

imply that ψu = 0. Thus none of the µu(A) lie in the center of the Poisson algebra

of gauge-invariant functions, since they do not even commute with each other. Thus

we need to look elsewhere to find the Casimirs of our Poisson algebra. It turns out

that the charges In =
∫

(dA/µ)nµ are central observables. The monomials (dA/µ)n

can be replaced by any scalar function of (dA/µ). We found that In are Casimirs by

showing that they Poisson commute with the moment maps. However, this involves

lengthy calculations. For example, in App. B we show that In commute with each

other and in App. C we show that I2 commutes with µu(A) for uniform µ.

However, we found that In are closely related to the enstrophy invariants of

hydrodynamics, which are known to be conserved quantities in Eulerian hydro-

dynamics. There is a simple argument in Ref. 15 based on earlier work21,20,22 that

leads to the conclusion that In are constant on coadjoint orbits. The argument is

that the action of SDiff(M,µ) is merely to change coordinates in the integral defin-

ing In. Since this integral is independent of the choice of coordinates, In must be

invariant under the coadjoint action. Though In for n = 1, 2, 3, . . . are all Casimirs,

they are not a complete set of orbit invariants. Their level sets do not necessarily

distinguish the coadjoint orbits (see Subsec. 4.3). For some remarks on additional
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invariants, see Sec. 9 of Ref. 15. Our explicit calculations of {In, µu} given in Apps. B

and C suggested to us how In could be modified in order to get an independent

infinite sequence of conserved quantities (not Casimir invariants) for our choice of

Hamiltonian; see Subsec. 6.3.

4.3. Finite dimensional symplectic leaves in H1(M)

The simplest symplectic leaf in the dual of the Lie algebra of the rotation group is

the origin of angular momentum space {Li = 0}. It consists of a single point. Of

course, one can also characterize the orbit {Li = 0} as the zero set of the Casimir

L2 = 0. Can we get a similar explicit characterization of the simplest symplectic

leaves of SVect(M,µ)∗?

Orbits of closed one forms and zero set of Casimirs In

The simplest symplectic leaf in SVect(M,µ)∗ should be the orbit of exact one-

forms. Suppose A = dΛ is an exact one-form. Then under the coadjoint action of

u ∈ SVect(M,µ) it goes to A′ = A+ ad∗uA:

A′
i = Ai − (LuA)i = ∂iΛ − (∂jΛ)(∂iu

j) + uj∂j∂iΛ = ∂i(Λ − uj∂jΛ) . (44)

We see that a pure gauge is mapped to a pure gauge under the Lie algebra coadjoint

action. Thus the tangent space to the orbit of exact one-forms is trivial. So pure

gauges form a single-point orbit.

After the pure gauges, the next simplest configurations are closed but inexact

one-forms dA = 0, A 6= dΛ. Suppose M is a manifold with nonvanishing first

cohomology. What is the orbit of an element of H1(M)? In particular, is the orbit

a finite dimensional manifold? Does the orbit lie within H1(M)? The answers to

both these questions is affirmative. Suppose A is an exact one-form, F = dA = 0.

Under the Lie algebra coadjoint action, A′ = A+ ad∗uA = A−LuA:

dA′ = d(A−LuA) = −d(diu + iud)A = −diu dA = 0 . (45)

The tangent space to the orbit of a closed one-form contains only closed one-forms.

Since the space of closed one-forms on a two-dimensional manifold is finite dimen-

sional, the tangent space to the orbit must be finite dimensional. Moreover, we have

shown that the exact one-forms form a single point orbit by themselves. Thus, at

the infinitesimal level, the orbit of a nontrivial element of H1(M) must lie within

H1(M) \ {0}. This view will be reinforced by considering the zero set of Casimirs:

In =

∫
(

dA

µ

)n

µ = 0 . (46)

In are constant on coadjoint orbits. Thus, the orbits must be contained in their level

sets. I2n is the integral of a positive quantity and therefore vanishes iff dA = 0. If

dA = 0 then I2n+1 is also zero. Thus the level set In = 0 is the space of closed

one-forms on M . Thus, the coadjoint orbit of a closed one-form must lie in H1(M).
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Since we already established that the pure gauges form a single-point orbit, this

means In cannot be a complete set of Casimirs if H1(M) is nontrivial.

For example, if M is the plane, then H1(R2) consists only of the equivalence

class of pure gauge configurations and the zero set of In contains only one single-

point orbit [A] = 0. The same is true of the 2-sphere S2 which has trivial first

cohomology. For the 2-torus H1(T2) ' R2. For T2, there must be symplectic

leaves which are submanifolds of R2 \ {0}. It is interesting to find the orbits of

cohomologically nontrivial gauge fields more explicitly as well as the induced sym-

plectic structure. However, we do not investigate this further since the Hamiltonian

we pick (66) vanishes on closed one-forms. There is no interesting dynamics on the

finite dimensional symplectic leaves we have described above. Therefore, we turn to

the case where M is simply connected and try to characterize the orbits of gauge

fields that are not closed.

4.4. Symplectic leaves when M is simply connected

In the case of the rigid body, symplectic leaves other than Li = 0 are concentric

spheres of nonzero radius, all two-dimensional symplectic manifolds. These leaves

may also be characterized as nonzero level sets of L2. By analogy, we would like

to find the orbits in SVect(M,µ)∗ of one-forms that are not closed. They must lie

within nonzero level sets of In. Can we say something more about them, such as

whether they are finite dimensional? We address these questions below, assuming

M is simply connected.

By Poincaré’s lemma, all the information in a gauge field on a simply connected

M can be stored in the two-form field strength, F = dA. Then, the dual of the Lie

algebra SVect(M,µ)∗ may be identified with the space of scalar functions on M :

SVect(M,µ)∗ =

{

f =
dA

µ

}

. (47)

The coadjoint action of φ ∈ SDiff(M,µ) is just the pull back

Ad∗φ f = φ∗f = f ◦ φ (48)

and the Lie algebra coadjoint action of u ∈ SVect(M,µ) is

f 7→ f + ad∗u f = f −Luf = f − ui∂if . (49)

Thus the coadjoint orbit of f and the tangent space to the orbit at f are

Of = {f ◦ φ |φ ∈ SDiff(M,µ)} ,
TfO = {f − ui∂if |u ∈ SVect(M,µ)} .

(50)

The picture that emerges from our analysis below, is that there are two types of

orbits when M is simply connected. Orbits of the first type contain only a single

point, namely a constant function f = dA/µ = c. In the case of the plane with the
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uniform measure, the only one-point orbit is {f = (dA/µ) = 0}, consisting of the

pure gauge configuration. The orbits of the second type are all infinite dimensional.

They are the orbits of nonconstant functions f . In the case of the plane with

uniform measure, we expect an infinite number of such orbits of the second type,

each contained within a level set of {In, n = 1, 2, 3, . . .}, though we do not rule out

the existence of more than one such orbit in any one level set of the In.

Single point orbits

We show that constant functions f = (dA/µ) = c are the only single point coadjoint

orbits in the dual of the Lie algebra SVect(M,µ)∗ when M is simply connected.

They lie within the level sets In = Vol(M,µ)cn where Vol(M,µ) =
∫

M µ.

Suppose f is a constant. Then Luf = 0. So the constant functions form single

point orbits. The case f = 0 corresponds to the closed and exact one-forms A

which we already identified as a single point leaf if M is simply connected. Nonzero

constant functions are not admissible elements of SVect(M,µ)∗ if M = R2 and µ is

the uniform measure. But they are allowed if M is compact or if µ→ 0 at infinity

on noncompact M . Note that In =
∫

fnµ = Vol(M,µ)cn if f = c. So the constant

functions lie in the level sets with In = Vol(M,µ)cn.

We can go one step further and show that constant functions are the only single

point orbits if M is simply connected. Suppose f is a single point orbit. Then Luf

must vanish for all volume-preserving vector fields u. Since M is simply connected,

any such vector field can be written in terms of a stream function ui = ρ−1εij∂jψ.

Then denoting derivatives by subscripts,

Luf = ρ−1εij(∂jψ)(∂if) = ρ−1(fxψy − fyψx) ,

Luf = 0 ⇒ fxψy = ψxfy .
(51)

This must be true for all stream functions ψ. Taking ψ = x and ψ = y successively

tells us that f must be independent of both x and y and hence a constant. We

conclude that the only single point orbits in G∗ = SVect(M,µ)∗ are the constant

functions f = (dA/µ) = c when M is simply connected.

Orbit and stabilizer of nonconstant element of SVect(M,µ)∗

The stabilizer algebra Stab(f) or isotropy subalgebra of a function f is the set of all

volume-preserving vector fields ui which leave it fixed under the coadjoint action.

The coset space SVect(M,µ)/Stab(f) then has the same dimension as the tangent

space to the orbit containing f . For u to be in Stab(f) we need Luf = 0. Since M is

simply connected we can express u in terms of its stream function ui = ρ−1εij∂jχ.

The condition Luf = 0 becomes

εij(∂if)(∂jχ) = 0 ⇒ χxfy − χyfx = 0 (52)
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which in vector notationg says that ∇f ×∇χ = 0. Colloquially, the gradient of χ

must be everywhere parallel to the gradient of f . χ = cf is clearly a solution for any

real number c, so the isotropy subalgebra is at least one-dimensional, provided f is

not a constant. The product of two solutions as well as real linear combinations of

solutions are again solutions to this linear PDE. To better understand the general

solution of this PDE, let us first consider the specific example of a function f(r, θ)

that is circularly symmetric.

Example: Stabilizer and orbit of circularly symmetric function

For example, let f = (dA/µ) be a nonconstant function depending only on the

radial coordinate r =
√

x2 + y2. Let us call its orbit by the name Of . The gradient

∇f points radially, so to speak. The isotropy subalgebra of any such function f

is the space of stream functions χ with ∇f × ∇χ = 0. The solutions are stream

functions χ(r) that are independent of θ:

Stab(f) = {χ(r, θ) |∂θχ = 0} . (53)

In this case, the isotropy subalgebra is infinite dimensional. The coset space

SVect(M,µ)/Stab(f) = {ψ(r, θ)|ψ ∼ ψ + χ(r)} (54)

has the same dimension as the tangent space to the orbit TfOf at f . Though the

stabilizer is infinite dimensional, the orbit of f(r) is infinite dimensional as well.

For example, the coset space can be parametrized using an infinite number Fourier

coefficients

ψ(r, θ) =

∞
∑

n=1

ψ(c)
n (r) cosnθ +

∞
∑

n=1

ψ(s)
n (r) sin nθ . (55)

We omitted the θ independent additive term in order to quotient out by Stab(f).

To summarize, the isotropy subalgebra of a nonconstant circularly symmetric

function consists of all stream functions that are circularly symmetric. Moreover,

the tangent space to the orbit may be identified with the coset space in which two

stream functions are identified if they differ by one depending on r alone.

Nonconstant functions have infinite dimensional orbits

Using the circularly symmetric example as a guide, we can characterize the isotropy

subalgebra of a general nonconstant function. The condition for χ to be in the

isotropy subalgebra is fxχy − fyχx = 0. We will describe the set of all solutions χ

to this linear PDE in a region of M where df is never the zero two-form. Such a

region is guaranteed to exist by an analogue of the inverse function theorem, since

we assumed that f was not a constant. Our answer is that the isotropy subalgebra

gWe emphasize that this equation is independent of any metric on M .
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of f consists of all stream functions χ which are constant along level sets of f . The

level sets of f are necessarily one-dimensional curves in such a region.

To see this, we argue as follows. In a region where f(x, y) has no local extrema,

the level sets of f are one-dimensional. These level curves foliate the region. Pick

a coordinate Θ(x, y) along the level curves. Then ∂Θf = fΘ = 0. Also pick a

coordinate R “transversal” to the level curves of f . What this means is that ∂R

and ∂Θ should be linearly independent at each point (R,Θ). There is a lot of

arbitrariness in the choice of these coordinates, and one certainly does not require

any metric to define them. The volume form µ is nondegenerate, so the volume

enclosed by the miniparallelogram determined by the tangent vectors ∂R and ∂Θ is

nonzero. Denoting partial derivatives by subscripts, we get

µ(∂R, ∂Θ) = ρdx ∧ dy(∂R, ∂Θ)

=
1

2
ρ(dx ⊗ dy − dy ⊗ dx)

(

1

Rx
∂x +

1

Ry
∂y,

1

Θx
∂x +

1

Θy
∂y

)

=
1

2
ρ

(

1

RxΘy
− 1

RyΘx

)

=
1

2
ρ

(

RyΘx −RxΘy

RxΘyRyΘx

)

6= 0 . (56)

Since ρ is nonvanishing, this means

RyΘx −RxΘy 6= 0 . (57)

The condition for χ to lie in the isotropy subalgebra becomes (using fΘ = 0)

fxχy − fyχx = (fRRx + fΘΘx)(χRRy + χΘΘy) − x↔ y

= fRRx(χRRy + χΘΘy) − fRRy(χRRx + χΘΘx)

= fRχΘ(RxΘy −RyΘx) . (58)

We have already shown that RxΘy − RyΘx 6= 0. Moreover, f is nonconstant and

fΘ = 0 so we must have fR 6= 0. We conclude that χΘ = 0. In other words, the

stream functions χ in the isotropy subalgebra are constant on level sets of f :

Stab(f) = {Stream functions χ constant on level sets of f} . (59)

It is clear that the space of such stream functions is closed under linear combinations

and also under multiplication, as we observed earlier. The tangent space to the orbit

at f is then identified with the coset space:

TfOf = SVect(M,µ)/Stab(f)

= {ψ |ψ ∼ ψ + χ, χ constant on level sets off} . (60)

Both the stabilizer and the orbit are infinite dimensional, provided f is not constant,

for the same reason as given in the example where f was circularly symmetric. Thus,

nonconstant f = dA/µ have infinite dimensional orbits.
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5. Hamiltonian

Having specified observables (gauge-invariant functions), their p.b. and phase-space

(coadjoint orbit of SDiff(M,µ)), we need to pick a gauge-invariant Hamiltonian.

5.1. Hamiltonian leading to ideal hydrodynamics

There is more than one interesting way to pick a Hamiltonian. The classic choice

leading to ideal hydrodynamics, requires a positive metric gij on M which defines

a positive, symmetric, inner product on G = SVect(M,µ):

〈u, v〉G =

∫

M

g(u, v)µ =

∫

M

giju
ivjµ . (61)

The Hamiltonian of Eulerian hydrodynamics is then

H(u) =
1

2
〈u, u〉G =

1

2

∫

giju
iujρ d2x . (62)

There is no a priori relation between the metric g and the volume form µ. Ωg =√
det g dx1 ∧ dx2 need not equal µ. If µ = Ωg , the theory is particularly natural as

well as nontrivial. The Hamiltonian defines an inertia operator I (generalization of

the inertia tensor of a rigid body, see App. A and Ref. 15) from the Lie algebra G =

SVect(M,µ) to its dual G∗ = Ω1(M)/dΩ0(M). Suppose u, v are volume-preserving

vector fields. Then the inertia operator is defined by the equation (Iu, v) = 〈u, v〉G .

In other words,
∫

(Iu)jv
jµ =

∫

giju
ivjµ⇒

∫

((Iu)j − giju
i)vjµ = 0 . (63)

Since this is true for an arbitrary volume-preserving v, ((Iu)j − giju
i) must be a

total derivative: (Iu)j − giju
i = ∂jΛ for some scalar function Λ which vanishes on

the boundary of M or at infinity. We see that the metric does not determine the

one-form Iu uniquely, but rather up to an exact one-form. Thus, the image Iu of

a volume-preserving vector field u ∈ G is an equivalence class in G∗ = gauge fields

modulo gauge transformations. A coset representative is given by the one-form

Ai = giju
j . The equation of motion is the well-known Euler equation

∂u

∂t
= −∇uu−∇p , Luµ = 0 . (64)

Here ∇uu is the covariant derivative (with respect to gij) of u along itself. The

two equations fix the pressure p(x, t) up to an additive constant. The Euler equa-

tions of hydrodynamics have a geometric interpretation.15 The configuration space

of a volume-preserving fluid flowing on the manifold M is the group of volume-

preserving diffeomorphisms SDiff(M,µ). The inner product (61) on the Lie algebra

of this group can be extended to a right-invariant metric on the whole group by

right translations by group elements. Then, by the least action principle, the time

evolution of the fluid is given by geodesics on SDiff(M,µ) with respect to this

metric.
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5.2. Hamiltonian as magnetic energy

Now we propose a Hamiltonian different from that of Eulerian hydrodynamics. It is

a magnetic energy, natural from the point of view of Yang–Mills theory. The result

will still be a theory of geodesics on SDiff(M,µ), but with respect to a different

right-invariant metric on this group than that implied by ideal hydrodynamics.

Suppose M is a two-dimensional surface with volume form µ and metric gij . The

metric did not play any role so far since the phase-space and Poisson structure

are independent of it. But to specify the dynamics, we need the metric. Any two-

dimensional manifold is conformally flat, so the information in gij is encoded in its

volume form Ωg =
√
g dx1 ∧ dx2, where g = det gij . We do not assume that µ is

equal to Ωg. Indeed, if that is the case, the dynamics is trivial. By analogy with

Yang–Mills theory, we pick the manifestly gauge-invariant magnetic energy

H =
1

2

∫
(

F ∧ ∗F
Ωg

)

µ (65)

as our Hamiltonian. It can be written in a variety of equivalent ways:

H =
1

2

∫
(

F

Ωg

)2

µ =
1

2

∫

(∗F )2µ =
1

2

∫
(

F

µ

)2

σµ

=
1

4

∫

FijF
ijµ =

1

2

∫
(

B2σ

ρ

)

d2x . (66)

We find the last formula most useful in calculations. Here σ is the positive scalar

function on M given by the square of the quotient of the two volume forms:

σ =

(

µ

Ωg

)2

=
ρ2

g
. (67)

We will see that for the dynamics to be nontrivial, σ must not be constant. The

Hamiltonian in (66) is the simplest choice that is gauge-invariant, quadratic in

gauge fields and involves two derivatives. It is easy to see the equivalence of the

various formulae for the magnetic energy in (66). Let εij = gikgjkεkl, ε
ij = −εji,

ε12 = 1/g. Moreover, gεij = εij . The Hodge dual of F is the scalar

∗F = ∗(dxi ∧ dxj)
1

2
Fij =

1

2

√
gεijFij =

1

2
√
g

∑

ij

Fijεij =
B√
g
. (68)

F ∧∗F is the two-form (B2/
√
g)dx1∧dx2. ((F ∧∗F )/Ωg) = B2/g is a scalar. Hence

(F ∧ ∗F )

Ωg
= (∗F )2 =

(

F

Ωg

)2

=
B2

g
=
B2σ

ρ2
=

(

F

µ

)2

σ . (69)

Moreover, FijF
ij = 2(F12F

12). But F 12 = g1ig2jFij = (g11g22 − g12g21)F12 =

g−1F12 = B/g. Thus FijF
ij = 2B2/g. This shows the equivalence of all the forms

of the Hamiltonian given in (66).
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The Hamiltonian (66) involves only the spatial components of the field strength

since there is no time component for the gauge field in our theory. So there is no ana-

logue of electric energy. Moreover, our theory is not relativistically covariant unlike

electrodynamics. The dynamics determined by (66) is not equivalent to Eulerian

hydrodynamics, though both theories share the same phase-space. To see this, note

that if Ωg = µ, then (66) reduces to the Casimir I2 and has trivial dynamics while

the Hamiltonian (62) continues to have nontrivial dynamics.

The differential of the Hamiltonian (66) is ( ∂B(y)
∂Ai(x) = −εij∂jδ

2(x− y)):

(dH(A))i =
1

ρ

δH

δAi(x)
=

1

ρ
εij∂j

(

Bσ

ρ

)

. (70)

For each A, dH(A) is volume-preserving ∂i(ρdH
i) = εij∂i∂j(Bσ/ρ) = 0. H gen-

erates a 1-parameter (time) family of diffeomorphisms of a coadjoint orbit of

SDiff(M,µ), which serves as the phase-space. The Hamiltonian vector field VH

is a vector field on a coadjoint orbit O. At each tangent space T[A(x)]O to an

orbit, VH ([A]) is given by the coadjoint action of the Lie algebra element dH(A),

VH = ad∗dH(A). The change in an observable f under such an infinitesimal canonical

transformation is the Lie derivative with respect to VH :

df(A)

dt
= −LVH

f = ad∗dH f = {H, f} = (A, [dH, df ]) =

∫

Ai[dH, df ]iµ . (71)

Explicit equations of motion in local coordinates are given in Sec. 6.

5.3. Inertia operator and inner product on G∗ from Hamiltonian

Recall (Subsec. 5.1) that the Hamiltonian of ideal hydrodynamics (62) defines an

inner product on the Lie algebra of volume-preserving vector fields via the inertia

operator. Here, the magnetic energy defines a positive inner product 〈· , ·〉G∗ on

the dual of the Lie algebra, G∗ = Ω1(M)/dΩ0(M), via an inverse inertia operator

h, obtained below. This inner product is degenerate if M has nonvanishing first

cohomology. Away from degeneracies, one can in principle invert h to obtain an

inertia operator and an inner product 〈· , ·〉G on the Lie algebra G = SVect(M,µ).

It should be possible to extend 〈· , ·〉G to a metric on the group G = SDiff(M,µ) by

means of right translations. The equations of motion in G∗ = SVect(M,µ)∗ deter-

mined by H should be the projection of the geodesic flow on G = SDiff(M,µ) with

respect to this right-invariant metric. In this sense, the dynamics determined by the

magnetic energy describes geodesics on SDiff(M,µ). Eulerian hydrodynamics also

describes geodesics on SDiff(M,µ), but with respect to a different right-invariant

metric.15 Here, we obtain the inverse of the inertia operator and the inner product

on SVect(M,µ)∗ explicitly. Let us begin by writing the Hamiltonian as a quadratic

form on gauge fields. The result is

H =
1

2

∫

Aih
ilAlρ d

2x with hil =
εijεkl

ρ

[(

∂j
σ

ρ

)

∂k +
σ

ρ
∂j∂k

]

. (72)



July 27, 2006 10:54 WSPC/139-IJMPA 03097

3794 G. S. Krishnaswami

hij plays the role of inverse inertia operator, mapping equivalence classes of gauge

fields to volume-preserving vector fields by raising the index Aj 7→ hijAj =

(dH(A))i. To get (72), note that H may be written in terms of its differential,

H =
1

2
(A, dH(A)) =

1

2
µdH(A) =

1

2

∫

Ai(dH(A))iρ d2x . (73)

This is easily checked by integrating by parts assuming B → 0 on ∂M :

H =
1

2

∫
(

B2σ

ρ

)

d2x =
εij

2

∫
(

Bσ

ρ

)

∂iAj d
2x

=
εij

2

∫

∂j

(

Bσ

ρ

)

Ai d
2x =

1

2

∫

Ai dH
i ρd2x . (74)

As a consequence,

H =
1

2

∫

Ai(hA)iµ where (hA)i = hijAj = dH i =
εij

ρ
∂j

(

Bσ

ρ

)

. (75)

Writing this out we get,

(hA)i =
εijεkl

ρ
∂j

(

σ

ρ
∂kAl

)

=
εijεkl

ρ

[(

∂j

(

σ

ρ

))

∂k +

(

σ

ρ

)

∂j∂k

]

Al . (76)

From this we read off the inverse of the inertia operator (72). Through h, the

magnetic energy naturally defines a symmetric positive inner product on the dual

of the Lie algebra, G∗ = Ω1(M)/dΩ0(M). This inner product may be written in

the following equivalent ways:

〈A, Ã〉G∗ = (A, hÃ) = µhÃ(A) =

∫

Aih
ijÃjρ d

2x =

∫

BB̃

(

σ

ρ

)

d2x . (77)

Here B, B̃ are the magnetic fields corresponding to A, Ã. Positivity of the inner

product is ensured since σ(x) = (µ/Ωg)
2 = (ρ2/g) ≥ 0 and the integrand is positive:

〈A,A〉G∗ = 2H(A) =

∫
(

B2σ

ρ

)

d2x ≥ 0 . (78)

Symmetry of the inner product is shown by establishing the last equality in (77):
∫

Ai(hA)iρ d2x = εij

∫

Ai∂j

(

B̃σ

ρ

)

d2x

= −εij

∫

∂jAi

(

B̃σ

ρ

)

d2x

=

∫
(

BB̃σ

ρ

)

d2x . (79)

Inner product (77) is degenerate precisely on gauge fields in the first cohomology of

M , H1(M) = {B = 0, A 6= dΛ}. If M is simply connected, (77) is a nondegenerate

inner product on G∗ = SVect(M,µ)∗. Inverting it gives an inner product on G which

may be extended by right translation to a right-invariant metric on SDiff(M,µ).
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6. Equations of Motion

Before working out the equations of motion in detail, it would be prudent to con-

vince ourselves that unlike the Casimir I2, the magnetic energy H does not lie in

the center of the Poisson algebra for nonconstant σ. We show this in App. D by

exhibiting a moment map that has nonvanishing p.b. with H .

6.1. Time evolution of magnetic field

The time evolution of the magnetic field is given by the equation

Ḃ = {H,B} = εij∂i

(

B

ρ

)

∂j

(

Bσ

ρ

)

= ∇
(

B

ρ

)

×∇
(

Bσ

ρ

)

, (80)

where σ = ρ2/g. It is manifestly gauge-invariant. Though the Hamiltonian is

quadratic, (80) is nonlinear since the p.b. of gauge fields (35) is linear in gauge

fields. The “interactions” are partly encoded in the Poisson structure and partly in

the Hamiltonian, so to speak. Equation (80) is an analogue of the Euler equation

L̇ = L × Ω, L = IΩ for the rigid body, (see App. A). Indeed, the equation of

motion for the magnetic field can be regarded as the Euler equation for the group

SDiff(M,µ) with respect to the metric (77) defined by the Hamiltonian (66). The

time evolution of the magnetic field can also be written as an equation of motion

for the field strength F = dA defined in (21):

Ḟ =
1

2
εij∂i

(

F

µ

)

∂j

(

Fσ

µ

)

εkl dx
k ∧ dxl . (81)

The formula (80) for Ḃ is obtained using the p.b. formula (31) using the relation
δB(z)
δAj(y) = −εjk ∂δ2(z−y)

∂yk , assuming A = 0 on ∂M . After some integration by parts,

dB

dt
= {H,B} = −εilεjk∂k

[

ρ−1(∂iAj) +Ai(∂jρ
−1) +

1

ρ
Ai∂j

]

∂l

(

Bσ

ρ

)

. (82)

Expanding out derivatives of products, eliminating A in favor of B = εij∂iAj and

after a lot of cancelations, one arrives at the advertised evolution equation.

6.2. Time evolution of moment maps

We have already argued that the Casimirs In =
∫

(dA/µ)nµ are constant on sym-

plectic leaves. Thus, they are conserved under time evolution dIn

dt = {H, In} = 0,

independent of the choice of Hamiltonian. As for the moment maps µu, we can

show using (31) that

dµu(A)

dt
= {H,µu} =

∫

d2xAi

[

εjk(∂ju
i) + εikujρ−1(∂jρ) − εikuj∂j

]

∂k

(

Bσ

ρ

)

.

(83)
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For ρ = 1 this reduces to

dµu(A)

dt
=

∫

d2xAi[ε
jk(∂ju

i) − εikuj∂j ]∂k(Bσ) . (84)

The right-hand side is gauge-invariant even though the gauge field appears

explicitly.

6.3. Infinitely many conserved charges in involution

We find an infinite set of conserved charges:

dHn

dt
= {H,Hn} = 0 , n = 1, 2, 3, . . . (85)

for a uniform µ (ρ = 1) and gij an arbitrary metric.h We suspect that a similar

result holds for nonuniform µ. The conserved quantities are

Hn =

∫
(

dA

µ

)n

σµ =

∫

Bnσ d2x , (86)

where σ = (µ/Ωg)
2 = (1/g) and g = det gij . Furthermore, we find that Hn are in

involution {Hm, Hn} = 0. The Hamiltonian is H = 1
2H2. The presence of infinitely

many conserved charges in involution suggests an integrable structure underlying

the dynamics determined by the magnetic energy. The Hamiltonian of ideal hydro-

dynamics (62) is not known nor expected to have any conserved quantities besides

the In and their close relatives, which are constant on coadjoint orbits. What is

remarkable about Hn is that they are not constant on coadjoint orbits but still

conserved quantities for the magnetic energy Hamiltonian (66). To establish this

we investigate the time evolution of Hn:

dHn

dt
= {H,Hn} =

∫

Ai

[

δH

δAj
∂j

(

ρ−1 δHn

δAi

)

− δHn

δAj
∂j

(

ρ−1 δH

δAi

)]

d2x . (87)

Using

δHn

δAi
= nεij∂j

(

σ

(

B

ρ

)n−1)

;
δH

δAi
= εij∂j

(

σB

ρ

)

, (88)

we get

dHn

dt
= nεjkεil

∫

Ai

[

∂k

(

σB

ρ

)

∂j

(

ρ−1∂l

(

σ

(

B

ρ

)n−1))

− ∂k

(

σ

(

B

ρ

)n−1)

∂j

(

ρ−1∂l

(

σB

ρ

))]

d2x . (89)

For ρ = 1 this becomes

dHn

dt
= nεjkεil

∫

Ai[∂k(σB)∂j∂l(σB
n−1) − ∂k(σBn−1)∂j∂l(σB)]d2x . (90)

hσ = ρ2/g must not grow too fast at ∞ and the magnetic field must vanish at ∞.
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In the gauge A1 = 0, A2 ≡ A, B = ∂xA, this may be written as

dHn

dt
= n

∫

dx dy A[∂x(Bσ)∂xy(Bn−1σ) − ∂x(Bn−1σ)∂xy(Bσ)

− ∂y(Bσ)∂2
x(Bn−1σ) + ∂y(Bn−1σ)∂2

x(Bσ)] . (91)

We prove in App. E that Hn, n = 1, 2, 3, . . . are conserved by showing that the right-

hand side of (91) vanishes. Having found an infinite number of conserved quantities

we wanted to know whether their p.b. generates new conserved quantities. In our

case, we discovered (again for ρ = 1), that the conserved quantities Hn are in

involution, i.e. they mutually Poisson commute {Hm, Hn} = 0. The proof of this is

somewhat lengthy and is relegated to App. E.

Intuitively, Hn are independent of each other since they are like average values

of different powers of B. Furthermore, Hn are independent of the Casimirs Im. Im
contain no information about the metric gij while Hn depend on the metric via σ.

For example, we show in App. D that H2 is not a Casimir. More generally, it would

be nice to prove that In and Hm are functionally independent by showing that on

every tangent space to an orbit, the cross product of their gradients is nonvanishing.

7. Static Solutions

7.1. Zero energy configurations

The magnetic energy is H =
∫

M (dA/µ)2σµ =
∫

(B2/ρ)σ d2x where σ = (µ/Ωg)
2 =

(ρ2/g) ≥ 0. Thus, the energy is nonnegative, H ≥ 0. Moreover, if A is closed, the

energy automatically is a global minimum dA = 0 ⇒ H = 0. Moreover, since H

is the integral of the square of dA, weighted by a positive function, closed gauge

fields are the only configurations with zero energy. Any such closed gauge field is a

static solution to the equations of motion (irrespective of µ and gij)

df

dt

∣

∣

∣

∣

dA=0

= {H, f}|dA=0 = 0 . (92)

As discussed in Subsec. 4.3, the closed gauge fields constitute one or more (according

as M is simply connected or not) symplectic leaves of the Poisson manifold. They

correspond to the zero set of Casimirs In =
∫

(dA/µ)nµ = 0. Thus, the Hamilto-

nian vanishes on all the symplectic leaves with In = 0 and there is no interesting

dynamics to speak of. If M is the plane, then the pure gauges are the only ones

with zero energy. The leaf/leaves with In = 0 are the analogue of the L2 = 0 point

at the origin Li = 0 of the angular momentum Poisson manifold. At that point, the

energy E =
∑

i L
2
i /2Ii of the rigid body vanishes as well.

It is interesting to find minima of energy on more interesting symplectic leaves.

Initial conditions determine which symplectic leaf is the phase-space of the theory.

The general problem of finding the minimum of energy on a given symplectic leaf

(perhaps specified through values of invariants such as In) is potentially quite

interesting and difficult. One would first have to find which gauge fields or magnetic
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field configurations satisfy the constraints and lie on the specified leaf. This is sim-

ilar to the problem we solved in the large N limit of 2D QCD where we found the

minimum of energy on the symplectic leaf with baryon number equal to one.11,10

Here we do the opposite, find a few static solutions and then determine which orbit

they lie on.

7.2. Circularly symmetric static solutions

Suppose M = R2. If both the volume forms µ and Ωg are circularly symmetric,

then any circularly symmetric initial magnetic field will remain unchanged with

time. To see this, note that σ = ρ2/g depends only on the radial coordinate r.

Suppose that at t = 0, B(r, t = 0) depends only on r. The initial value problem for

B given in (80) is

Ḃ = ∇
(

B

ρ

)

×∇
(

Bσ

ρ

)

. (93)

Due to circular symmetry, both the gradients point radially and their cross product

vanishes. Thus Ḃ = 0 and we have a static solution B(r)!

We already met the B(r) = 0 static solution before, it lies on a one point

symplectic leaf of pure gauge configurations. However, the static solutions corre-

sponding to nonconstant B(r) lie on infinite dimensional symplectic leaves which

we found previously (Subsec. 4.4). The values of Casimirs on the orbit containing

a circularly symmetric static solution B(r) are

In = 2π

∫ ∞

0

(

B(r)

ρ(r)

)n

ρ(r)r dr . (94)

By a judicious choicei of B(r) one should be able to find a static solution B(r) for

given ρ(r) that lies on an orbit with practically any desired value for the invariants

In. More generally, by an argument similar to the one given in Subsec. 4.4, we see

that magnetic fields for which (B/ρ) and (Bσ/ρ) have common one-dimensional

level sets, are static solutions of (80).

7.3. Some other local extrema of energy

For a gauge field to be an extremum of energy on a given symplectic leaf, the

variation of energy in directions tangential to the leaf must vanish. There is no

need for variations in other, let alone all, directions to vanish. However, though it is

not necessary, if [A] is such that all variations of the HamiltonianH(A) vanish, then,

A must be a local extremum of energy. Such an extremum δH
δAk

= 0 is automatically

a static solution to the equations of motion for any gauge-invariant observable f :

df

dt
= {H, f} =

∫

d2x d2y{Ai(x), Aj(y)}
δH

δAi(x)

δf

δAj(y)
= 0 . (95)

iFinding B(r) for given In, ρ(r) is similar to the Classical Moment Problem.
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These extrema are given by solutions of

δH

δAk
= 2εij∂j

(

Bσ

ρ

)

= 0 ⇒ ∂1

(

Bσ

ρ

)

= 0 and ∂2

(

Bσ

ρ

)

= 0 . (96)

The only solutions are B = (cρ/σ) = (cg/ρ) where c is a constant and g = det gij .

These extrema lie on leaves where the Casimirs take the values

In = cn
∫
(

Ωg

µ

)2n

µ = cn
∫

σ−nρ d2x . (97)

We do not yet understand the physical meaning of these extrema of energy. They

have a finite energy if B = (cρ/σ) vanishes at infinity sufficiently fast.

8. Discussion

A summary of the paper was given in Introduction (Sec. 1). Here, we mention a

few directions for further study. We would like to know whether there is a deeper

integrable structure that would explain the presence of an infinite number of con-

served charges in involution for the uniform volume measure µ. The extension to an

arbitrary volume form seems likely. Are there any time-dependent exact solutions

of the nonlinear evolution equation? What is the Poisson algebra of loop observ-

ables and can the Hamiltonian be written in terms of them? Can this model be

quantized and is there a non-Abelian extension? An extension to 3 + 1 dimensions

is possible, though the Poisson algebra has only one analytically known Casimir,

the Hopf or link invariant. Is there a Lorentz covariant theory along these lines?

Can the idea that gauge fields be thought of as dual to volume-preserving vector

fields be exploited in any other context?

How is our gauge theory related to hydrodynamics and turbulence? Recently,

Jackiw et al.29 have studied perfect fluids and certain non-Abelian extensions. Our

gauge theory shares the same phase-space as ideal hydrodynamics, but the two

theories have different Hamiltonians. However, similar methods may be useful in

the study of both theories. For example, Iyer and Rajeev30 (see also Sec. 11.D

of Ref. 15) have proposed a statistical approach to two-dimensional turbulence,

based on a matrix regularization of the phase-space. It may be possible to use a

similar regularization for our gauge theory. For an N ×N matrix regularization to

be integrable, it would appear that we need O(N 2) conserved quantities, while In
and Hm furnish only 2N conserved quantities. It is unclear what this implies for

the integrability of the continuum theory we have proposed in this paper. On the

other hand, Polyakov has proposed a theory of turbulence in 2+1 dimensions based

on conformal invariance.31 Since the group of conformal transformations and area

preserving transformations are disjoint except for isometries, it appears unlikely

that there is any direct relation of our work to Polyakov’s.
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Appendix A. Poisson Manifolds and Coadjoint Orbits

We collect a few facts about classical mechanics32,15 that we use, to make the paper

self-contained and fix notation.

A.1. Poisson manifolds and symplectic leaves

The basic playground of classical mechanics is a Poisson manifold. It is a manifold

M with a product {· , ·} : F(M) × F(M) −→ F(M) (the Poisson bracket (p.b.))

on the algebra of observables. {· , ·} is bilinear, skew symmetric and satisfies the

Jacobi identity and Leibnitz rule. F(M) is a class of real-valued functions (say,

C∞(M)). Any such function f : M → R generates canonical transformations on

M . A canonical transformation is a flow on M , associated to the canonical vector

field Vf . The Lie derivative of any function g(A) along the flow is given by the p.b.

LVf
g(A) = {f, g}(A), A ∈ M. Flow lines of the canonical transformation generated

by f are integral curves of Vf .

Often, Poisson algebras of observables are degenerate. They have a center

(Casimirs) which have zero p.b. with all observables. In such a situation, the Pois-

son manifold as a whole cannot serve as the phase-space of a physical system, since

it would not be a symplectic manifold. Rather, it is the symplectic leaves of a Pois-

son manifold that can serve as phase-spaces. The symplectic leaf of a point A ∈M

is the set of all points of M reachable from A along integral curves of canonical

vector fields. On a symplectic leaf, the Poisson structure is nondegenerate and can

be inverted to define a symplectic structure, a nondegenerate closed two-form ω.

Indeed, if ξ, η are tangent vectors at A to a symplectic leaf, then the symplectic

form at A is ω(ξ, η) = {f, g}(A) where f and g are any two functions whose canon-

ical vector fields at A coincide with ξ and η; i.e. ξ = Vf |A, η = Vg |A. Moreover, on

any symplectic leaf, ω(Vf , ·) = df( ·) where df is the exterior derivative of f .

The Hamiltonian vector field VH is the canonical vector field of the Hamiltonian

H : M → R. VH generates time evolution df
dt = {H, f} = LVH

f . Irrespective of the

Hamiltonian, time evolution always stays on the same symplectic leaf.

A.2. Coadjoint orbits in the dual of a Lie algebra

A natural example of a Poisson manifold, that occurs in many areas of physics, is

the dual of a Lie algebra. The symplectic leaves of the dual of a Lie algebra are the

coadjoint orbits of the group. To understand this, suppose G is a group, G its Lie

algebra and G∗ the dual of the Lie algebra. Then we have a bilinear pairing between
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dual spaces (A, u) ∈ R for A ∈ G∗ and u ∈ G. Suppose f , g are two real-valued

functions on G∗. Then their p.b. is defined using the differential df(A) ∈ G:

{f, g}(A) = (A, [df, dg]) . (A.1)

[df, dg] is the commutator in G. This turns G∗ into a Poisson manifold, which is often

degenerate. The symplectic leaves are coadjoint orbits of the action of G on G∗. To

see this, first define the inner automorphism Ag : G → G, Agh = ghg−1 which takes

the group identity e to itself. The group adjoint representation Adg : G → G is the

linearization of the inner automorphism at e: Adg = Ag∗|e and is Adg u = gug−1

for matrix groups. The group coadjoint representation Ad∗g : G∗ → G∗ is defined as

(Ad∗g A, u) = (A,Adg u). The group coadjoint orbit of A ∈ G∗ is

OA = {Ad∗g A |g ∈ G} . (A.2)

The Lie algebra adjoint representation is adu : G → G where adu = d
dt |t=0 Adg(t) for

a curve g(t) on the group with g(0) = e and ġ(0) = u and takes the form adu v =

[u, v] for matrix groups. The Lie algebra coadjoint representation ad∗u : G∗ → G∗ is

defined by (ad∗uA, v) = (A, adu v). The Lie algebra coadjoint orbit of A ∈ G∗ is the

tangent space at A to the group coadjoint orbit of A:

{aduA |u ∈ G} = TAOA . (A.3)

Thus, a tangent vector ξ to a coadjoint orbit at A may be written as ξ = ad∗uA for

some (not necessarily unique) u ∈ G.

There is a natural symplectic structure on coadjoint orbits, which turns them

into homogeneous symplectic leaves of G∗. The symplectic form (Kirillov form) ω

acting on a pair of tangent vectors to the orbit OA at A is given by ω(ξ, η) =

(A, [u, v]) where u, v ∈ G are any two Lie algebra elements such that ξ = ad∗uA and

η = ad∗v A. Thus, the coadjoint orbits are symplectic manifolds which foliate G∗ in

such a way as to recover the Poisson structure on the whole of G∗. The different

coadjoint orbits in G∗ are not necessarily of the same dimension, but are always

even dimensional if their dimension is finite.

The canonical vector field Vf of an observable f : G∗ → R at a point A ∈ G∗ is

given by the Lie algebra coadjoint action of the differential df(A), Vf (A) = ad∗df A:

LVf
g(A) = {f, g}(A) = (A, [df, dg]) = (A, addf dg) = (ad∗df A, dg) . (A.4)

In particular, infinitesimal time evolution is just the coadjoint action of the Lie

algebra element dH , the differential of the Hamiltonian. For example, if µu(A) =

(A, u) is the moment map for u ∈ G, then the canonical vector field Vµu
(A) = ad∗u A.

In other words, infinitesimal canonical transformations generated by moment maps

are the same as Lie algebra coadjoint actions.

Observables in the center of the Poisson algebra (Casimirs) are constant on co-

adjoint orbits. They are invariant under the group and Lie algebra coadjoint actions.

To show that an observable is a Casimir, it suffices to check that it commutes with

the moment maps which generate the coadjoint action.



July 27, 2006 10:54 WSPC/139-IJMPA 03097

3802 G. S. Krishnaswami

Example (Eulerian Rigid Body). Let Ωi be the components of angular velo-

city of a rigid body in the corotating frame. The components of angular velocity

lie in the Lie algebra G of the rotation group G = SO(3). The dual space to

angular velocities consists of angular momenta Li with the pairing (or moment

map) (L,Ω) = LiΩ
i. The space of angular momenta is the dual SO(3)∗ = R3. The

latter carries a Poisson structure {Li, Lj} = εijkLk. Observables are real-valued

functions of angular momentum f(L) and satisfy the p.b.:

{f, g}(L) =
∑

i,j

{Li, Lj}
∂f

∂Li

∂g

∂Lj
. (A.5)

The space of angular momenta R3 must be a degenerate Poisson manifold, since

it is not even dimensional. Indeed, the symplectic leaves are concentric spheres

centered at the point Li = 0 as well as the point Li = 0. These symplectic leaves

are the coadjoint orbits of SO(3) acting on the space R3 of angular momenta. The

symplectic form on a sphere of radius r is given by r sin θdθ ∧ dφ. The Casimirs

are functions of L2 =
∑

i L
2
i and are constant on the symplectic leaves, they are

invariant under the coadjoint action of the rotation group on R3. The Hamiltonian

is H =
∑

i L
2
i /2Ii if the axes are chosen along the principle axes of inertia. Ii are the

principle moments of inertia, the eigenvalues of the inertia operator Iij : G → G∗

which maps angular velocities to angular momenta Li = IijΩ
j . The equations of

motion L̇ = ad∗dH L = ad∗I−1L L = ad∗Ω L = L× Ω are L̇i = {H,Li}, L̇1 = a23L2L3

and cyclic permutations thereof, where aij = I−1
j − I−1

i .

Appendix B. The Charges In are in Involution

We show that the charges In are in involution {Im, In} = 0. To calculate

{Im, In} =

∫

M

Ai

[

δIm
δAj

∂j

(

1

ρ

δIn
δAi

)

− δIn
δAj

∂j

(

1

ρ

δIm
δAi

)]

d2x (B.1)

we need

Im =

∫
(

B

ρ

)m

ρd2x⇒ δIm
δAi

= mεij∂j

((

B

ρ

)m−1)

. (B.2)

So the p.b. becomes

{Im, In} = mnεilεjk

∫

M

d2xAi

[

∂k

(

B

ρ

)m−1

∂j

(

1

ρ
∂l

(

B

ρ

)n−1)

−m↔ n

]

. (B.3)

The first term in square brackets ∂k(B/ρ)m−1∂j(
1
ρ∂l(B/ρ)

n−1) can be written as

(m− 1)(n− 1)

(

B

ρ

)m−2

∂k

(

B

ρ

)

∂j

{

ρ−1

(

B

ρ

)n−2

∂l

(

B

ρ

)}

= (m− 1)(n− 1)

(

B

ρ

)m+n−4

∂j(ρ
−1)∂k

(

B

ρ

)

∂l

(

B

ρ

)
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+ (m− 1)(n− 1)(n− 2)

(

B

ρ

)m+n−5

ρ−1∂k

(

B

ρ

)

∂j

(

B

ρ

)

∂l

(

B

ρ

)

+ (m− 1)(n− 1)

(

B

ρ

)m+n−4

ρ−1∂k

(

B

ρ

)

∂j∂l

(

B

ρ

)

. (B.4)

The first and third terms are symmetric under m ↔ n and therefore do not con-

tribute to {Im, In}. Therefore we get (I1 = 0, so we can ignore m,n = 1):

{Im, In}
mn(m− 1)(n− 1)(n−m)

=

∫

d2x
(B/ρ)m+n−5

ρ

[

εilεjkAi∂l

(

B

ρ

)

∂j

(

B

ρ

)

∂k

(

B

ρ

)]

.

Now the term in square brackets vanishes identically due to antisymmetry of εjk .

We conclude that {Im, In} = 0. Thus, In, n = 1, 2, 3 . . . are an infinite number of

charges in involution.

Appendix C. I2 is a Casimir of the Poisson Algebra

To find the infinitesimal change of In under the coadjoint action, we calculate

{In, µu}. If this vanishes for all volume-preserving u, then In would be constant on

symplectic leaves and hence a Casimir. Recall (28) that the differential of In is

(dIn(A))i = nρ−1εij∂j

(

B

ρ

)n−1

(C.1)

and the differential of the moment map is (dµu)i = ui. Their Lie bracket is

[u, dIn]i = uj∂j

(

nρ−1εik∂k

(

B

ρ

)n−1)

− nρ−1εjk∂k

(

B

ρ

)n−1

∂ju
i

= n

[

εikuj∂j

(

ρ−1∂k

(

B

ρ

)n−1)

− ρ−1εjk∂k

(

B

ρ

)n−1

∂ju
i

]

. (C.2)

Thus {µu, In} =
∫

Ai[u, dIn]iρd2x gives

{µu, In} = n

∫

d2xAi

[

εikρuj∂j

(

ρ−1∂k

(

B

ρ

)n−1)

− εjk∂k

(

B

ρ

)n−1

∂ju
i

]

. (C.3)

For ρ = 1 this becomes

{µu, In} = n

∫

d2xAi

[

εikuj(∂k∂jB
n−1) − εjk(∂ju

i)(∂kB
n−1)

]

. (C.4)

Specializing to n = 2, and writing u in terms of its stream function, ui = εil∂lψ,

{I2, µu} = 2

∫

d2x
[

εilεjkAi(∂l∂jψ)(∂kB) − εikεjlAi(∂k∂jB)(∂lψ)
]

. (C.5)
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{I2, µu} is gauge-invariant, so we calculate it in the gauge A1 = 0, B = ∂1A2 and

denote A2 = A, x1 = x, x2 = y and derivatives by subscripts:

1

2
{I2, µu} =

∫

dx dy A[ψyAxxx − ψxAxxy + ψxyAxx − ψxxAxy] . (C.6)

The idea is to integrate by parts and show that this expression vanishes. Let us

temporarily call the second factor of A by the name Ã. Write 1
2{I2, µu} as a sum

of four terms T1 + T2 + T3 + T4:

T1 =

∫

dx dy AψyÃxxx , T2 = −
∫

dx dy AψxÃxxy ,

T3 =

∫

dx dy AψxyÃxx , T4 = −
∫

dx dy AψxxÃxy .

(C.7)

We will show that T1 + T2 = −T3 − T4. Integrating by parts till there are no

derivatives on Ã,

T1 = −
∫

dx dy Ã(ψyAxxx + 3Axxψxy + 3Axψxxy +Aψxxxy) ,

T2 =

∫

dx dy Ã(ψxAxxy + 2Axyψxx

+ 2Axψxxy +Axxψxy +Ayψxxx +Aψxxxy) ,

T3 =

∫

dx dy Ã(ψxyAxx + 2Axψxxy +Aψxxxy) ,

T4 = −
∫

dx dy Ã(Axyψxx +Ayψxxx +Axψxxy +Aψxxxy) .

(C.8)

Using the fact that Ã = A we get for T1 and T2:

2 × T1 = −
∫

dx dy Ã(3Axxψxy + 3Axψxxy +Aψxxxy) ,

2 × T2 =

∫

dx dy Ã(2Axyψxx + 2Axψxxy +Axxψxy +Ayψxxx +Aψxxxy) .

(C.9)

T3 and T4 give us the identities
∫

dx dy ÃAxψxxy = −
∫

dx dy ÃAψxxxy ,

∫

dx dy ÃAyψxxx =

∫

dx dy ÃAxψxxy .

(C.10)

Use these to simplify T1 and T2 by eliminating ψxxxy and ψxxx in favor of ψxxy:

2 × T1 = −
∫

dx dy Ã(3Axxψxy +Axψxxy) ,

2 × T2 =
∫

dx dy Ã(2Axyψxx +Axxψxy +Axψxxy) .

(C.11)
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Adding these and setting A = Ã,

T1 + T2 =

∫

dx dy A(Axyψxx −Axxψxy) . (C.12)

Meanwhile by definition,

T3 + T4 =

∫

dx dy A(Axxψxy −Axyψxx) ,

thus

{I2, µu} = 2(T1 + T2 + T3 + T4) = 0 . (C.13)

We conclude that I2 lies in the center of the Poisson algebra for constant ρ.

Appendix D. H = 1

2

∫

(dA/µ)2σµ is not a Casimir

I2 =
∫

(dA/µ)2µ turned out to be in the center of the Poisson algebra of gauge-

invariant functions. Here we show that the magnetic energy H = 1
2

∫

(dA/µ)2σµ

with a nonconstant σ = ρ2/g, does not lie in the center, and therefore leads to

nontrivial time evolution. We do this by giving an explicit example of a gauge-

invariant function with which it has a nonvanishing p.b. Consider ρ = 1, then

from (83),

{H,µu} =

∫

d2xAi[ε
jk(∂ju

i)∂k(Bσ) − εikuj(∂j∂kBσ)] . (D.1)

In gauge A1 = 0, A2 ≡ A and with ui = εij∂jψ we get (x1 = x, x2 = y):

{H,µu} =

∫

dx dy A[−(∂2
xψ)∂y(Bσ) + (∂xyψ)∂x(Bσ)

+ (∂yψ)∂2
x(Bσ) − (∂xψ)∂xy(Bσ)] . (D.2)

Now for the simple choices ψ = xy, A = σ = e−(x2+y2)/2 we have B = ∂xA =

−xe−(x2+y2)/2. The p.b. can be calculated exactly to yield

{H,µu} =

∫

dx dy e−3(x2+y2)/2(−1 − 4x4 − 2y2 + 4x2(2 + y2)) =
2π

27
. (D.3)

Thus H does not lie in the center of the Poisson algebra. We also checked that H

transforms nontrivially under many other generators µu of the coadjoint action.

Appendix E. Hn are in Involution for Uniform Measure

Suppose µ is the uniform measure (ρ = 1). We prove that the charges

Hn =

∫
(

dA

µ

)n

σµ =

∫
(

B

ρ

)n

σρ d2x =

∫

Bnσ d2x (E.1)

are in involution

{Hm, Hn} = 0 for m, n = 0, 1, 2, 3, . . . . (E.2)
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An immediate corollary is that Hn are conserved quantities since the Hamiltonian

is 1
2H2. Here B → 0 at ∞ and σ = (µ/Ωg)

2 = 1/g must be such that these integrals

converge. The proof involves explicitly computing the p.b. and integrating by parts

several times. Using

δHn

δAi
= δiHn = nεij∂j

(

σ

(

B

ρ

)n−1)

(E.3)

we can express the p.b. as

{Hm, Hn} =

∫

Ai[δ
j
Hm∂j(ρ

−1
δ
i
Hn) − m ↔ n]d2

x

= mnεilεjk
∫

Ai

[

∂k

(

σ

(

B

ρ

)m−1
)

∂j

(

ρ
−1

∂l

(

σ

(

B

ρ

)n−1
))

− m ↔ n

]

d
2
x .

(E.4)

For ρ = 1 this becomes

{Hm+1, Hn+1}
(m+ 1)(n+ 1)

= εilεjk

∫

Ai[∂k(σBm)∂j∂l(σB
n) −m↔ n]d2x . (E.5)

Now we expand out the derivatives of products of B and σ and eliminate terms

that vanish due to antisymmetry of εjk or antisymmetry in m and n. We get

{Hm, Hn}
mn(n−m)

= εilεjk

∫

AiB
m+n−4[B(∂kσ)(∂lσ)(∂jB) + σB(∂kσ)(∂j∂lB)

+ (n+m− 3)σ(∂kσ)(∂jB)(∂lB) + σB(∂jB)(∂k∂lσ)] . (E.6)

Since this p.b. is gauge-invariant, calculate in the gauge A1 = 0, call A2 = A,

B = ∂1A and denote derivatives by subscripts (x1 = x, x2 = y),

{Hm+1, Hn+1} = −εjk(m+ 1)(n+ 1)(n−m)

∫

dx dy ABm+n−2

× [BσxBjσk + σBBjxσk + (n+m− 1)σBxBjσk + σBBjσkx] .

(E.7)

After collecting terms, this becomes

{Hm, Hn} = mn(m− n)

∫

ABm+n−4[(Bxσy −Byσx)(Bσx + (n+m− 3)Bxσ)

+ σB{Bxxσy −Bxyσx +Bxσxy −Byσxx}] . (E.8)

To simplify it we define k = m + n − 4 and use identities such as BkBx =

(Bk+1)x/(k + 1) and σσx = 1
2 (σ2)x to combine the factors of B and σ to write

1

mn(m− n)
{Hm, Hn} =

8
∑

i=1

Ti ,
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where

T1 =
1

k + 2

∫

A(Bk+2)xσxσy , T2 = − 1

k + 2

∫

A(Bk+2)yσxσx ,

T3 =
1

2

∫

A(Bk+1)xBx(σ2)y , T4 = −1

2

∫

A(Bk+1)yBx(σ2)x ,

T5 =
1

2

∫

ABk+1Bxx(σ2)y , T6 = −1

2

∫

ABk+1Bxy(σ2)x ,

T7 =
1

k + 2

∫

A(Bk+2)xσσxy , T8 = − 1

k + 2

∫

A(Bk+2)yσσxx .

(E.9)

Numerically we find T1+T7+T2+T8 = −(T3+T5+T4+T6). To see this analytically,

integrate by parts with the aim of eliminating A in favor of B = ∂xA. Using similar

identities as before,

T1 = −T7 −
1

2

∫

(Bk+3)x(σ2)y

k + 3
− 1

2

∫

A(Bk+2)xx(σ2)y

k + 2
,

T2 = −T8 +
1

2

∫

(Bk+3)y(σ2)x

k + 3
+

1

2

∫

A(Bk+2)xy(σ
2)x

k + 2
,

T3 = −T5 −
1

2

∫

(Bk+3)x(σ2)y

k + 3
− 1

2

∫

A(Bk+2)x(σ2)xy

k + 2
,

T4 = −T6 +
1

2

∫

Ay(Bk+2)x(σ2)x

k + 2
+

1

2

∫

A(Bk+2)x(σ2)xy

k + 2
.

(E.10)

Then

T3 + T5 + T4 + T6 = −1

2

∫

(Bk+3)x(σ2)y

k + 3
+

1

2

∫

Ay(Bk+2)x(σ2)x

k + 2
,

T1 + T7 + T2 + T8 =
1

2(k + 2)

∫

A
{

(Bk+2)xy(σ2)x − (Bk+2)xx(σ2)y

}

,

{Hm, Hn} = mn(m− n)(U1 + U2 + U3 + U4) ,

(E.11)

where T3 + T5 + T4 + T6 ≡ U1 + U2 and T1 + T7 + T2 + T8 ≡ U3 + U4. Finally,

integration by parts shows that

U2 = −U3 −
1

2(k + 2)

∫

A(Bk+2)x(σ2)xy (E.12)

and that U2 + U3 = −U4 − U1. We conclude that
∑4

i=1 Ui = 0 and therefore

{Hm, Hn} = 0. Since the Hamiltonian is half the second charge, H = 1
2H2, we have

shown that Hn for n = 1, 2, 3, . . . are an infinite number of conserved quantities,

which moreover, are in involution!
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