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For a class of large-N multimatrix models, we identify a group G that plays the
same role as the group of loops on space-time does for Yang—Mills theory. G is the
spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate
with correlations. G is the exponential of the free Lie algebra. The generating series
of correlations is a function on G and satisfies quadratic equations in convolution.
These factorized Schwinger-Dyson or loop equations involve a collection of
Schwinger—Dyson operators, which are shown to be right-invariant vector fields on
G, one for each linearly independent primitive of the Hopf algebra. A large class of
formal matrix models satisfying these properties are identified, including as special
cases, the zero momentum limits of the Gaussian, Chern—Simons, and Yang-Mills
field theories. Moreover, the Schwinger—Dyson operators of the continuum Yang—
Mills action are shown to be right-invariant derivations of the shuffle-
deconcatenation Hopf algebra generated by sources labeled by position and
polarization. © 2008 American Institute of Physics. [DOI: 10.1063/1.2940331]

I. INTRODUCTION

Quantum Yang-Mills (YM) theory is at the heart of the microscopic description of strongly
interacting particles. The group of based loops on space-time plays an important role in the
formulation of YM theory in terms of Wilson loops, which are gauge invariant variables contain-
ing much physical information.' Expectation values of Wilson loop observables are functions on
this group. Expansion around the multicolor limit is a promising approximation method to solve
YM theory.2 However, in the absence of a full-fledged differential geometry and analysis on the
space of loops, progress in understanding and approximately solving the multicolor limit of YM
theory has been partly held up despite important early work.”™

On the other hand, Hermitian multimatrix models may be regarded as toy models for YM
theory. The N X N matrices may be thought of as gauge fields at various space-time points, where
N is the number of colors. It is natural to ask whether there is an analog of the group of loops such
that multimatrix correlators are functions on this group. If so, can we interpret the factorized
Schwinger—Dyson loop equations (fSDE)" of a matrix model in terms of the differential operators
and products naturally associated with this group? Doing so may open up new perspectives and
approximation methods for the large-N limit of multimatrix models and YM theory.

In this paper we show that there is indeed such a group G associated with a large class of
multimatrix models. We construct it indirectly as the group of characters of the commutative

'"The fSDE are quantum-corrected equations of motion for a matrix model in the multicolor (large-N) limit. They are
analogous to the Makeenko—Migdal equations4 of large-N YM theory. N=3 in nature.
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shuffle-deconcatenation Hopf algebra.2 The latter is defined using the shuffle and concatenation
products and reversal of order of matrices in a correlator. These are analogous to pointwise
products of functions of loops, concatenation of loops, and reversal of loop orientation. In the
simplest case of a single matrix and real-valued characters, G is the multiplicative group of
nonzero real numbers. More generally, G is identified with the exponential of the free Lie algebra
(FLA). We develop the rudiments of differential calculus on G using algebraic operations in the
Hopf algebra. We find a large class of (formal) matrix models that can be formulated in terms of
this group. We show that their fSDEs are quadratic equations (in the convolution product) for a
function on G. Moreover, there is one equation for each linearly independent primitive element of
the Hopf algebra of functions on G. The Schwinger-Dyson (SD) operators, one for each linearly
independent primitive, are shown to be right-invariant vector fields on G. Thus, given a prescrip-
tion of which right-invariant vector field to associate with a given primitive, we can write down a
system of fSDE for any group. For the group of relevance to matrix models, this prescription is
encoded in the action. We find a large class of admissible actions and their SD operators, which
include the Gaussian, Chern—Simons, and YM matrix models as special cases. Finally, the SD
operators of the continuum YM action are obtained and shown to be right-invariant derivations of
the shuffle-deconcatenation Hopf algebra on a continuously infinite number of generators labeled
by space-time position and polarization. However, in the case of YM theory, we still need to pass
to a quotient of this Hopf algebra to account for gauge invariance and recover the group of loopss’6
(or need to gauge fix and introduce additional generators for ghosts7), before we can look for
physical solutions to the fSDE.

In Ref. 8 the fSDE were formulated as conditions for the extremum of a large-N “classical”
action (the Legendre transform of the entropy of operator-valued random variables). This view-
point applied to generic multimatrix models and also provided a variational approximation
method. Here we develop a quite different group theoretic formulation, which only applies to a
subclass of matrix models. The distinction is very roughly analogous to that between the generic
classical mechanical system and one whose configuration space is a group. However, due to this
restriction, we find additional structures which closely mimic those present in YM theory. We
wanted to study these structures since they form the basis for an approximation scheme for
multimatrix models proposed in Ref. 9. We hope our group theoretic formulation allows for a
generalization to more familiar groups, where solutions to the fSDE may be more easily found.
Our work continues the developments in the physics literature due to Migdal and Makeenko, """
Polyakov,11 Cyvitanovic et czl.,12 l.,l’13 Tavares,6 Rajeev et al.,14’8 and others, and
builds on our previous papers.g’7 There are of course other approaches to multimatrix models such
as those related to integrable models and algebraic geometry, see, for instance, Refs. 15 and 16.

By a A-matrix model'"*”"® we mean a statistical system whose variables are a collection of
random Hermitian N X N matrices A;, | <i<A with partition function Z=[dAe ™" 54 The inte-
gration is over all independent matrix elements. The action is the trace of a polynomial in the
matrices S(A)=tr S’A,;, where® S’ are the coupling “tensors” (see Sec. V, for examples). A; model
gauge fields at a collection of space-time points labeled by i and are N X N matrices in color space.
The action, measure of integration, and observables ®,=(1/N)trA; are invariant under the global
U(N) action A;— UA,;U". We are interested in their expectation values in the large-N limit, the
cyclic “gluon correlation” tensors,

Gambini et a

2Technically, G can be thought of as an analog of the group of generalized loops or extended loop group studied by
Tavares® and Bartolo er al.'* We also identify a subgroup of G which can be regarded as an analog of the smaller group of
loops on space-time, see Sec. III.

3Capitals denote multi-indices and repeated indices are summed, @ is the empty word. If I=i,i," i, then S'=5"1""n and
A,=A,-1A,-2~ ”Ain is a matrix product. 5§ equals one if /=J and zero otherwise.
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tr 1
G,=<;/A,>=hm fdAe‘N”SA)—A,, Gp=1. (1)

G, satisfy a closed system of fSDE, * conditions for the invariance of Z under infinitesimal non-
linear changes of integration variable. The latter are infinitesimal automorphisms of the tensor
algebra generated by A;, L)A ;= 5le1 The fSDEs, one for each letter i and word /, relate a change
of action to a change in measure

§/G, gy, = 5§1i’2G,1G,2. (2)

If we define A noncommuting sources &, we can form the generating series of correlators G(¢)
=3,G,&. Then the fSDE can be written S'G(£)=G(&€)EG(€). The SD operators

- 2 (n+1)Sljl]”DjnDjl (3)
n=0
are expressed in terms of left annihilation operators D; which satisfy D; §" = 5;15’2 “n or equiva-

lently, [D;G];=G ;. The linear term on the left hand side of the fSDE is classical, while the
quadratic term on the right hand side is a quantum correction, being suppressed by one power of
fi=1. However, both left hand and right hand sides are of the same order in 1/N. Juxtaposition on
the right hand side G(£€)&G(&), denotes the concatenation product (&1& ¢2=¢Nil2) However, left
annihilation does not satisfy the Leibnitz rule with respect to the concatenation product, so the
fSDEs are not differential equations in the usual sense. On the other hand, D; does satisfy the
Leibnitz rule with respect to the shuffle product of correlations, a fact that we w111 exploit in our
group theoretic reformulation. This property was also used to transform the fSDE into linear
differential equations for the shuffle reciprocal of G(&), at the zeroth order of an approximation
method proposed in Ref. 9. For more details on the fSDE, we refer to Refs. 8, 9, and 18. In this
paper we do not have anything to say about the convergence of matrix integrals. We only use them
as a formal device to generate the fSDE, whose structure we wish to investigate.

Il. HOPF ALGEBRA STRUCTURE ON CORRELATIONS

The space of based oriented loops y on space-time (up to equivalence under backtracking or
retracing) plays a basic role in the Wilson loop formulation of YM theory. This loop space forms
an infinite dimensional non-Abelian group, with successive traversal of loops as product vy, y, and
reversal of orientation 7 as inverse. The information in this group of loops can be encoded in the
algebra of (complex-valued) functions defined on it. Wilson loop functions W(y)
=tr P exp$A,(y(1)) ¥(t)dt [trace of holonomy of the gauge connectlon A ,(x) around the closed
loop y*(7)] form an adequate class of functions for this purpose. ! Since the underlying loop space
is a non-Abelian group, the algebra of functions has the additional structure of a commutative but
noncocommutative Hopf algebra (under suitable hypotheses, this is a general property of the
algebra of functions on any grouplg). The pointwise product is (W, W,)(y)=W,(y)W,(y), the
coproduct (AW)(y;,v,)=W(vy,7,) encodes the concatenation of loops, and the antipode (SW)
X (y)=W(¥) encodes the inverse. The product and coproduct define compatible algebra and coal-
gebra structures, while the antipode turns this bialgebra into a Hopf algebra. Up to some techni-
calities, the underlying group of loops can be recovered as the spectrum (group of characters) of
this Hopf algebra.lg’zs’6

For a matrix model we did not know the analog of the group of loops, but did notice a
bialgebra structure on correlators G, in connection with some approximation schemes for the loop
equations.9 We recall this bialgebra and then define a compatible antipode to obtain the shuffle-

*Factorization'® is the property <CI),1<I>,7- =@, =Gy -G,H+O(1/N2) as N— oo,
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deconcatenation Hopf algebra, which is the analog of the Hopf algebra of Wilson loop functions.
In Sec. IIT we extract the underlying group from this Hopf algebra. The shuffle-deconcatenation
Hopf algebra has appeared previously in other contexts.”'°

Let G(£)=2,G,& denote the generating series of multimatrix correlators in the large-N limit.
G(&) is an element of the vector space C((A)) of formal complex linear combinations of words &
in generators chosen from the alphabet A={&,1<i<A} consisting of sources &, one for each
matrix A;. The commutative shuffle product sh of two such series is (FoG)(&)=2,(F°G),&, where
(F°G);=2,-; xF;Gg- The sum is over all complementary order-preserving substrings J and K of
1. For example,

Physically, the shuffle product is the product induced on gluon correlations by the pointwise
product of Wilson loop expectation values ((W,W,)(y))=(W,(v))W,(7y)), when path ordered
exponentials are expanded in iterated integrals of gluon correlations in the large-N limit.” C((A))
with the shuffle product is the shuffle algebra on A generators Shy. The empty word 1 is a unit
element for sh, with 1eF=Feo1=F for all F € Sh,.

Concatenation is defined as &¢'=¢&", which extends linearly to (FG)(&)=F,G,£". Using the
inner product on C{{A)) for which & form an orthonormal basis (&,&’)=¢&", we can define the
adjoint of concatenation or the deconcatenation coproduct A=conc’ by (F,GH)=(AF,G® H). On
monomials, A&'= &) & ® & Tt is extended linearly to series AF=3, (F ;& ® €5, A is not cocom-
mutative, it mimics the coproduct on Wilson functions coming from concatenation of loops
(AW)(y1,v2)=W(y,7,). We showed in Ref. 9 that A is a homomorphism of sh. The homomor-
phism of sh, e:Shy— C which picks out the constant term, e(F)=Fg, is a counit. Thus
(sh,conc’=A,1,€) is a bialgebra, the sh-deconc bialgebra.

To turn this bialgebra into a Hopf algebra, we define an antipode S:C({A))— C({(A)) that
mimics the antipode (SW)(y)=W(%) on functions on loop space. On basis elements, let

(&)= (- 1)llg, (5)

where

iliz"'in=in"'i2il.
Extend it linearly to S(F,&)=3,(-1)/F;&. For example, S(£1723)=—&3201 This comes from com-
paring the expansions of W(y) and W(%) in terms of gluon correlations. For S to be an antipode it
must satisfy several conditions which are usually summarized in a commutative diagram (see Ref.
21.
(1) Tt must be a homomorphism of the commutative shuffle algebra. On basis elements, this is
the requirement S(&o&)=S(&)>S(¢') or equivalently,

> (- DKE=S S (e 6)

1=K =L

This is indeed true. Riffle shuffling two card packs (1,J) preserves the order of each. So reversing
the order of the result of the shuffle (each summand on the left hand side) is the same as reversing

the order of each card pack (I,J) and then shuffling them together (each summand on the right
hand side). The minus signs just come along for the ride; S would be a homomorphism even
without them.

(2) The next two conditions S(1)=1 and eS=¢€ are obviously satisfied.

(3) The most interesting requirement for S to be an antipode is its compatibility with decon-
catenation and shuffle (if C{(A)) were the algebra of functions on a group, these conditions would
follow from the property that the product of a group element with its inverse in either order is the
group identity),
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sh(S§® 1)A=sh(l ® S)A= 1€

or equivalently,

8 (Vg o K= 8 (- 1)Ko K= 8, forall I. 7)
JK JK 9]
Putting /=i;---i, these are the conditions
E (_ 1)p§ip---i1 o gip+1"'in _ 2 (_ 1)"‘P§i1"'ipo gin...ipﬂ - 5n0 (8)
p=0 p=0

We have not found any nice proof of this, although we verified it explicitly for n <3 and observed
a pattern of cancelations for higher » which leads us to conjecture that it is an identity. Cartier'”
mentioned that sh-deconc must form a Hopf algebra on general grounds, although we would still
like an explicit proof of (7). The minus signs in the definition of the antipode are crucial for this
compatibility condition to hold. In the sequel we will assume this condition is satisfied.

lll. MATRIX MODEL ANALOG OF THE GROUP OF LOOPS

The sh-deconc Hopf algebra we described is a commutative but noncocommutative Hopf
algebra, so it should be the algebra of functions on some non-Abelian group. Which group is it?
In the case of YM theory, the corresponding group is that of based loops on space-time. Remark-
ably, there seems to be an analog of this group for Hermitian A-matrix models. One might
speculate that it is a group built from U(N) or a free group on A generators (since the concatena-
tion algebra of correlations is the free associative algebra), but this is not the case. Rather, we will
construct it as the group of complex valued characters (also known as the dual or spectrum) of the
sh-deconc Hopf algebra. One might suspect that the analogs of loops are words in the generators
of the shuffle algebra; but words do not form a group in a simple-minded way. Nevertheless, we
will associate a family of group elements with each word and show that they form a subgroup of
the spectrum. In another direction, using a result of Ree and Friedrichs,”* we will identify the
spectrum with the exponential of the free Lie algebra (FLA).

Consider the set of real/complex-valued characters y of the shuffle algebra, which are not
identically zero. These are linear homomorphisms from the commutative shuffle algebra to the
complex numbers. Suppose F',G € Sh then

X(F° G) = x(F)x(G)
and for a,b e C,

x(aF +bG) =ax(F) + bx(G). 9)

It follows that y(1)=1 for all characters y. We will define a group structure on this set and call it
spec (Shy) or spec,. Suppose x(&)=x!. Then the complex numbers x/, which we call the character
coefficients, completely specify the character. For any F e Sh, y(F)=x(F,&)=F;x'. The y form a
dual space to the F e Sh, which justifies the upper and lower indices. We can also think of a
character as a formal power series x=x'&,. The identity is taken as the counit €:Sh— C defined as
€(F)=F, which is a rather trivial homomorphism. In terms of coefficients, €= 5'@. The product is
non-Abelian, in general, and is defined using A=conc’. So it encodes the monoid structure of
concatenation. More precisely, x#=(x® ¥)A, which is a map from Sh® Sh— C® C. Then we
identify C® C with C by multiplying the two components, to get a map Sh® Sh— C. On basis
elements,

(X)) = Sx (&) WES) = & x’ vk (10)

It is extended linearly to the rest of Sh. So the product of characters is just the concatenation
product of character power series. The formula for the product does not use the fact that characters
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are homomorphisms of shuffle. But we need the latter property to show that products of characters
are also characters. A=conc’ is a homomorphism of the shuffle product as are y and . Therefore,
x=(x® A is also a homomorphism of the shuffle product: (x¢)(F°G)=(x¢)(F)(x¥)(G). In-
deed, each side is equal to (we identify C® C with C)

(AF) (AG)k 1.y S XMy (11)

The inverse of a character is defined by composing with the antipode: x '=xS. S and y are
homomorphisms of shuffle and so ! is also a homomorphism, and hence a character

X (E) = x(S(&)) = (= Dy(&) = (= DIy, (12)

The conditions yx '=x"'y=e€ are precisely the same as the compatibility conditions (7) of the
antipode S with product sh and coproduct A. Indeed, using the homomorphism property of y, the
second equality in (12) and (7),

O0)(E) = Fyex(€)(= DFY(ES) = (= DKE o ) = () = el&). (13)

Similarly we verify that y~!y=e€ is equivalent to (7). Thus characters form a group. The shuffle
algebra is the commutative algebra of functions with pointwise product on the group of characters.
The value of a function F at the character y is obtained by evaluating the character on F: F(x)
= x(F)=x'F;. Moreover, (F°G)(x)=F(x)G(x) since x(F)x(G)=x(F°G).

We still need to find nontrivial characters. If y=x'& wants to be a character, ' cannot be
arbitrary. On the one hand, x(F)=F,x' may not converge, but we can consider polynomial F so
that the series terminates. On the other hand, y must be a homomorphism of sh, and this imposes
relations on the /. For polynomials F and G, x(F°G)=x(F)x(G) is satisfied if and only if x(&
o &)= x(&)x(&) for all 1,J, or equivalently

> =¥y forallLJ. (14)

1UJ=K

These conditions were called shuffle relations in another context.” They are the complete set of
conditions for y to be a character. In detail, the first few shuffle relations are

X@ =1, =X, X R = ik,
PV CL LIV N LTIV IV}

XM 5Tkl g il Gkl i K o (15)
For rank n=1 character coefficient tensors x'I""», there are [n/2] systems of linear shuffle rela-
tions [i.e., either %(n— 1) or n/2 according as n is odd or even]. The shuffle relations are hierar-
chical, in the sense that the rank of the tensors on the left hand side (/| +|/|) always exceeds the
rank of the tensors on the right hand side (|| and |J]). So we can think of these as linear equations
constraining the higher rank X in terms of the lower rank ones which appear quadratically as
sources on the right. This structure is reminiscent of the matrix model fSDE: $/1¥2G 1,10,
=6§1’4’2G,1G,2.9"8 Naively, we expect a large space of solutions to these constraints, since there
seem to be a lot more degrees of freedom in the ! than there are shuffle relations. In particular, the
X' are unconstrained. Regard x" as a matrix. Then its symmetric part is completely determined by
the x/, but its antisymmetric part §(x”~-x’) is not.

In the case of loop space, we can find examples of characters easily. For example, a loop
Y(t)g<,<; on space-time M defines a character of Sh(M), its value on an element of F e Sh(M) is
YF)=[ ,F, where the right hand side is the iterated “Chen” integrals’(’ of the linear combination of
tensor products of one forms. For example if F=a® B for a pair of 1-forms « and S, then
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1 f
Y(F) :f dtlf dfzai(y(h))ﬂj()’(lz))V(ll)y(fz)- (16)
0 0

For the shuffle algebra on a finite number of generators, we might imagine that the analog of a
loop is a word &; and define a linear functional on Sh by &(F)=F,;. However, this is not a character
since &(1)= 82, whereas for a character we must have x(1)=1. Although single words are in the
dual of Sh regarded as a vector space, they are not (with the exception of the empty word) in the
dual of Sh regarded as an algebra.

Regarding a character as a formal series y(&)=3,x'&;, we ask whether there are any characters
aside from the identity e. First, we show using the shuffle relations that there are no nontrivial
polynomial characters. Suppose  is one, of degree n—1. What this means is that yX=0 for all
words K of length |[K|=n=2, but with x’# 0 for some I of rank |/|=n—1. Then consider the
shuffle relation y(&o &) =x'x' which is the same as

> X*=x'x' (no sum on I). (17)

LIUI=K

The left hand side is equal to 0, since it is a linear combination of character coefficients of rank
2n—2=n. But the right hand side is not equal to 0 by assumption, a contradiction. So the only
polynomial character is the identity y=e. To find nontrivial characters, let us specialize first to the
case of a single generator.

A. Characters of the shuffle algebra on one generator Sh;,

For A=1, a character is a formal series y=2"_x,&" in one generator & The condition that it
be a homomorphism of sh is yy=1, and the following shuffle relations for each y,,n=1:

n
( )Xn=Xan—r for r=1,2,3,---,[n/2]. (18)

r

In more detail, y,=1, 2)(2:)(2, 6X4=X§’ 4x4=X1X3> IX5=X1Xs 10x5=Xx2X3, etc. The general so-
lution is a one-parameter family y,=(1/n!)x} for n=0. We write y=eX1%. In particular, there are
no polynomial characters. Moreover, if x; # ¢ then eX1¢ and ¢¥1¢ are distinct characters as they
have different coefficients in their power series expansions. The identity character is got by
choosing x;=0, in which case y=1. The product x¢ is the character whose value on monomials
is

XW(E) = 2 Xt (19)
r=0

(x¥)1=x1+1, so xi is the character eX1*¥1€ which agrees with the usual rule for multiplying
x=¢eX1¢ and =e”1¢. The product is Abelian, since we have a single generator. The inverse of y
=eX1¢ is y"'=e & We call the group of characters of Sh, as spec(Sh;) or spec, for short.
Although space-time has been reduced, in a sense, to a single point, spec, is a continuous Abelian
group parametrized by one real/complex number y;. Indeed we can even define a one dimensional
Abelian Lie algebra on the vector space {x,&|x; € C or R} with Lie bracket [x,&, ¢,&]=0. x
=eX1¢ is an exponential map from the Lie algebra to the group.

If we consider real-valued characters, then f:eX 65X’ is an isomorphism from spec; to the
multiplicative group of nonzero reals R*. For complex-valued characters, f is a homomorphism
from spec; onto C*, the multiplicative group of nonzero complex numbers. Its kernel is the
subgroup generated by the character €™, i.e., the subgroup {e>™"¢|m e Z}.

We think of the shuffle algebra Sh; as the commutative algebra of functions on the group
spec;. The value of F=F,&" at x is
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FO0 =X ZRE) =2, (20)
or equivalently

&(x) = x(&") = x,-

The shuffle product is the same as the pointwise product of functions on spec;, since characters are
homomorphisms of the shuffle algebra,

n+m n+m
(&0 &M =x(£"&") = ( i )X(S’”"') = ( i )Xn+m XoXm =" 008" (xX).  (21)

B. Group of characters of Sh,: Pure characters

We now discuss the group of characters of the sh-deconc Hopf algebra on A >1 generators.
Corresponding to the inclusions &—{&,,...,&\} we get A Abelian one-parameter subgroups of

1 2 ! 3 . .
spec (Shy), namely, eX & X8 X EA For example, the value of eX & on a basis element is

(eX3§3)(§’) 0 if 1=333...33 (n times) (22)

0 otherwise.

Call a character y pure if it does not mix the letters {£,, ..., &} i.e., /=0 if & contains at least two
distinct letters. The only pure characters are listed above. Equivalently, a letter gil from the

alphabet {&,, ..., &z} determines a 1-parameter family of pure characters X'Ey,

C. Mixed characters

A natural question is whether given a word &, it is possible to obtain a (family of) character(s)
associated to it? This would in a sense be analogous to associating the character of the shuffle
algebra Sh(M), [F with each based loop 7y on space-time where F e Sh(M).

Call a character y mixed if it is not pure, i.e., if there is a word & containing at least two
distinct letters such that y/# 0. Many mixed characters are obtained by multiplying pure ones.
Given a word &= §,~l§i2. ..gin and a sequence of complex numbers {x',...,x"}, we define a char-
acter via the product of pure characters [products of characters are characters (Sec. III)],

=X Xty oX'h, (23)

A word-sequence pair (&, )'(’) (& - & Ax' - x"}) determines a character. The inverse of y is also
of the same form, ¢ '=e¥ '6,eX 6, -+ eX'6 and satisfies = lﬂ‘lw—

Reduced form of word-sequence pairs: Given a word §,1 §, §, '§, and a sequence

O, LX), we define the reduced form of the palr I/f a pair of adjacent letters
coinc1de f, 5, then delete 5, and Xf and replace ¥ with ¥+ /! to get a new word
§ 5, §l " § and anew sequence X' XL+ XY, L. X" The resulting character is the
same as the orlglnal one. Moreover, if any of the numbers y; Vanlshes just delete it and the letter
flk. Proceeding this way, we get a word whose adjacent letters are always distinct and a sequence
of nonzero complex numbers (the one exception is if the word is empty). Such a word along with
its sequence of complex numbers is in reduced form. Of course, the length of the word is the same
as the length of the sequence. Two pairs (&, x) and (&, JJ) are equivalent if they have the same
reduced forms. Equivalent pairs correspond to the same character. For example, the reduced form
of the pair (&&,&,&,{i,—3,,0}) is (&¢&,,{i,7—3}) and corresponds to the character e'€e(™3)¢1
whose inverse is ¢®~™ée7é. A pure character eX & has reduced form (f,-l J{x'}) and the identity
character the reduced form (@ ,{}).
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We can multiply two characters corresponding to the words §il~ --§& and & a & ., ogeta
character corresponding to the concatenated word §i1'"§in+m and the concatenated sequence of

complex numbers x!, -+, x"*",

XXty X, X X X (24)

This product is maximally non-Abelian. Products of pure characters form a subgroup of the group
of characters of Sh,. This subgroup is the free product of A copies of specy,

Group of prod. of pure charac. = spec; X spec; X -+ X spec; (A factors). (25)

We know that the free group on n generators F,, is the same as the free product of n copies of the
integers F|. By contrast, we will see that spec; X spec; X - -+ X spec, is a proper subgroup of spec,,
at least if we restrict to finite products. It is interesting to know the appropriate topology for such
free products of continuous groups (spec; = R¥*, for instance). .

The exponential of any finite linear combination of generators X:e"] & is a character. To show
this, consider

. ‘1 , 1 .
X:eﬂgjzg()n_!xlléj]"‘X’”fjnzéﬁxll'“Xjnff]”'gf,,' (26)

The coefficients are symmetric tensors x/!" /n=(1/n!)}’!... x/» which must satisfy the shuffle re-
lations =x/=x'y’. Taking I=i,---i, and J=j, - +j,,, on the left hand side there are (";m) terms all
of which are equal, so

n+m

LHS = ( )Xil“’i,,jl‘”j,,lz Xil ...Xinle ---XirrlzRHS_ (27)

n n!'m!

eX'é is thus a character, but since §j do not commute it cannot be written as a finite product of the
pure characters. The inverse of y is )(‘1=e"‘l§i, which is also of the same form. Since products of
characters satisfy the shuffle relations, finite products of the form X=EX11§"I€X12.”§’.Z' X", form a
group which properly contains spec; X - -+ X spec, and is a proper subgroup of spec,. As before,
we can put any such product in a reduced form.

Exponentials of arbitrary nonlinear polynomials in the generators are not characters, in gen-
eral. For instance, it is easy to see that y=e“1*$1¢2 does not satisfy the shuffle relation x'>+ x*!
=x'x’. On the other hand, the Baker—Campbell-Hausdorff (BCH) formula tells us that eXie?é
= X EHV 12NV 161E.6]+ - Using BCH we can re-express the products of expo-
nentials occurring in the above subgroup of spec, as exponentials of linear combinations of nested
commutators of the generators &, Aside from x'&;, these will be certain infinite linear combinations
since the & do not commute. This suggested to us that exponentials of finite (or other infinite)
linear combinations of nested commutators of & may also be characters. While we verified this in
some simple cases, the calculations rapidly get laborious. So we were pleasantly surprised to find
this proven in the work of Ree” using a theorem of Friedrichs.” More precisely, linear combi-
nations of iterated commutators of the generators §; are called Lie elements. They are obtained
using the operations of taking Lie brackets [.,.] and linear combinations but not products such as
&&;. For example, C'&+CUM &, [, 11+ CM[&,&],[&.4]] are Lie elements for any tensors
C',CUk,C¥_ Ree proved that exponentials of Lie elements are the only formal series satisfying the
shuffle relations. In other words, the group spec, consists precisely of exponentials of Lie ele-
ments. This characterization will be useful since the SD operators of an interesting class of matrix
models related to YM theory turn out to be Lie elements. Now that we have identified the group
spec(Shy) which plays the role of the group of loops, we can formulate differential calculus on it.

Technically, the group of loops on space-time is a proper subgroup of a larger group of
generalized loops (in the language of Ref. 6) or extended loop group (in the language of Refs. 1
and 13). spec, is the analog of this larger group, while the group generated by pure characters is
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the analog of the smaller group of loops. Both in the space-time and matrix model settings, the
larger group behaves akin to a classical Lie group and appears to be the correct physical setting for
the fSDE. For instance, the SD operators of several matrix models can be interpreted as right-
invariant vector fields on the larger group, but not on the smaller one (Sec. V). Moreover, just as
the group generated by pure characters is a free product of A copies of spec,, the group of loops
is also a free product (free group generated by the based loops).

IV. DIFFERENTIAL CALCULUS ON THE GROUP G=spec,
A. Functions

By a function on the group G=spec, we will mean an element of the shuffle algebra F(&)
=F,&. Tts value at the character y=)'¢ € spec, is given by F(x)= x(F)=Fx. The ring of such
functions is the commutative shuffle algebra Sh, with pointwise product of F and G at y given by
the shuffle product =,(F°G),x’.

B. Vector fields and the Lie algebra of spec,

By a vector field V on spec, we will mean a derivation of the shuffle algebra, i.e., a map that
takes functions to functions V:Sh— Sh, that is, linear over the complex numbers and satisfies the
Leibnitz rule V(FoG)=VFoG+F°VG. This extends the concept of vector fields to settings more
general than differentiable manifolds.”* The derivations must form a left module over the shuffle
algebra as well as a Lie algebra over the ring of functions (i.e. FV must be a vector field and the
structure functions of the Lie algebra of vector fields must be in Sh).

From Sec. IIT C, a necessary and sufficient condition for y to be in G=spec, is that log x(£)
must be a Lie element, i.e., a linear combination of iterated commutators of &, ..., &,. The set of
Lie elements is closed under commutators and forms the free Lie algebra of rank A (FLA,). It is
a FLA since there are no relations besides linearity, antisymmetry, and Jacobi identity that are
satisfied by the commutator brackets. This is reminiscent of the exponential map from the Lie
algebra to a Lie group. So we expect the Lie algebra of right (or left) invariant derivations of Shy
(which should play the role of Lie algebra of the group spec,) to be isomorphic to FLA 4. We will
see that this is indeed the case.

In Ref. 9 we showed that linear combinations of iterated commutators of left annihilation D;
are derivations of the shuffle algebra, so they may be considered vector fields on spec,. We recall
why D; satisfies the Leibnitz rule: [D(F°G)];=[F°Gly=% ,;,~iF; G, Now either iel or i
el,, so

[Di(F-G))= 2 (Fir,Gr,+ F1Giy) = > ((DiF1;, G, + F1 [DiG]y)
LUl=I LUl=I

=[(D;F)° G];+[F° (D,G)];. (28)

Moreover, commutators of left annihilation do not satisfy any relations besides linearity, antisym-
metry, and the Jacobi identity. So iterated commutators of D; span a FLA of rank A. There is a
standard basis D(;, for the FLA, labeled by Lyndon words L. D(;) is a particular iterated commu-
tator of D,l_’s, where L=1,---1, is a Lyndon word (see Appendix A 1). So an element of the above
FLA of vector fields is written V= V%D(L), where V(LD are (real or complex) constants and the sum
is over all Lyndon words L. The value of such a vector field at the point y=x'& is the “tangent
vector” V% XQD(LF V%D(L), since y?=1 for a character. These “constant coefficient” vector fields
can be regarded as forming a subalgebra of the Lie algebra of spec,. For, by evaluating at the
identity y=g¢, they span a space of tangent vectors at the identity. We believe these constant
coefficient vector fields should be regarded as the whole of the Lie algebra of G. The structure
constants of the FLA of basis vector fields D, are denoted [D(L),D(M)]ZCZ wDP ), see Appendix
A 1, for examples.

A vector field V on a group is distinguished if it commutes with the action of the group on
itself by multiplication (encoded in the coproduct A on the Hopf algebra of functions). Roughly,

Downloaded 19 Jul 2008 to 129.234.4.1. Redistribution subject to AIP license or copyright; see http:/jmp.aip.org/jmp/copyright.jsp



062303-11  Matrix model analog of the group of loops J. Math. Phys. 49, 062303 (2008)

this means AV must equal VA. But that cannot be quite right since A:Sh— Sh® Sh, while
V:Sh— Sh, so we must specify whether V acts on the first or second slot. In fact, we must
distinguish the right action from the left action, which leads to the definitions AV=(V® 1)A and
AV=(1@V)A» Alternatively, let R, be the right translation by g on a group G and RZ and Rg* the

pull-back and push-forward maps. Then the push forward of a vector field V acts on a function f
according to R, Vf =RZ 1VR;< f- Now a vector field is right invariant if R, V=V or, in other words,

RZVf = VR; f for all f. But R: is the pull back induced by right multiplication in the group, and
multiplication in the group is encoded in the coproduct A in the Hopf algebra of functions on G.
This justifies the definitions of right and left invariant derivations by AV=(V® 1)A and AV=(1
®V)A.

If vector fields V and W are right invariant, then so is their product VW (although not a vector
field) and hence also their commutator [V, W] (which is a vector field, since commutators of
derivations are also derivations). To see this,

(Vo DA=AV= (V® 1)AW=AVW. (29)

Using the right invariance of W to re-express AW, this becomes

(Vo N(We NA=AVW & (VW 1)A=AVW. (30)

Thus right-invariant derivations form a Lie algebra, which will serve as a substitute for the Lie
algebra of right-invariant vector fields on the group G.

It remains to identify the right-invariant derivations in the case G=spec(Shy). We will show
that the constant coefficient vector fields V= VfDD@) are, in fact, right invariant. It is straightfor-
ward to check that D; is a right-invariant derivation,

(D;® 1)AG=(D; ® 1)G ¢ @ & =G ® &,
(31)
A(DG) = A(G,€) = Gi15§K§J ® & =Gt ® &.

By the previous result, we deduce that iterated commutators of D; are also right invariant. For
example, [[D;,D;],[Dy,D,]] and [D;,[D;,D,]] are right-invariant derivations. Moreover, the con-
dition AV=(V® 1)A is linear in V, so real/complex linear combinations of iterated commutators of
D; are also right invariant. In other words, constant coefficient vector fields V= V%D(L) are right
invariant on G. In particular, the SD operators S'=4¢%¢/[D;,[D;,D;]] of YM matrix models with
action S=tr g’g/[A;,A i[Ay.A,] are right-invariant vector fields (see Sec. V).

A more general derivation of the shuffle algebra is obtained by allowing nonconstant coeffi-
cients (elements of Sh), V= VL(§)D(L)=Vf§1D(L). V acts on a function as VF= VL(§)°(D(L)F (8).
The derivation property follows from that of D(;) and commutativity sh),

VHED)(Fo G)=VHE(DyyF e G+FoDyG)=VF°G+F°VG. (32)

Thus, we can think of V= VL(§)D(L) as a vector field on the group G=spec,. These derivations of
Sh form a left module over the ring of functions on spec,: shuffle multiplying a derivation
VL(§)D(L) on the left by a function F(&) gives another derivation {F (§)OVL(§)}D(L).

It is interesting to know whether there are any more derivations of the shuffle algebra; these
seem to be adequate for us. We call the space of variable coefficient derivations Vect(G). In a
sense, the D ;) form a globally defined moving frame so that the tangent bundle of G is trivial, i.e.,
spec, is parallelizable just like any Lie group. Vect(G) forms a Lie algebra with Lie bracket (all
products are shuffle products),

[V,W]=(VWHD) = (WVED ) + ¢} VEo WDy, (33)

Here VW" is the action of the vector field V on the function W-(&), VWE=VM(&)oD ,, WH(£). We
used the fact that D, satisfies the Leibnitz rule with respect to sh. This is the analog of the
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formula for Lie brackets of vector fields on a manifold [v,w]=v'dw/d,—w'd/d;. D(;, play the role
of d;, except they do not commute.

The value of vector field V= VL(§)D(L) at y € G is obtained by evaluating the coefficient
functions on the character y, to get a tangent vector VILXID(L). In particular, the value of a vector
field at the group identity x'= 81® is the tangent vector V%D(L). Thus the space of tangent vectors
at the identity is the same as the space of constant coefficient vector fields, which we have also
observed to be right-invariant vector fields. Their Lie algebra is isomorphic to FLA,; we are now
justified to think of it as the Lie algebra of the group G=spec,.

We argue that the nonconstant coefficient vector fields V cannot be right invariant. Suppose
there were a right-invariant V, with V,L # 0 for some nonempty /. V as well as the distinct right-
invariant vector field with constant coefficients V%D(L), both evaluate to the same tangent vector
at the identity: V%D(L). However, there should be a unique right-invariant vector field on G that is
obtained by right translating the tangent vector V(LZ)D(D, and the constant coefficient vector field
V%D( 1) serves that purpose. So V could not be right invariant. We would still like a combinatorial
proof that nonconstant coefficient vector fields cannot satisfy AV=(V® 1)A.

C. One-forms

A one-form is a linear function from Vect(G) to Sh. The dual basis of one-forms @ is also
labeled by Lyndon words L. On basis vector fields, GL(D(M))= 5%,, Extended linearly to Vect(G),
G“(VM(E)D ) =VH(£). A general one-form w=w;(£)#" is a linear combination of the basis 6 with
coefficients coming from Sh. Although D(;) was defined (Appendix A) through iterated commu-
tators of left annihilation D;, we have not built #“ from #. The exterior derivative of an element
of the shuffle algebra is a one-form defined by its action on vector fields,

dF(VH(ED) = VH(E) o DF. (34)
From this we can read off that if dF=(dF); 6", then the components (dF);=D;)F.

D. Differential calculus on spec;

Let us illustrate the above formalism in the simplest case of one generator. The spectrum of
the shuffle algebra on one generator consists of the exponential series y(&)=2,=0x,&" with x,
=(1/n!)x}. Functions on spec; are elements of the shuffle algebra F=F,&" with the value F(y)
=3,=0F X DE=&"" is the only left annihilation operator and its commutators vanish. So the
Lyndon basis of the FLA on one generator is just D and it is an Abelian algebra. Moreover D is
right invariant since

ADg'=Ag = X fed

p+g=n—1

and

DeDAE=Del) X o= &'l (35)
p+q=n p+q=n
are equal. The general vector field is V=V(§)D, where V(§)=2,-,V,£&" and it is right invariant if
and only if V() is a constant. V restricts to the tangent vector ,-,V,x,D at the point y on the
group spec; and to the tangent vector VD at the identity.

The one-form dual to the vector field D is 6 with #(D)=1. The general one-form is
=w(£)6. The value of w on the vector field V(&)D is the shuffle product w(V)=w(&)oV(§). The
exterior derivative of a function is dF=(DF)6 and for a monomial, d¢"=&"'6. The one-form w
restricts to the covector 2,~,w,x, 0 at the point x and to the covector w,6 at the identity.
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V. fSDE on G=spec,

We found the group spec, that plays the role of the group of based loops and identified the
rudiments of differential calculus on it. Now we would like to formulate the fSDE of matrix
models in terms of spec,. This may indicate how to generalize the fSDE to groups we are more
familiar with, and thereby provide more insight into their solutions. The fSDE S'G(¢)
=G(&)EG(&) are a system of equations for the moment generating series G(£€)=G,&. G(£) is an
element of the shuffle algebra or, equivalently, a function on the group spec,. S’ are called the SD
operators. The only a priori conditions are that G must evaluate to 1 at the group identity y=¢€
(i.e., Gg=1), the coefficients G; must be cyclically symmetric and satisfy the reality condition
G=Gj. These follow from the physical requirements of normalization of expectation values
((1/N)tr1)=1, cyclicity of the trace G,=limy_,..{(1/N)trA;) and reality of the matrix model action
S(A). Tt will be useful to keep the Gaussian (G), Chern—-Simons (CS), and Yang-Mills (YM)
(g”=g'") examples in mind,

1

2V=-1k

1 N .
SG=5tr CUAA;,  Scs= tr € AA A, Sym=g"gTALATALA). (36)

They are the zero-momentum limits of corresponding field theories. Their SD operators are’

Si=CUD;, Shg=\-1kéMD,, D], Syy=4g*g"[D,[DD]]]. (37)

There is one fSDE for each letter &. But what does a letter mean in terms of the group? We
noticed that letters are primitive elements of the commutative Hopf algebra of functions on G.
Primitive elements P are those that satisfy AP=1® P+P® 1, where A=conc’ is deconcatenation,
which is not cocommutative. [In other words 7A # A, where 7(F ® G)=G ® F reverses the order of
factors. Note that this is distinct from the Poincare—Birkhoff—Witt construction where the primi-
tives of a cocommutative Hopf algebra form a Lie algebra whose universal envelope is the Hopf
algebra.] On monomials, A& = 6;,(51 ® & Let us show that the only primitive elements are linear
combinations of letters &, 1 <i<A. For an element P(&)=P,& of the shuffle algebra to be primi-
tive, we need P& @ &=P&€®1+1® P,;&. This is equivalent to the requirements Py=0 and
2 k+oP k€ ® &=0. Since & ® & span a basis for Sh® Sh, these conditions are satisfied if and
only if Pyz=0 and P;=0 for |I|=2. In other words, linear combinations of letters are the only
primitives. So if we pick any basis for the vector space of primitives (such as the letters them-
selves), we will have one fSDE for each basis element. This is again consistent with the fact that
we could rewrite the fSDE as w){SiG(§)=G(§)M){§iG(§) for any nonsingular A X A matrix w; This
characterization in terms of the primitives of the Hopf algebra of functions on G applies to any
group.

The right hand side of the fSDE G(£)&G(£)=GyG," involves concatenation. It can be
understood in terms of the convolution product of functions on the group G. Given a non-Abelian
group G, there are two natural dual Hopf algebras associated with it,' the commutative algebra
CC of complex functions F(g) on it with pointwise product (FG)(g)=F(g)G(g) and the noncom-
mutative  group algebra CG={Z,_gF(g)g} with convolution product (FG)(g)
=3, .6F(h)G(h™'g). The coproduct of the first becomes the product in the second and vice versa
using the duality (X, gF(h)h,G)=2,.cF(g)G(g). In our case G=spec,, sh-deconc is the com-
mutative Hopf algebra whose coproduct A is deconcatenation. The dual Hopf algebra conc-
deshuffle is the convolution algebra of functions on G, whose product is concatenation (FG),&
=F,Gx&'¥ and coproduct is deshuffle A’F=F, ,& ® &.° Thus G(9EG(H)=GyG,EM is the con-
volution of G(&) with the primitive element & convolved again with G(£). This formulation again
applies to any group.

For each primitive element &, the left hand side of the fSDE is the SD operator ' acting on
the function G(&) on the group. In the Gaussian, CS, and YM examples (37), S’ is a complex-
linear combination of iterated commutators of left annihilation. Let us restrict attention to models
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where this is the case. Then from our discussion in Sec. IV B, we conclude that S’ are right-
invariant vector fields on G. For this we think of the right-invariant vector fields (or Lie algebra of
G) as represented linearly on the space of functions on the group.

So far, we formulated practically everything in the fSDE in terms of concepts that generalize
to any group, without reference to matrix integrals. It only remains to specify which right-invariant
vector field S’ to associate with a given primitive element &. For this we need additional data
beyond the mere specification of a group G. At present we do not have such a prescription that
applies to an arbitrary group, but have a rough idea. The additional datum is the specification of an
action, which should be an appropriate real-valued function on the universal envelope of the Lie
algebra of G. The prescription is the passage from action to SD operators, which involves differ-
entiating the action along some vector fields. However, even for the group spec, of relevance to
matrix models, we only gave three examples (36) of actions leading to SD operators which are
right-invariant vector fields for each primitive. Moreover, we know that many actions do not lead
to SD operators that are right-invariant vector fields on G. Among one-matrix models, the Gauss-
ian S(A)=c tr A? is the only one that has a right-invariant vector field S=2¢D for its SD operator.
The quartic action S(A)=tr A* has S=4D?, which is not even a vector field on spec; (see Sec.
IV D). So we postpone a general characterization of admissible actions and their passage to SD
operators, which would apply to any group. Instead, we seek more examples of matrix model
actions whose SD operators are right-invariant vector fields on specy.

The matrices A; of a matrix model do not satisfy any relations in the large-N limit. So they live
in the full tensor algebra or free associative algebra on A generators, which is the universal
envelope of the FLA. A matrix model action S(A)=tr S’A; specifies a real function on this univer-
sal envelope, and we define S(G)=S’G, with cyclic §/ and G,. The SD operators S’ are obtained
from the variation of the action under the infinitesimal automorphisms of the tensor algebra oA
=LA;= SJ-A - Ly are vector fields on the space upon which the free associative algebra is the algebra
of functions.*’ Their action on G, is LiG,=8)"G 1,17,- Applying L; to the action [|J] is the length
of the word J and J is the reversed word; cyclicity of $/ and G, are used in the fourth equality; D;
is left annihilation, (D;G),;=G;;= (D;D;G);=Gy;y, etc.],

S'G(&) = €L(S'G)) = €' 8)G, 1y, = €5"12G, 1y, = 2 |Ji|SVG € = 2 il S (D;G) €.
J1 J1

(38)
From this we read off &' (which are not right-invariant vector fields, in general),
S'= 2 JilS"Dy= 2 (n+1)SU D, -+ D; . (39)
J n=0

We would like to know which actions lead to S that are linear combinations of iterated commu-
tators of D;s, i.e., Lie elements. Linearity of the passage from S(A) to &' implies that it is
sufficient to work with actions that are homogeneous polynomials of degree n for each n
=2,3,4.... One difficulty is that actions are usually presented, for example, in the form S(A)
=tr C™*A[A;,A;], where CY% are not cyclic. It takes some relabeling to transform to S(A)
=tr SU*A,;, with cyclic coupling tensors S%, in terms of which the SD operators are expressed in
(39). The other difficulty is to identify those actions for which (39) can be rewritten as a linear
combination of iterated commutators. In what follows we carry out this program in part and
identify a class of actions that lead to &' which are Lie elements.

Quadratic. The most general quadratic action is S,(A)=tr CYA,A ;- The cyclic coupling tensor
is Sg:%(Cij+Cj"). By (39), §'=25YD;=(C"+C")D;. In other words &'=(C"+cyclic)D; are Lie
elements for all i, i.e., right-invariant vector fields on the group spec(Sh,). Formally, this holds for
arbitrary tensors C¥, although we must impose the reality condition $¥=$/" and ask that S¥ be a
positive matrix to ensure that the matrix integrals converge and lead to correlators satisfying G;k
=Gy In the sequel, we will largely work formally and suppress these reality and positivity con-
ditions.
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Cubic. The CS action (36) can also be written as S(A)=(\V—1x/3)tr €*A[A;,AL]. Motivated
by this, we consider the cubic actions S3(A)=tr C*A[A;,A,] for arbitrary C’¥. Writing this in the
form S=tr(C*—C™)A =tr S¥*A; ensures that the coupling tensor Sik=3(CUM + cyclic) is cy-
clically symmetric. (The notation CUK=CU*—C™.) We get S'=3S"*D,D;=(C*+cyclic)[Dy,D;]
which are Lie elements. S’ is more easily expressed in terms of CV¥, but the reality conditions are
simpler in terms of the coupling tensors (S7¥)* =Sk,

Quartic. What is the appropriate generalization to higher degree polynomial actions, such that
&' remains a Lie element? In Ref. 9 we showed that the Yang-Mills type of quartic action Sy
=tr g™*g/[A;,A;l[A.A]] leads to the SD operators Sy =4g"*¢/[D;,[D;,D;]] which are Lie ele-
ments. However, explicit calculation indicates that the more general S(A)=tr BVX[A; A AlALA)]
leads to SD operators which are not Lie elements for some BY*. On the other hand, a quartic
generalization of the CS action is S,=tr C'¥A[A;,[A;,A/]]. Furthermore, the YM action is a
special case of this. Using cyclicity of the trace, '

tr g*¢"ALANARA] = tr g%¢M(A iy — Aiany) = tr 8 87 A[AL[ALAT] (40)

Thus S, reduces to Syy if C¥¥=g*g/!. This motivates us to check whether the SD operators
corresponding to S, are Lie elements for arbitrary C/¥. Write S, as

S4(A) = tr C™M(A 5y — A — Ay + Augj) = tr(CU - Cil[jk])Aijkl (41)

and define SU¥'=CUMI_ i, Then S,=tr S¥A;;, where the coupling tensor S’H=7(SiK
+cyclic) is cyclically symmetric. Using (39) we read off the SD operators S'=(S7 '+ cyclic)Dy;.
After a lot of relabeling and simplification they can be written as Lie elements S'=(C/
+cyclic)[[D;,D;],D;]! Thus in a sense, Sy=tr C'A[A;,[A;,A/]] is the proper generalization of
Sym While preserving the property that &' be right-invariant vector fields.

Quintic. We begin to see a pattern to a class of actions that lead to SD operators that are Lie
elements. Ss=tr CY*"™A[A;,[A;,[A;,A,,]]] is the obvious quintic candidate. After some relabeling,
we find

Ss(A) = trSTMmA s (42)
where
§ijk1m — Cijk[lm] _ Cijm[kl] _ Cimj[kl] + Ciml[jk],

so that the cyclic coupling tensor is S’:"kl’"=§(§"jk]’”+cyclic) and Ss=tr ST™MA . L= (Sikim
+cyclic)D,,; after some simplification become
S5 = (CVH" + eyclio)([[D,. D). DD, (43)

which are Lie elements. While the relation of C/%" to cyclic coupling tensors S7¥™ is nontrivial,
the SD operators are simply expressed in terms of CYk",
Sixth degree. For the sixth degree action Sg(A)=tr C¥*""A[A;,[A;,[A.[A,,,A,]]]], the cyclic

coupling tensor turns out to be SV =& (SUkm 4 cyclic), where

§ijklmn — Cijkl[mn] _ Cijkn[lm] _ Cijnk[lm] _ Cinjk[lm] + Cijnm[kl] + Cinjm[kl] + Cinmj[kl] _ Cinml[jk].
(44)

The corresponding &'=(C7*m 4+ cyclic)[[[[D,.D,,],D;],D;],D;] are again Lie elements.
Conjecture. Based on these examples, we conjecture that the nth degree polynomial action

Sp(A) =t C A [A A L[4 A T+ 1] (45)

has SD operators that are the Lie elements,
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S} =(C it eyelio)[-+[[[D; ,D; _1.D; ,1.D; 11D ]. (46)

n-3

We have exhibited a large class of matrix model actions (generalizing the Gaussian, Chern—
Simons, and Yang-Mills ones) whose SD operators are right-invariant vector fields on G. But it
may not be an exhaustive list. We have not found the most general Lie elements &' that arise as SD
operators of some action nor the class of all such actions. Finally, this process must be generalized
to other groups; we hope to return to these questions later.

VI. SD OPERATORS OF YANG-MILLS THEORY

Now we illustrate the above framework with the example of Yang—Mills theory. Instead of A
matrices A;, we now have the gluon field, one matrix A, (x) for each space-time point x, and u
=1,...,d where d is the space-time dimension. The sources & are replaced by &*(x). We obtain the
fSDE in terms of gluon correlations and write the SD operators S*(x) (53) as constant linear
combinations of iterated commutators of left annihilation D #(x). [Constant coefficients must be
independent of the sources &*(x), but could depend on x and u which now play the role of the
indices i,j,k of matrix models. Coefficients will be differential operators.] It follows (from Sec.
IV B) that the SD operators of Yang—-Mills theory are right-invariant derivations of the shuffle-
deconcatenation Hopf algebra generated by the sources &“(x). However, our formulation is far
from complete. The fSDE obtained here must be supplemented by gauge fixing and ghost contri-
butions for a proper treatment of gauge invariance before we can look for physical solutions. In
Ref. 7 we have indicated how to incorporate gauge fixing and ghost terms in the context of matrix
models. Mathematically, this means the shuffle-deconcatenation Hopf algebra generated by &*(x)
needs to be modified. This could be done either by adding generators corresponding to ghosts or
by passing to the quotient by an ideal as in Chen’s work” (see also Tavares®). Only then can we
recover the group of (generalized) loops via the spectrum of the Hopf algebra. We hope to return
to these issues in future work, but restrict ourselves here to the pure Yang—Mills action,

1 . o & ,
S=tr f d {EaﬂAV(aﬂAV— J"A¥) —igd A JA*,A"] - Z[A,L,AV][A”,A ]}. (47)
To get the SD equations, make the change of integration variable,

AL x) = AL (x) =A,(x) + f v ey e x)Ay () Ay ()dig e dx, (48)

in the Euclidean functional integral Z=[dAe™5. v are infinitesimal tensors and we work to linear
order in them. This is not a local change of variable, but it is not disallowed by any law of physics.
If S is the change in action, the SD equations relate it to the change in the measure in the sense

of expectation values
oS 1 dA’
— )=\ det\| —|-1¢ /. (49)
N N A

As in Sec. I, in the limit N— oo, the factorized SD equations can be written as

SMx)G(&) = G(E"()G(§),

where

Go= 3 f [dX]G e (610 ) E41(x)) -+ ()
M1y

and
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. tr
Gm"'ﬂn(xl’ LX) = Alllfjo< X,Am(xl) o 'A;Ln(xn)> . (50)

The generating series of gluon correlations G(€) is an element of the shuffle algebra generated by
&(x) ([dx]=dx," - -dx, where dx; is the volume element of space-time). To get the right hand side
of the fSDE in (50), we need the Jacobian [hatted variables (e.g., dy;) are not integrated] J
=(det(JA"/5A)),

J=1+N? J dx[dx]dyl d)A’k ces dynvﬁl"'”"(x;xl ...xn)b‘;ll'.'.'.‘;f—llivkﬂ'"Vn

X 8(xy = yp) * 0oy = Y1) Ot = X) Oy = Yirt) * + 8(x, = v,)

X<%Avl(yl) . 'Ayk_l(yk—1)><%Avkﬂ(ylﬁl) o 'Avn(yn)> ’

J-1
N2

= [dXJE UZ:“M"(kal "'Xn)G,,,lm,Lk_l(xl o 'Xk—l)GMMmMn(XkH X)) (51)
k=1

The infinitesimal change in action (8S/N) is also linear in the arbitrary tensors v. Equating the
coefficients of common tensors v leads to the fSDE S*(x)G(€) =G (&) &4(x)G(£), where the product
on the right hand side is concatenation. Let us define left annihilation D H(x) (distinct from the
covariant derivative) by its action on correlations,

(Du(x)G)Ml---u,,(xl’ ce LX) = G/wl“'u,,(x’xl’ R (52)

Then the SD operators are (square brackets denote antisymmetrization)

S™(x) = d,d* D "'+ ig{a,[D*. D]+ [d” D “.D,]} - ¢’[D",[D*.D,]]. (53)

For example, let us show how S*(x) for the three-gluon term Sy=—ig tr [dxd,A,[A*,A"] is ob-
tained. The change in S5 is (below [dx] stands for dxdx,- - -dx,)

853 =—1ig trf[dX]ﬁ,L(vﬁl"'“”(X;xl"'xn)A,L](XO'"A,Ln(xn))[A"(x),AV(X)]—ig trf [dx](3,A,(x))

X0t (i 5)AR () - APa(x,) AY)] - g tr f [dx)(d,4,(x)

XTAR(2).0), oy (6501 2 )API) - AP, (54)

Integrating by parts in the first term we isolate the same v factor in all terms,
oS3 =ig tr f [dx]oy, ..., (rixy oo x,) ARy - An(x,) 9, [A%(x),A,(x)]
~igtr f [dxJo, .., (rixy == 2, (@A, A () -+ A1 (x,) A*(2)]

~igtr f [dxol, ., (g 5, (A OAH() AR () - Af(,)). (55)

We are interested in (8S3/N). Before taking expectation values, we should pull J, and other
coupling tensors to the left, while adding additional variables to ensure that derivatives act only on
the appropriate fields. This ensures everything can be expressed in terms of gluon correlations,
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853 =188, trf [dx]o,, ..., (eix1 7+ x,) 3,041 (x,) - -+ AFa(x, )[A*(x), AP(x) ]}
- lggp,u tr J [dXdy]U;,l . -,un(X;xl T xn) 5()( - y)(?’;{AP(x)[A:ul(xl) e A'u"(xn)’AM(y)]}

—igg,,tr f ldxdylvy, ..., (xix; =" x,) 8x = y) 3 {AP(0)[A*(y),A#1(xp) - A¥n(x,) T}

We take expectation values and use cyclicity to move u---u, to the right. This facilitates re-
expression in terms of left annihilation. Moreover, we omit the common factor v and the integra-
tion over x,x;---x,, since this facilitates identifying the SD operators

oS
<73> o iggpv(;r;(;[#p]m-~,un([x,x],x1 cex,) + i88pu J dyﬁ(x_y)O'r’]‘/G[PM],U-]"-/J.,,([x’y]’xl e x,)
+ iggpvf dyolx - y)ﬂzG[Mp]“"”“”([y,x],xl CX,) = igng&Z([DP,D#]G)M"un(xl e x,)
+i88pu f dy8(x = y)d,([D*(y), DP(x)JG)H1" Fn(x, - - x,,)

+ iggp,,f dy 8(x = y) 3, (LDP(x),D*(y) JG)#1 Fn(xy - -+ x,,). (56)
We read off the SD operators of the three-gluon terms in the Yang—Mills action,

S¥(x) = ig{a,[D*,D"] + [¢"D* — #*D",D,} = ig{d,[D*.D"] +[d* D ¥ D, ]}. (57)

Similarly, the SD operators of the quadratic and four-gluon terms in the Yang—Mills action (47),

1 2
S, = S J d'xd,A (PAY - 'AM), S4:—gztr f dx[A A J[A*,A"],

are

SH(x) = 3,(*D" - 9"D*) = 9,d* D ")

and

Si(x) = - g¢"*¢"’[D,.[D,.D,]]= - g’[D".[D*.D,]]. (58)

S, contains no derivatives that need to be treated with care when identifying coupling tensors. So
Si(x) can be read off from the commutator-squared YM matrix model of Eq. (37). This completes
the proof that SD operators of YM theory are right-invariant derivations of the sh-deconc Hopf
algebra generated by &“(x). This holds independent of space-time dimension. However, due to
local gauge invariance, YM theory is more than a matrix field theory. Gluon correlations are not
gauge invariant. Physically, we are interested in certain (limits of possibly infinite) linear combi-
nations of gluon correlations that are gauge invariant, such as Wilson loops or polynomials in the
field strength and its covariant derivatives. Furthermore, we must gauge fix and introduce addi-
tional sources for ghosts, which will also contribute to the fSDE. Mathematically, we must pass to
a quotient of this Hopf algebra by an ideal,™® before its spectrum is the group of (generalized)
loops. We hope to address these issues in future work.
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APPENDIX A: LYNDON WORDS AND RIGHT STANDARD FACTORIZATION

The SD operators of many interesting matrix models are elements of the free Lie algebra
(FLA). We identified the FLA with the Lie algebra of right-invariant vector fields on the group
G=spec,. To work with these vector fields it is useful to have a basis. Lyndon words introduced
by Lyndon26729 are interesting since they label a basis for the FLA. There are other bases for the
FLA, such as the Hall basis.”® To be self-contained, we summarize some facts (without proofs)
about the Lyndon word basis for the FLA.

Suppose we are given the alphabet &', ..., & with the order &' < & < --- <&, There does not
seem to be any physically preferred choice for an ordering of the letters. We extend the order on
letters to the alphabetical or lexicographic order on all words in the alphabet. For example, £'&
<EE and SEE<LEEE. If €< we say & precedes ¢. (If I=iyiy---i, we abbreviate
1. gnas @ For brevity we will sometimes talk of the word L when we mean the word &-. For
instance, /<<J really means & <¢.) A Lyndon word is one which is strictly minimal among its
conjugates. Conjugates are words related by cyclic permutations; the conjugates of the Lyndon
word E'&& are £E& and E¢'E€. Tt follows that Lyndon words & must be primitive, i.e., cannot
be written as (&Y)" for some word & and n=2. In particular, a Lyndon word must be aperiodic,
since otherwise it would equal one of its nontrivial conjugates. Equivalently, a word is Lyndon if
and only if it precedes every nonempty proper right factor. That is, & is Lyndon if and only if for
any factorization &=&¢V with & and & nonempty, we have & < &". Letters are automatically
Lyndon words. Lyndon words of length two are && with &< &. There is also a recursive char-
acterization of Lyndon words: & is Lyndon if and only if there exist Lyndon words & and &' such
that &7 <& and &=EEN, Of course, there may be more than one choice of M, N that do the job.
The number of Lyndon words of length n over an alphabet of cardinality A is given by Witt’s
formula,

A =~ S p@)A™,

7 g

where the Mobius function

0, if d has a repeated prime factor
u(d) =11, ifd=1 (A1)
(- DX, if d is a product of k distinct primes.

For example, the numbers of Lyndon words of lengths 1, 2, and 3 are given by I(1,A)
=A,12,A)=3(A%=A), and I(3,A)=3(A*-A).

The right standard factorization of a Lyndon word L,|L|>1 is the unique factorization L
=MN, where M and N are Lyndon words such that N is of maximal length. In particular, M must
be of length at least one. It follows that M <L=MN<N. For clarity we will denote the right
standard factorization by L=M-N. For example, &!&=¢". & and £'88=¢18- 8.

1. Lyndon word basis for FLA

We will specify a basis labeled by Lyndon words, for the FLA generated by left annihilation
D;,1<i=<A. The FLA consists of linear combinations of iterated commutators of D;. Here we are
implicitly thinking of the FLA as embedded in the free associative algebra generated by D;.
Elements of the FLA are called Lie elements or Lie polynomials. A Lie element has a definite
degree d if it is a homogeneous polynomial of degree d in the free associative algebra. Finding a
basis for the FLA is complicated because antisymmetry and the Jacobi identity relate many
different Lie elements. This problem was solved”’ using the right standard factorization of
Lyndon words. The basis elements will be called D(;), where & runs over all Lyndon words. D,
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is a certain iterated commutator of D,’s, where & are the letters of the Lyndon word &. We use the
notation D; to distinguish this iterated commutator from the word D 1=Dy... =D, D which is
not a Lie element for n>1.

Letters & are Lyndon words, and the corresponding degree-one basis elements are D;, which
are independent by definition. Given a Lyndon word L with right standard factorization L=M - N,
we associate the recursively defined Lie element, D(;)=[Dy),Dy)], with the Lyndon word L. To
express Dy as an iterated commutator of left annihilation operators, we need to apply this rule
recursively until M and N are both single letters. The degree of the basis element Dy is equal to
the length |L|. D(; is not defined when L is not a Lyndon word, although it is sometimes conve-
nient to define D;)=0 if L is not Lyndon.

The Lyndon words of length two are &&,i<j. Using the right standard factorization &¢&
=& & for i<j, we get the Lyndon basis D;,=[D;,D,] for i<j. There are clearly %(Az—A) of
these basis elements. The restriction i <j is explained by the antisymmetry of the commutator. For
an alphabet of two letters (A=2), there are two Lyndon words of length of 3. Their right standard
factorizations are

Fe@=¢. 48 wih ¢ <geg<dg,

and

gee=¢8.8 with & <eee<g. (A2)
The corresponding Lyndon basis elements are D(yj=[D,,[D,,D,]] and D )=[[D;,D,],D,].
We see that after accounting for antisymmetry and the Jacobi identity, there are only two inde-
pendent Lie elements of degree three for a two letter alphabet. For an alphabet of length A=3,

there are eight Lyndon words of length of 3. Six of them involve only two of the letters each and
can be obtained from the previous example. We list the eight Lyndon basis elements,

[Dla[DhDZ]]’ [[DlaDZ:l’DZ]’ [D]’[DI’DSJ]’ [[D17D3]3D3],
(A3)
[DZ’[DZ’Df%]]s [[DZ’DS:LD3]’ [D]’[DZ’DS:H, [[DI’D3]’D2]~

The right standard factorization of the corresponding Lyndon words may be read off, for example,
51322513. 52 and 6123251 . 523.

The structure constants of the FLA in the Lyndon basis are defined as [D(;, Dy l= CZ P
where L,M,N are Lyndon words and |L|+|M|=|N|. For example,

[Di,Dj] = D(/-,-), if j<i
0, ifi=j.

Thus for |K|=2,

1, ifK=ij withi<j
K=1-1, ifK=ji withj<i (A4)

0, otherwise.

Another example is (for j<k so that jk is Lyndon)
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Dyijn, if i < jk

Djriy = Dwjiy» if jk<i and k<i and k<i
Djriy+ Dyjiry, if jk<i and k<i and ji <k
= Dyji), if jk<i andi<k.

[Di’D(jk)] = (AS)

Another simple example, [D ), Dy l=Dyy if MN=M-N, is the right standard factorization of
the Lyndon word MN. For this to be the case, it is necessary that M <MN<N.
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