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Abstract

In this paper we study a 1q1 dimensional relativistic parton model for the structure of baryons. The quarks and
anti-quarks interact through a linear potential. We obtain an analytic formula for the isospin averaged valence quark

1distribution in the chiral and large N limits. The leading and non-zero current quark mass corrections are estimated.c Nc

Then we extend this model to include ‘sea’ and anti-quarks. We find that the anti-quark content is small at a low value of
Q2. Using these distributions as initial conditions for Q2 evolution, we compare with experimental measurements of the

Ž 2.structure function xF x,Q and find reasonable agreement. The only parameters we can adjust are the fraction of baryon3

momentum carried by valence quarks and the initial scale Q2. q 2000 Published by Elsevier Science B.V.0

PACS: 12.39.Ki; 13.60.-r; 12.39.Dc; 12.38.Aw
Keywords: Structure functions; Parton model; Valence quarks; Deep inelastic scattering; QCD; Anti-quarks

1. Introduction

We present a variational parton model description
for the structure of baryons as measured in Deep
Inelastic Scattering. This model enables us to calcu-
late the x dependence of the structure function xFB 3

at an initial value of Q2. We compare this prediction0

with experimental measurements by CCFR and
CDHS collaborations.

In Deep Inelastic Scattering, the longitudinal mo-
menta of the partons dominates their transverse mo-
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menta. Indeed, as pointed out by Altarelli, Parisi and
w xothers 1 , a perturbative treatment of transverse

momenta, with an upper cut-off Q, leads to the same
scaling violations as predicted by the Operator Prod-
uct Expansion in the leading logarithmic approxima-
tion. By the uncertainty principle, the virtual photon
momentum Q, is a measure of the size of transverse
momenta being probed.

2 ŽWhile the Q dependence for sufficiently large
2 .Q of the structure functions is well understood

w x1,2 , the x dependence is harder to understandB

since it deals with the formation of a relativistic
bound state. We make the following ansatz: At some
low value of Q2 sQ2, the transverse momenta of0

the partons may be ignored as a first approximation.
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The x dependence of quark and anti-quark distribu-B

tions at Q2, is then determined by solving a 1q10

dimensional model. In this model, quarks interact via
a linear potential in the null coordinates. This is the
simplest potential consistent with Lorentz covari-
ance.

We also suppose that the valence quarks carry a
fraction f of the total baryon momentum at Q2 sQ2.0

The rest being carried by gluons, anti-quarks and
w xsea-quarks. In a previous numerical study 3 , we

determined the valence quark distribution in this
interacting parton model. Here, we extend this model
to include anti-quarks and also obtain analytic for-
mulae for the valence quark distributions, within a
variational approach. Based on the two parameters
Q and f , we predict the initial x dependence of0 B

the iso-spin averaged quark and anti-quark distribu-
tions. Finally, to compare with experimental data at
higher Q2, we use the solutions of this model as
initial conditions for the DGLAP evolution equa-
tions.

We do not derive this model from a more basic
theory. It is proposed merely as a phenomenological
parton model for an approximate description of Deep
Inelastic Scattering.

Let us now give a brief introduction to our analy-
sis of the interacting parton model. The partons are
assumed to be relativistic particles interacting through
a linear potential. The number of colors N is keptc

variable and we work mostly in the limit of a large
number if colors. To simplify this many body prob-
lem we ignored the anti-quark degrees of freedom in
w x3 . The baryon wave function was determined by the

Ž .2principle that it minimizes the mass of the baryon.
Within a Hartree approximation, the valence quark
wavefunction is the solution of a non-linear integral

w xequation which was solved numerically in 3 .
In this letter we first show that the true minimum
Ž .2of mass occurs for a configuration that consists

only of valence quarks, in the chiral and large Nc

limits. The deviation of the anti-quark distribution
from zero is measured by the dimensionless parame-

2 1mter in addition to corrections, which we esti-Nc2g̃

mate. Here m is the current quark mass and g a˜
coupling constant.

In order to determine the anti-quark content of the
baryon, we perform a unitary transformation on the

Fermionic Fock space, starting from a purely valence
state. This transformation is like a Bogoliubov trans-
formation which mixes positive and negative mo-
mentum states. It is sufficient to consider Bogoli-
ubov transformations parametrized by a single angle

Ž .2u which is determined by minimizing the mass of
the baryon. We find that in the large N limit, uc

vanishes for zero current quark mass. For physically
m2reasonable values of , the anti-quarks carry less

2g̃

than a percent of baryon momentum. This is at an
initial value of Q2 sQ2, at which transverse mo-0

menta are neglected. The isospin averaged quark and
anti-quark distributions are found within a varia-
tional approximation.

To compare our results with experimental data,
we evolve the distributions to higher values of Q2

w xvia the DGLAP equations 1 . However, the gluon
distributions, which we have not determined, appear
in the evolution equations. It turns out that the
difference between quark and anti-quark distribu-

Ž V Ž 2 .tions valence quark distribution: q x ,Q sB
b 2 b 2Ž Ž . Ž ...Ý q x ,Q yq x ,Q evolves indepen-bsu,d B B

dently of the gluon distribution to leading order.
Moreover, if we ignore certain correlations, this
difference is the average of the structure function F3

measured in neutrino and anti-neutrino Deep Inelas-
w xtic Scattering 2 . Given the x dependence of theB

Ž . 2parton distribution functions PDFs at an initial Q ,0

their Q2 evolution is determined by the DGLAP
equation with the splitting function P calculatedqq

perturbatively:

dqV x ,t a t dy xŽ . Ž . 1B s BVs q y ,t P .Ž .H qq ž /dt 2p y yxB

Ž 2 2 . Ž 2 .Here ts log Q rQ . The normalization n Q s0 0
1 V Ž 2 .H dx q x ,Q is determined by integrating the0 B B 0

Ž .DGLAP equation with initial condition n ` sN sc

3 from Q2 s` to Q2. Due to the large Q2 range0
Ž 2 .involved, we determine n Q to high order. Within0
Ž 2 . 1 Ž 2 .our approximations, n Q s H dx F x ,Q ,0 0 B 3 B 0

w xwhich is given by the GLS sum rule 4 . If we denote
the isospin averaged valence quark probability den-

Ž 2 . V Ž 2 . Ž 2 .sity as V x ,Q , then q x ,Q s n QB 0 B 0 0
Ž 2 .V x ,Q . In section 4 we compare our predictionsB 0

Ž 2 .for xF x,Q with experimental measurements by3
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the CDHS and CCFR collaborations. Our predictions
1agree well with data for a choice of parameters fs 2

2 2 Ž 2 .and Q s0.4 GeV for which n Q s2.25. This0 0

choice of parameters is consistent with phenomeno-
w xlogical fits to data 2,5 . However, it would be useful

to know what the ‘best-fit’ values of these parame-
ters are.

Ž .An impressive discretized light-cone DLCQ
analysis of 2 dimensional QCD was done by Horn-

w xbostel et al. 6 . Our phenomenological parton model
provides a complementary physical approach to their
more direct numerical diagonalization of the hamil-
tonian. The 2-dimensional valence quark wave func-
tion we find reduces precisely to the one obtained in
w x6 when we set fs1. We do not find a similar
concordance with the more conventional lattice QCD
methods: the lightcone methods seem to incorporate
the physical phenomena much more directly. Other

w xDLCQ 7 calculations study the meson and glueball
spectra of 2d models. We focus on the baryon. For

w xother approaches see for instance 8 .

2. Valence parton model

Let us begin by reviewing the valence quark
w xapproximation. Ref. 3 may be consulted for details.

We assume that the momenta of the partons in the x1

direction are large compared to the transverse mo-
menta; which we ignore. We use null co-ordinates1

where the null momentum psp yp is the basic0 1

kinematic variable. Then the kinetic energy of a free
1 m2Ž .particle of mass m is p s pq . So the wave0 2 p

function of a quark will vanish for negative p while
that of an anti-quark vanishes for positive p.

w xIf we ignore anti-quarks as in 3 , then the baryon
˜ Ž� 4.wavefunction c n ,a , p depends on the colors,i i i

Ž .flavours a s1, PPP , M and null momenta of thei
˜ Ž� 4.N valence quarks. c n ,a , p s ec i i i n , PPP ,n1 Nc˜ Ž� 4.c a , p since the baryon is a color singlet. More-i i

over, since the null momenta are positive, the sum of
quark momenta cannot exceed the total baryon mo-
mentum P. In particular, the wave function must

1 w xSee Appendix to 9 for kinematics.

vanish for p )P. Since the e tensor is anti-symmet-i

ric in color, the wavefunction must be symmetric in
the remaining variables: partons behave like bosons
in the momentum, spin and flavour variables. The
ground state wave function is determined by mini-
mizing the total energy

2Nc m1P a i˜EE c s p qÝ ÝHN ic 2 p0 ia PPP a is11 Nc

= ˜ 2< <c a , p ; PPP a , pŽ .1 1 N Nc c

=
dp PPP dp1 Nc

Nc2pŽ .
`1

2q g Õ x yxŽ .Ý ÝH i j2 y`a PPP a i/j1 Nc

=< < 2c a , x ; PPP a , xŽ .1 1 N Nc c

=dx PPP dx .1 Nc

Here m2 sm2 y g 2 p is the effective mass of the˜a ai i

w xparton 3 , which avoids a potential infrared diver-
gence in the potential energy. Also, g 2 s g 2 N . The˜ c

simplest potential consistent with Lorentz invariance
Ž . < <is linear, Õ x s x 2, which is also favoured by

w xphenomenology 11 . g is a coupling constant with˜
the dimensions of mass. Our predictions turn out to
be independent of g in the chiral limit. In the ground˜
state, we expect the Hartree ansatz

Nc

˜ ˜� 4c a , p s2pd Py p c a , pŽ .Ž . Ý Łj j i i iž /
is1i

to be a good approximation. The valence quark wave
function is normalized to have unit length,

M P 2 dp˜< Ž . <Ý H c a , p s1. It must also satisfy theas1 0
2p

momentum sum rule:

dpP 2˜< <N p c p s fP .Ž .Ý Hc 2p0a

f here is the fraction of baryon momentum carried
by the valence quarks, which is roughly a half at low

2 w xQ 2 . In these two formulae, we are ignoring
correlations that are suppressed for large-N . Theyc

differ from the exact formulae in the same way as
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the canonical ensemble differs from the micro-
canonical ensemble in statistical mechanics.

Since we are interested in the isospin averaged
distributions, we will average over spin-flavour de-
grees of freedom. Thus we look for a wave function
that is non-zero only for a single value of a :
˜ ˜Ž . Ž .c a , p sd c p .a ,1

In second quantized language, this corresponds to
< : 1† Nc† < : j†the valence state V sa PPP a 0 . Here, a˜ ˜ ˜c c c

˜creates a quark with color j in the state c . These
operators satisfy canonical anti-commutation rela-

Ž . � j†4 j² :tions CAR : a ,a sd u,Õ with respect to theiu Õ i
< :Dirac vacuum 0 where all negative energy states

i†
< :are filled and positive ones empty: a 0 s0 andc̃y˜ ˜< : Ž . Ž .a 0 s0. c p vanishes for pG0 and c p˜jc y qq

for pF0. The Pauli principle requires that the den-
1 i†Ž . ² < Ž . Ž . < :sity matrix r p,q s V a p a q V is a˜ ˆ ˆV iNc

` Ž .hermitean projection operator: H r p , r˜y ` V
drŽ . Ž .r r,q sr p,q . The eigenvalues of the den-˜ ˜V V2p

sity matrix are the occupation numbers of particles,
for a projection operator these are 0 or 1 as required
by the Pauli principle. For a state containing one
baryon, the normal ordered trace of the density

1 ˜Ž Ž . Ž .matrix is equal to one: tr r p,q q d p,q˜V 2
˜Ž Ž . .. Ž .sgn p y1 s1 by a use of the CAR. d p,q is

the identity matrix. The above Hartree ansatz,
1)˜ ˜ ˜Ž . Ž . Ž . Ž .Ž .r p,q sc p c q q d p,q 1y sgn p sat-˜V 2

isfies these constraints.
A Lorentz invariant formulation is to minimize

the mass MM N of the Baryon per quark:c

2MM 1 dpP 2˜< <s p c pŽ .H2 2 2 2pg N˜ 0c

21 1 m 1 dpP 2˜< <) c p yŽ .H 2ž /2 2 p p 2pg̃0

`1 1
2 2< < < < < <q dxdy c x c y xyy .Ž . Ž .H

2 2y`

2.1. Analytic results in the large N limitc

w xIn 3 we solved the integral equation for the
minimization of energy numerically. There is in fact

Ž 2 2 .an analytic solution in the chiral m g ™0 and˜
˜ Ž .large N limits. The boundary condition is that c pc

must vanish for p)P. However, P is an extensive
variable, P;N . So for N s`, the valence quarkc c

wave function is not required to vanish for any finite
value of p. If we use the intensive quantity Ps P N ,c

the analog of momentum fraction is x s p P, butB

the wave function is not required to vanish beyond
x s1. In order to compare directly with a waveB

function computed for N s3, we pick the referencec
1frame in which Ps . The momentum sum rule3

then becomes

` dp
2˜< <p c p s fP .Ž .H

2p0

It can be checked explicitly that

2p
yp 2 f Pc̃ p s eŽ . ( fP

is an exact solution to the integral equation for the
Ž .2minimization of baryon mass . Alternatively, we

can calculate MM 2 N 2 for this wavefunction and seec

that it is zero. The potential and self energies cancel
each other. Thus, in this limit the minimum of
Ž .2mass actually occurs for a purely valence quark
configuration. Since g;L ;200 MeV and m ,˜ QCD u

m ;5–8 MeV, this should be a good approximationd

provided the 1 N corrections are small. This isc
1indeed the case, as we show below. For fs , the2

Ž .valence quark density normalized to one is V x sB
y6 x B6e .

2.2. Leading order 1 N correctionc

The leading order effect of finite N is to restrictc
Žthe range of quark momenta to p-P. Now, 1

p n yp a˜. Ž . Žy ™e as n™`. Therefore, c p sCp 1yn
p b. , 0FpFP should be a good ansatz for theP

ground state wave function for finite N . C is deter-c

mined by normalization. The momentum sum rule
N Nc cŽ .implies that bs y1qa y1 . The minimiza-2 f f
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V 2Ž .Fig. 1. Comparison of valence quark distribution x q x ,QB B 0
Ž .obtained in the large-N limit thin curve with the variationalc

1V 2Ž .estimate x q x ,Q after taking into account the leadingB B 0 Nc

Ž .correction thick curve .

tion of energy implies that a satisfies the transcen-
dental equation

2p m dy1 a a
s1q 1qy q 1yy y2Ž . Ž .H2 2g y˜ 0

` dy a
q 1qy y2 ,Ž .H 2y1

w xwhich we derived in 3 . In the limit of chiral
symmetry, a™0. If valence quarks carry all the

Ž . Žmomentum of the baryon, fs1, and V x s N yB c
.Ž .Ncy21 1yx , which is identical to the resultB

w xobtained from DLCQ, reported in 6 . However,
valence quarks carry only about half the baryon
momentum, so that for N s3 our variational esti-c

Ž 2 .mate for the valence quark density is V x ,Q sB 0
Ž .45 1yx ; this agrees well with our numerical solu-B

w xtion from Ref. 3 .
It is evident from Fig. 1 that the primary effect of

1the correction is to make the distribution vanishNc pbeyond s1. The actual shape of the distribution isP

already well captured by our analytic solution in the
large-N limit.c

3. Extension of parton model to include anti-
quarks

Now we turn to the anti-quark content of the
baryon. As we will see below, the minimum of

Ž .2Baryon mass occurs for a small anti-quark con-

tent when the parameter m2 g 2 is small. In order to˜
determine it, we need to allow for states with nega-
tive momenta. However, only the difference between
the quark and anti-quark numbers is conserved in the
full theory. Therefore, the baryon must be in a linear
superposition of states containing h anti-quarks and
N qh quarks, for hs0,1, PPP ,`. The energy of ac

state containing h anti-quarks is

Nq2h 21 mP 2˜< <� 4p q c n , p P dpŽ .Ý Ý H i h j j k kž /2 pyP in is1j

2
`g

21 < < < <� 4q x yx c n , x P dx ,Ž .Ý ÝH i j h k k m m22 y`n i/jk

˜ Ž� 4.where c n , p is the wave function of such ah i i
� 4Ncqhstate. n , p refer to the colors and momenta ofi i is1

� 4Ncq2 hthe quarks, while n , p refer to anti-i i isN qhq1c

quarks. The wave function vanishes for negative
quark momenta and positive anti-quark momenta.
The total energy is the sum of the energies for each
value of h.

Now we shall argue that the ground state of the
baryon is to a good approximation determined by
three orthonormal one-parton states c and c whichq
describe quarks and c which describes anti-quarks.y
We will continue to work in a factorized Hartree
approximation, ignoring correlations except when
they are required by the Pauli principle or color
invariance.

In the absence of anti-quarks, there are just Nc

quarks whose wavefunction is completely anti-sym-
metric in color. Within the Hartree approximation,
they all occupy the same single parton positive mo-

Ž .2mentum state c , which minimizes the mass of the
baryon. Now consider adding a quark and an anti-

Ž .quark hs1 . The anti-quark will occupy the nega-
tive momentum state c that minimizes the energy.y
Suppose all the N q1 quarks occupy the state c .c

Then, by the Pauli exclusion principle, the color part
of the quark wave function must be totally anti-sym-
metric. However, there is no completely anti-sym-
metric tensor in N q1 indices transforming underc

Ž .SU N . Therefore, we are forced to introduce a newc

positive momentum state c , that must be orthogo-q
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nal to the filled state c . In order that this cost a
˜ Ž .minimal amount of energy, we expect c p toq

˜ Ž .have only one more node than c p . As long as
hFN , in the ground state, the quarks and anti-c

quarks occupy the states c ,c ,c . If h)N , weq y c

would have to introduce another pair of orthonormal
states. However, we find that these additional correc-
tions are very small.

Now we shall argue that the configuration con-
Ž < :.taining valence, sea and anti-quarks say VSA can

be obtained by a unitary transformation acting on the
< :valence quark state V : a Bogoliubov transforma-

² < :tion. It must be unitary in order that VSA VSA s1.
The operator that creates a quark in state c and anq
antiquark in state c is a a j† ; we sum over colory jc cy q

indices to produce a color invariant state. Thus the
unitary transformation we seek is the identity except
in the two dimensional subspace spanned by c andq

< :c . Thus our variational ansatz is VSA sy
u w a jc a j†

c yh .c.x < :y qe V . The density matrix of quarks in
the new state can now be calculated:

r p ,qŽ .˜VSA

2˜ ˜ ˜ ˜sc p c q ysin u c p c qŽ . Ž . Ž . Ž .y y

1˜ ˜ ˜ ˜yc p c q y sin2u c p c qŽ . Ž . Ž . Ž .q q y q2

1˜ ˜ ˜qc p c q q d p ,q 1y sgn p .Ž . Ž . Ž . Ž .q y 2

Physical quantities are expressed most simply in
˜Ž .terms of the normal ordered density matrix: M p,q

˜Ž . Ž .Ž .sy2 r p,q qd p,q 1y sgn p . For example,˜
the baryon number density in momentum space is

˜ ˜M p , p yM yp ,ypŽ . Ž .
2 2 22˜ ˜ ˜< < < < < <s c p qsin u c p y c yp .Ž . Ž . Ž .q y

This confirms the interpretation of c as they
Ž .2anti-quark wavefunction. The mass is given by

2MM 1 dpP ˜s y pM p , pŽ .H2 2 2pN yPc

21 m dpP ˜
) y M p , pŽ .H

2 2 p 2pyP

2
`g̃

2 1< < < <q dxdy M x , y xyy .Ž .H 28 y`

The variational quantities c ,c ,c , and u areq y
Ž .2determined by minimizing the baryon mass . In

˜ ˜Ž . Ž .the ground state, we expect c p and c p toy
Žhave no nodes except possibly at the boundaries
˜.ps0, P , while c must have one more node. Weq

estimate them variationally.

3.1. Large N analysisc

Working in the N™` limit, the form of thec

analytic solution suggests the choice

a pp
yb˜ ˜c p sC e ,c pŽ . Ž .g̃ qž /g̃

a pp p
ybsC yC e g̃q 1ž /g g˜ ˜

˜ ˜Ž . Ž . Žfor p)0 and c p sc yp for p-0. For othery
.ranges of p these functions must vanish. C is1

determined by the orthogonality condition while
C,C are fixed by the normalization conditions. Theq
variational parameter b determines the reference
frame. The Lorentz invariant quantity MM 2 is inde-
pendent of b. Thus the variational principle will
determine a and u and hence the wavefunctions.
The actual minimization of MM 2 is a lengthy but
straightforward calculation. Most of the energy inte-
grals can be evaluated analytically and we do them
using the symbolic package Mathematica. We find

m2

that u ,a™0 as ™0 recovering the purely va-2g̃

lence exponential solution. For a physically reason-
able value of m2 g 2; m2 L2 ;0.001, we esti-˜ u ,d QCD

mate us0.02 and as0.035. This corresponds to a
small but non-vanishing anti-quark content in the
baryon.

3.2. Leading order 1 N correctionc

As in the valence quark case, the leading 1 Nc

effect is to make these wave functions vanish beyond
psP. We estimate this correction using the ansatz
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˜ a b ˜ aŽ . Ž . Ž . Ž .Žc p s Dp 1 y p ,c p s D p p y D 1 yq q 1
b ˜ ˜. Ž . Ž .p for 1GpG0 and c p sc yp for y1Fpy

F0. Here Ps1 and for other ranges of p these
functions must vanish. D is determined by the1

orthogonality condition while D, D are fixed by theq
normalization conditions. For the choice Q2 s0

12 2 20.4 GeV , fs , m g ; .001, we get us0.02,˜2

as0.035, bs2.175 for the variational parameters.
The valence quark distribution is normalized to
Ž 2 .n Q s2.25 while the normalization of the anti-0

quark distribution is determined as a consequence to
Ž 2 . 2 2 y4be n Q sin u . Since sin u;10 , the primordial0

anti-quarks carry only about .01% of the baryon
momentum.

These results are identical to what we obtained
w xfrom a more field theoretic point of view in 9,10 .
w xThey also agree with the DLCQ analysis of 6 as

pointed out in Section 2.2. However, the parton
model point of view presented here is much simpler.

w xMoreover, the GRV collaboration 5 have obtained a
reasonably good fit to Deep Inelastic Data for x )B

10y2 starting with a vanishing anti-quark distribu-
tion at an initial Q2 ;0.2 GeV 2. Our approxima-0

tions are not expected to be valid for extremely low
values of the momentum fraction, where the assump-
tion that longitudinal momenta dominate, becomes
questionable.

Thus we find that the valence quark picture is
quite accurate: the ‘primordial’ anti-quark distribu-
tion is very small. The anti-quark content is zero not
only in the non-relativistic limit m4g but also˜
Ž .somewhat surprisingly in the chiral limit ms0

1when N™`, with corrections being small. Nev-c Nc

ertheless, a substantial anti-quark content is gener-
ated by Q2 evolution.

4. Comparison with experimental data

Finally, we compare with experimental data at
higher values of Q2. The DGLAP Q2 evolution
equation is integrated numerically. We set N s3,c

L s200 MeV and the current quark mass ms0.QCD

The parameters f ,Q2 should be determined by a best0

fit to experimental data. For now we assign to them
1 2 2reasonable values fs and Q s0.4 GeV which02

2 2 ŽFig. 2. Comparison of predicted xF at Q s13 GeV solid3
. Ž . 2curve with measurements by CCFR w at 12.6 GeV and CDHS

12 2 2 2Ž .l at 12.05FQ F14.3 GeV . Q s0.4 GeV and f s .0 2

are consistent with phenomenological fits to data.
Ž 2 .From the GLS sum rule we get n 0.4 GeV s2.25

w x4 . In Fig. 2, we show a comparison with xF3

measurements by the CDHS and CCFR collabora-
w x 2 2tions 12 at Q ;13 GeV . The small range 0.4F

Q2 F13 GeV 2 over which we are evolving justifies
the use of the leading order DGLAP equation. The
plot shows that our prediction agrees reasonably well
with the experimental measurements.
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