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Abstract

We study a previously introduced bi-local gauge invariant reformulation of two-dimensional QCD, called 2d hadron
dynamics. The baryon arises as a topological soliton in hadron dynamics. We derive an interacting parton model from the soliton
model, thus reconciling these two seemingly different points of view. The valence quark model is obtained as a variational
approximation to hadron dynamics. A succession of better approximations to the soliton picture are obtained. The next simplest
case corresponds to a system of interacting valence, ‘sea’ and anti-quarks. We also obtain this ‘embellished’ parton model
directly from the valence quark system through a unitary transformation. Using the solitonic point of view, we estimate the
quark and anti-quark distributions of 2d QCD. Possible applications to deep inelastic structure functions are pointed out. 2000
Elsevier Science B.V. All rights reserved.

PACS:12.39.Ki; 13.60.-r; 12.39.Dc; 12.38.Aw
Keywords:Soliton model; Baryons; Quantum hadron dynamics; Skyrme model; Parton model; Valence quarks; Anti-quarks; Deep inelastic
scattering; QCD; Structure functions

1. Introduction

There are currently two distinct points of view on
what a baryon is. One may be traced back to the quark
model. In the other point of view, baryons arise as
solitons of low energy effective local field theories of
mesons, an idea that may be traced back to the Skyrme
model [1]. In previous work by one of us, it was shown
that in two dimensions, there is an exact description
of QCD as abi-local theory of mesons [2]. This
description, called 2-dimensional hadron dynamics, is
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not a low energy effective theory, but is equivalent
to 2d QCD for all energies and numbers of colors.
The exact description of the baryon is as a topological
soliton of this bi-local theory. At the other extreme, we
studied a 2-dimensional interacting quark model for
the structure of the baryon [3]. The question then is
whether the quark model picture can be derived from
the exact bi-local solitonic picture in two dimensions.
Here we derive the interacting valence quark model
as a variational approximation to this bi-local soliton
theory. Moreover, we find a succession of increasingly
accurate variational approximations to the soliton
model. The next simplest case turns out be a system
of interacting valence, ‘sea’ and anti-quarks. We show
that this ‘embellished’ parton model could also have
been obtained directly via a unitary transformation
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applied to the valence quark model, recovering the
‘Bogoliubov’ transformation introduced in [3]. Thus
we have a reconciliation of the exact bi-local soliton
model with the simpler relativistic parton picture of
the baryon, in 2 dimensions.

The main advantage of this new point of view is that
the semi-classical approximation of hadron dynamics
corresponds to the largeNc limit of 2d QCD, and so
is capable of describing non-perturbative phenomena
such as the structure of hadrons. Thus this reconcili-
ation between the soliton and parton pictures is more
than just a mathematical correspondence. We illustrate
its usefulness by calculating approximately, the quark
and anti-quark distributions of the baryon in 2d QCD.
In fact, due to the correspondence we establish here,
the approximate solutions of the quark models pre-
sented in [3] are actually also approximate solutions of
2d QCD. Thus, in this paper, we will focus more on the
passage from the bi-local soliton theory to quark mod-
els, rather than their actual solution. As mentioned in
[3], our results agree well with the direct numerical so-
lutions of Hornbostel et al. [4]. To summarize, we find
that the valence quark approximation is accurate not
only in the non-relativistic limit, but also in the ultra-
relativistic chiral limit. In particular, we find that in the
chiral limit, the valence quark approximation is exact,
for Nc→∞.

As an aside, we speculate on the possible phe-
nomenological implications of the above model. In
deep inelastic scattering [5], the transverse momenta
of the partons is small compared to their longitudinal
momenta. Moreover, the observables of interest, the
baryon structure functions, depend only on the proton
momentumP and photon momentumq , which lie in
a two-dimensional time like hypersurface, spanned by
time and the beam direction. Thus, there must be an ef-
fective 2-dimensional theory that describes the struc-
ture of the proton as measured in deep inelastic scat-
tering. Two-dimensional hadron dynamics has the cor-
rect symmetries to be a candidate for an approximate
description of the ‘relevant’ interactions of the quarks,
in such an effective action. This model can be thought
of as a representative example of such an approximate
effective action. The variational and many-body tech-
niques developed here should be useful in understand-
ing any such 2-dimensional effective action.

2. Two-dimensional quantum hadron dynamics

Let us begin with a summary of two-dimensional
quantum hadron dynamics [2]. 2d QCD is quantized
in the null gaugeA− = 0 in null coordinates. The
elimination of longitudinal gluons leads to a linear
potential between quark fieldsa, a† which satisfy
canonical anti-commutation relations. The resulting
hamiltonian is:

H

Nc
=
∫
dx a†ai 1

2

[
p̂+ m

2

p̂

]
aai

− g2

2Nc

∫
1

2
|x − y| :a†ai(x)aaj(x):

× :a†bj (y)abi(y): dx dy.
‘g’ is a coupling constant with the dimensions of mass,
i, j are color indices anda, b are flavour indices. De-
fine the bi-local gauge invariant variablêMa

b (x, y)=
2
Nc
:abi(x)a†ai(y): . The pointsx, y are null separated.

The operatorŝMa
b (x, y) form a complete set of observ-

ables in the color singlet sector of two-dimensional
QCD. They provide a (projective) unitary irreducible
representation of the infinite-dimensional unitary Lie
algebra:[ ˜̂Ma

b(p,q),
˜̂Mc
d(r, s)

]
= 1

Nc

(
δcb2πδ(q − r)

[
δad sgn(p− s)+ ˜̂Ma

d(p, s)
])

(1)

− 1

Nc

(
δad2πδ(s − p)[δcb sgn(r − q)+ ˜̂Mc

b(r, q)
])
.

Note that the commutators are of order 1/Nc so that
the largeNc limit is a sort of classical limit: 1/Nc
plays the role that̄h does in an ordinary field theory.
In this classical limit the above commutators are
replaced by the Poisson brackets of a set of classical
dynamical variablesMa

b (x, y). It was shown that the
phase space of this system is an orbit of the unitary
group, an infinite-dimensional grassmannianGr1. It
is the set of all hermitean operatorsM with integral
kernel Ma

b (x, y) satisfying the quadratic constraint
[ε+M]2 = 1, with

∫ |M(x,y)|2dx dy <∞.Gr1 is a
curved manifold with connected components labelled
by an integer. The quadratic constraint is just the
Pauli principle for quarks: the density matrix(ρ =
1
2(1−M− ε))must be a projection operator. Hereε is
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the Hilbert transform operator, diagonal in momentum
space, with̃ε(p,p)= sgn(p).

So in the largeNc limit, our problem reduces to
solving the equations of motion obtained from the
hamiltonian and Poisson brackets:

E[M]
Nc
=−1

4

∫ [
p+ µ

2
a

p

]
M̃a
a (p,p)

dp

2π

(2)

+ g̃
2

8

∫
Ma
b (x, y)M

b
a (y, x)|x − y|dx dy,

1
2i

{
Ma
b (x, y),M

c
d(z,u)

}
= δcbδ(y − z)

[
εad (x,u)+Ma

d (x,u)
]

(3)− δadδ(x − u)
[
εcb(z, y)+Mc

b(z, y)
]
.

The parameterµ2
a is related to the current quark

massesma by a finite renormalization:µ2
a = m2

a −
g̃2/π and g̃2 = g2Nc. Though the hamiltonian is
quadratic, this is a non-linear interacting theory since
the phase space is a curved manifold due to the con-
straints onM(x,y). The linearization of the equation
of motion around the vacuumMa

b = 0 describes an in-
finite number of free mesons, and ’t Hooft’s integral
equation [6] for the meson masses was recovered.

What kind of solution to this theory represents
the baryon? The quantityB =−1

2

∫
Ma
a (x, x) dx was

shown to be an integer, a topological invariant and
hence conserved under time evolution. We see thatB

is in fact baryon number. Thus, forp > 0,−1
2M̃

a
a (p,p)

and −1
2M̃

a
a (−p,−p) represent the quark and anti-

quark probability densities in the baryon. Thus the
baryon is a topological soliton in this picture. It corre-
sponds to a static solution of the equations of motion
(minimum of energy subject to constraints), that has
baryon number one. A Lorentz invariant formulation
is to minimize the (mass)2 of the baryon:

M2

N2
c

=
[
− 1

2

∫
pM̃(p,p)

dp

2π

]
×
[
− 1

2

∫
M̃(p,p)

µ2

2p

dp

2π

+ g̃
2

8

∫
dx dy |M(x,y)|21

2
|x − y|

]
.

3. Separable or rank one ansatz and valence
quark model

We have developed a method [2] to find the min-
imum of energy on the the phase space: a variant of
the steepest descent method that takes into account
the non-linear constraint. Here, we describe another
method based on variational approximations, which
brings out the connection to the quark model. The
main difficulty in minimizing the energy is the non-
linear constraint satisfied byM(x,y). We find a suc-
cession of variational ansatzes forM(x,y) that replace
this constraint with simpler ones. These define an as-
cending family of sub-manifolds, which form a dense
subset of the phase space. Minimizing the energy on
these sub-manifolds will give us successively better
approximations. These variational ansatzes turn out to
correspond to interacting quark models.

To start with, consider an ansatz of the separable
form

(4)M̃a
b (p, q)=−2ψ̃a(p)ψ̃∗b (q).

This satisfies the constraint(ε +M)2 = 1 if ψ̃ is of
norm one and of positive momentum. The Poisson
brackets of theMa

b (x, y) imply the relations

(5){ψ̃a(p), ψ̃b(q)} = 0= {ψ̃a∗(p), ψ̃b∗(q)},
(6)

{
ψ̃a(p), ψ̃

∗b(q)
}=−i2πδbaδ(p− q).

The ψ̃a by themselves define a classical dynamical
system with hamiltonian

E1(ψ)

Nc
=

P∫
0

1

2

[
p+ µ

2

p

]
|ψ̃(p)|2 dp

2π

(7)

+ g̃
2

2

∫
|ψ(x)|2|ψ(y)|2 |x − y|

2
dx dy.

We can quantize this ‘mini’ theory by looking for
operators satisfying canonical commutation relations.
Let us denote the parameter that measures the quantum
correction, analogous tōh, by 1/Nc. The constraint on
the norm can be implemented by restricting attention
to those states|V 〉 satisfying

(8)

∞∫
0

ˆ̃
ψ∗a(p) ˆ̃ψa(p) dp

2π
|V 〉 = 1.
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A representation for our commutation relations is
provided by bosonic creation–annihilation operators:[ ˆ̃
ba(p),

ˆ̃
bb(p

′)
]= 0= [ ˆ̃b†a(p),

ˆ̃
b†b(p′)

]
,

(9)
[ ˆ̃
ba(p),

ˆ̃
b†b(p′)

]= 2πδ(p− q)δba,
with

(10)ψ̂a(x)= 1√
Nc
b̂a(x), ψ̂†a(x)= 1√

Nc
b̂†a(x).

Then the constraint becomes the condition that we
restrict to states containingNc particles:

∫∞
0 b̃†a(p)×

b̃a(p)
dp
2π = Nc. Therefore,Nc must be a positive

integer! Thus we are dealing with a system ofNc
bosons interacting through a linear potential.

What are these bosons? They are the valence quarks
of the parton model. They appear like bosons in the
momentum and spin-flavour quantum numbers since
their wave function is totally anti-symmetric in color.
Nc is interpreted as the number of colors. In the
mean field approximation[3], their wave function is
εi1···iNc ψ̃(p1) · · · ψ̃(pNc ), which corresponds to

(11)|V 〉 = a1†
ψ̃
· · ·aNc†

ψ̃
|0〉.

If ρ̂ab (p, q) = 1
Nc
a†ai(p)abi(q) is the quark density

operator, then the expectation value ofρ̂(p, q) in the
mean field state state|V 〉 is equal to the ‘classical’
density matrix ρ̃1(p, q) = 1

2(δ̃(p, q) − M̃1(p, q) −
ε̃(p, q)). Thus the classical (or largeNc) limit we have
been discussing is just the mean field approximation
to this many-body problem, an idea that goes back to
Witten [7]. The semi-classical approximation will give
us the leading corrections in the case of finiteNc .

Since the quark null momenta are positive, their
sum must equal the total baryon momentumP . In
particular, the parton momenta cannot exceedP .
This ensures that the quark distributions vanish be-
yond p = P . However, the total baryon momentum
is extensiveP ∼ Nc . So in the limit asNc → ∞,
06 p <∞. The valence quark wavefunction is deter-
mined by minimizing the (mass)2 subject to the nor-
malization and momentum sum rule conditions:

M2

N2
c

=
[ P∫

0

p

2
|ψ̃(p)|2 dp

2π

][ P∫
0

µ2

2p
|ψ̃(p)|2 dp

2π

+ g̃
2

2

∞∫
−∞
|ψ(x)|2|ψ(y)|2 |x − y|

2
dx dy

]
,

P∫
0

|ψ̃(p)|2 dp
2π
= 1, Nc

P∫
0

p|ψ̃(p)|2 dp
2π
= P.

Hereψ(x)= ∫ P0 ψ̃(p)eipx
dp
2π . Since we have ignored

them, we will get the spin and flavor averaged wave-
function. The probability density of valence quarks is
V (xB)= P

2π |ψ̃(xBP )|2, wherexB = p/P .
The ground state of this many body problem was

found in [3], in the guise of a valence quark model.
Let us just summarize the result. In the limitNc→∞
andm = 0, theabsolute minimumof the variational
principle is ψ̃(p) =

√
2π/SP e−p/(2SP). Here SP is the

mean baryon momentum per color,P/Nc . It turns out
thatM= 0 for this configuration, so that it is not just
a minimum on the separable submanifold, but on the
entire phase space, in the chiral and largeNc limits.
Thus we find that the ground state baryon is massless
in this limit, in agreement with Hornbostel et al. [4].

A variational approximation to the ground state,
after including the leading effects of finiteNc was
also given in [3]. In the chiral limit, the valence
quark probability distribution isV (xB)= (Nc − 1)×
[1− xB]Nc−2. This variational approximation agrees
well with our numerical solution [3] and is identical to
the numerical solution of Hornbostel et al. (see Ref. [4]
Eq. (22)).

4. Rank three ansatz: valence, sea and anti-quarks

We can get a better approximation to the exact soli-
ton model, by considering a larger submanifold of the
phase space, compared to the separable ansatz, which
corresponded to the valence quark approximation.

The departure from the valence quark picture is de-
termined by the dimensionless ratiom2/g̃2, a measure
of chiral symmetry breaking. Thus we should expect
the anti-quark content to be small for small current
quark masses. The leading effect of finiteNc is to con-
strain the range of momenta of the partons, as we have
seen.

The mathematical advantage of the separable ansatz
is that it ‘solves’ the nonlinear constraint onM:
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more precisely, it replaces it with the condition that
ψ is of norm one. In the same spirit, consider the
configuration

(12)Mr =
r∑

a,b=1

ξab ψa ⊗ψ†b.

Here we chooseψa to be a set ofr orthonormal
eigenvectors of the operatorε; i.e., εψa = εaψa ,
εa = ±1. This implies that the operatorMr is of
rankr: the special case of rank one is just the separable
ansatz above. This ansatz will satisfy the constraint on
M if the r × r matrix ξ is hermitean and satisfies the
constraint

(13)ξba ξ
c
b + [εa + εc]ξca = 0,

a ‘mini’ version of the constraint onM. Moreover,
the baryon number isB = −1

2 trM = −1
2 tr ξ . In the

special case of rank one, we have simplyξ = −2.
By choosing a large enough value ofr this ansatz
can produce as general a configuration in the phase
space as needed. The simplest configuration of baryon
number one that departs from the separable ansatz is
of rank three. We will find that for small current quark
masses, even this departure is very small, so we do not
need to consider configurations of higher rank.

By a choice of basis among theψa , we can always
bring a rank three configuration of baryon number one
to the form

M3=−2ψ ⊗ψ†+ 2ζ 2−
[
ψ− ⊗ψ†

− −ψ+ ⊗ψ†
+
]

(14)+ 2ζ−ζ+
[
ψ− ⊗ψ†

+ +ψ+ ⊗ψ†
−
]
,

whereψ−,ψ,ψ+ are three vectors inL2(R) satisfy-
ing εψ− =−ψ−, εψ = ψ, εψ+ = ψ+,‖ψ−‖2 =
‖ψ‖2 = ‖ψ+‖2 = 1, 〈ψ,ψ+〉 = 0. The conditions
〈ψ−,ψ〉 = 〈ψ−,ψ+〉 = 0 are then automatic. The pa-
rameter 06 ζ− 6 1 measures the deviation from the
rank one ansatz and hence, the anti-quark content of
the baryon.ζ+ =

√
1− ζ 2−. For example, baryon num-

ber is given by

(15)

B =
∞∫

0

{|ψ̃(p)|2+ ζ 2−
[|ψ̃+(p)|2− |ψ̃−(−p)|2]} dp

2π
.

ψ,ψ+ vanish forp < 0 and describe valence and ‘sea’
quarks. Their orthogonality is a consequence of the

Pauli principle.ψ̃− is the anti-quark wavefunction.
From our previous result we expectζ− to vanish as
m2/g̃2→ 0.

This rank 3 ansatz can also be understood as arising
from a unitary transformation applied to the valence
quark ansatz. The phase space of hadron dynamics
carries a transitive action of the infinite-dimensional
restricted unitary group [2]. Thus the configurationM3
can be obtained fromM1 by a unitary transformation

(16)U†(ε − 2ψ ⊗ψ†)U = ε + ξab ψa ⊗ψ†b.

Since bothM1 andM3 have the same baryon number,
U lies in the connected component of the identity
and is of the formU = eiA for A hermitean. From
the above expressions forM1,M3, we see thatU is
the identity except on the span ofψ+ andψ−. ε =
−σ3, in this subspace. Thuse−iA(−σ3)e

iA = sσ1 +
(r − 1)σ3, where r = 2ζ 2− and s = 2ζ−ζ+ and σi
are the Pauli matrices. Therefore, on this subspace,
A is a 2∗ 2 traceless hermitean matrixσ.w.w is the
vector in R3 about which(0,0,−1) must be rotated
by an angle 2|w| to reach(s,0, r − 1). ThusA =
i arcsin(ζ−)(ψ− ⊗ψ†

+ −ψ+ ⊗ψ†
−).

We can use the infinite-dimensional analogue of the
Plücker embedding [8,9] of the grassmannian in the
fermionic Fock space to reexpress this unitary trans-
formation on the phase space of hadron dynamics, as
a Bogoliubov transformation on the second quantized
states. The operator that corresponds toU and acts on
the fermionic Fock space is

(17)

Û = eiÂ = exp
[− arcsin(ζ−)

(
aiψ−a

i†
ψ+ − ajψ+a

j†
ψ−
)]
,

the sum over colors produces a singlet. The angle
θ of [3] can be identified as arcsin(ζ−). The sec-
ond quantized state after the Bogoliubov transforma-

tion is thus|VSA〉 = e−iÂ|V 〉. Here |V 〉 is the va-
lence quark state, and|VSA〉 stands for a state con-
taining valence, ‘sea’ and anti-quarks. The condition
〈V SA|ρ̂(p, q)|VSA〉 = ρ̃3(p, q) is then automatic,
since the corresponding condition was satisfied in the
rank 1 case and we have performed the same unitary
transformation on both sides.

Thus, we have derived the ‘embellished’ quark
model, which contains valence, ‘sea’ and anti-quarks,
as a variational approximation to the bi-local soliton
theory. The wave functionsψ,ψ± and the probability
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of finding an anti-quark in a baryonζ 2− /(1+ 2ζ 2−),
were estimated in [3]. To summarize, we found that
the probability of finding an anti-quark in the baryon is
∼ 0.1% anda ∼ 0.035 form2/g̃2 ∼ 10−3. Moreover,
the anti-quarks carry less than 0.1% of the baryon
momentum. Hornbostel et al. [4] also find a similar
suppression of the anti-quark content in the chiral
limit.

5. Conclusion

Thus, while neither the quark model, nor the soli-
tons of low energy effectivelocal field theories pro-
vides a complete description of baryons in two dimen-
sions, abi-local quantum field theory provides an ex-
act description. We have shown how the quark model
arises as a variational approximation to this bi-local
soliton theory. Moreover, we have used this bi-local
theory to estimate the quark and anti-quark distribu-
tions in two dimensions and find good agreement with
direct numerical approaches. It is interesting to know
what the analogous non-local theory is in four dimen-
sions.
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