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A rigid body accelerated through a frictionless fluid appears
to gain mass. Swimmers, air bubbles, submarines and air-
ships are slowed down by the associated ‘added mass’ force
which is distinct from viscous drag and buoyancy. In particle
physics, an otherwise massless electron, quark, W or Z bo-
son, moving through the Higgs field acquires a mass. In this
article, we introduce the fluid mechanical added mass effect
through examples and use its analogy with the Higgs mecha-
nism to intuitively explain how the carriers of the weak force
(W and Z bosons) get their masses while leaving the photon
massless.

Introduction

It turns out that air bubbles would rise 400 times faster in water
if buoyancy were the only force acting on them. Submarines and
airships must carry more fuel than one might expect even after
accounting for viscous effects and form drag1 1Form drag has to do with the

loss of energy to infinity: waves
can propagate and carry energy
to infinity even in a flow with-
out viscosity.

. In fact, one would
have to apply a larger force while playing volleyball underwater
than in air or in outer space. Air bubbles, submarines, airships
and volleyballs appear to have larger inertia when they are accel-
erated through a fluid due to the so-called added mass effect. It
arises because in order to accelerate a body through an otherwise Keywords

Added mass effect, virtual in-

ertia, fluid mechanics, potential

flow, Higgs mechanism, particle

physics, spontaneous symmetry

breaking, masses of elementary

particles, Higgs particle.

stationary fluid, one must also accelerate some of the surrounding
fluid. On the other hand, no such additional force is required to
move a body at constant velocity through an ideal (incompress-
ible, inviscid and irrotational or vorticity-free) fluid.
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TheThough both oppose
motion, the added mass

effect is a dissipationless
phenomenon, quite

different from viscous
drag. Unlike the viscous

force which, in simple
cases, is proportional to

velocity, the added mass
force is proportional to

the body’s acceleration.

added mass effect is quite different from viscous drag. The
former is a frictionless effect that gives rise to an opposing force,
proportional to the acceleration of the body, thus adding to the
mass or inertia m of the body. This additional inertia μ is called
its added or virtual mass. The added mass depends on the shape
of the body, the direction of acceleration relative to the body as
well as on the density ρ of the surrounding fluid. For example,
the added mass of a sphere is one-half the mass of fluid displaced
by it. Unlike the moment of inertia of a rigid body, its added mass
does not depend on the distribution of mass within the body; in
fact, it is independent of the mass of the body but grows with the
density of the fluid. The more familiar viscous drag on a body is
an opposing frictional force that depends on its speed: for slow
motion, it is proportional to the speed, butThe added mass effect is

also different from
buoyancy. The latter

always opposes gravity
and unlike the added

mass effect, is present
even when the body is

stationary.

at high velocities, it
can be proportional to the square of the speed.

The added mass effect was identified in the early 1800s through
the work of Friedrich Wilhelm Bessel, George Gabriel Stokes,
Siméon Denis Poisson and others. In his 1850 paper On the effect
of the internal friction of fluids on the motion of pendulums [1],
Stokes is mainly concerned with, “the correction usually termed
the reduction to a vacuum” of a pendulum swinging in the air. He
creditsThe added mass of a

sphere is one-half the
mass of fluid displaced

by it.

Bessel with the discovery of an additional effect, over and
above buoyancy, which appears to alter the inertia of the pendu-
lum swinging in the air. According to Bessel, this added mass
was proportional to the mass of the fluid displaced by the body.
Stokes says, “Bessel represented the increase of inertia by that
of a mass equal to k times the mass of the fluid displaced, which
must be supposedIt could be a challenging

task for an external agent
to ensure that an

irregularly shaped body
executes purely

translational motion, i.e.
to ensure that there are
no unbalanced torques

about its centre of mass
that cause the body to

rotate.

to be added to the inertia of the body itself.”
In this same paper, Stokes also refers to Colonel Sabine, who di-
rectly measured the effect of air by comparing the motion of a
pendulum in the air with that in a large vacuum chamber. The
added inertia for the pendulum in air was deduced to be 0.655
times the mass of air displaced by the pendulum. Stokes attributes
the first mathematical derivation of the added mass of a sphere to
Poisson, who discovered that the mass of a swinging pendulum is
augmented by half the mass of displaced fluid.
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The The constant 3 × 3
symmetric matrix μi j

that relates acceleration
to the added force is the
‘added-mass tensor’.

added mass effect may be understood through the simplest
of ideal flows. Consider purely translational motion of a rigid
body of mass m in an inviscid, incompressible and irrotational
fluid at rest in 3-dimensional space. To impart an acceleration
a = U̇ to it, an external agent must apply a force Fext exceeding
ma. Newton’s second Unlike the inertia tensor

(which is used to
describe the rotational
motion of rigid bodies
such as tops in vacuum),
μi j is independent of the
distribution of mass in
the body, though it
depends on the fluid and
the shape of the body.

law relates the components of this force to
those of its acceleration:

Fext
i = m ai + Fadd

i where i = 1, 2, 3. (1)

Here Fadd
i =

∑3
j=1 μi j a j. Part of the externally applied force goes

into producing a fluid flow. The added force Fadd is proportional
to acceleration but could point in a different direction, depending
on the shape of the body. The constant 3 × 3 symmetric The added mass grows

roughly with the
cross-sectional area
presented by the
accelerated body: a flat
plate has no added mass
when accelerated along
its plane.

matrix
μi j that relates acceleration to the added force is the ‘added-mass
tensor’. The added mass tensor μi j for a sphere is a multiple of
the identity matrix: μi j = μδi j, where δi j is the Kronecker symbol
(1 if i = j and 0 otherwise). In other words, the added mass μ of a
sphere is the same in all directions. When a sphere is accelerated
horizontally in water, it feels a horizontal opposing acceleration-
reaction force G = −Fadd = −μa aside The Higgs mechanism

does not explain the
masses of certain other
particles such as the
proton and the neutron.
The latter are a lot
heavier (≈ 938 MeV/c2)
than the sum of the
masses (≈ 2-5 MeV/c2)
of their three valence
quarks. The binding
energy of gluons is
believed to contribute
significantly to the
proton and neutron
masses.

from an upward buoyant
force, an opposing viscous force, etc.

In this article, we explain these ideas and introduce the added
mass effect through examples. We show how the added mass ten-
sor may be calculated for one, two and three-dimensional flows
and discuss some of its features and consequences. In the final
Section, we describe a surprising connection to the Higgs mech-
anism in particle physics [2]. It turns out that the force carriers of
the weak interactions (W and Z bosons), as well as, the basic mat-
ter particles (quarks and leptons) are, strictly speaking, massless.
However, they gain a mass through their interactions with a ‘con-
densate’ of the Higgs field. We use an analogy [3] with the fluid
mechanical added mass effect to intuitively explain some features
of the Higgs mechanism in particle physics.
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Figure 1. Arc-shaped rigid
body accelerated through
fluid along a circle.

1. One-dimensional Flow Along a Circle

WeIn an incompressible
flow, signals can be

communicated
instantaneously since the

speed of sound is
infinite.

begin by introducing the added mass effect through a simple
example of incompressible flow in one-dimension. Incompress-
ible here means the fluid always has the same density everywhere.
Consequently, the velocity v of the fluid must be the same every-
where, though it could depend on time. Suppose an arc-shaped
rigid body of length L moves along the rim of a circular channel of
radius R (see Figure 1). We will suppose that the ends of the body
are at the angular positions θ1(t) and θ2(t) so that R(θ2 − θ1) = L.
The fluid occupying the rest of the circumference of the channel
has velocity v(t) tangent to the circle at all angular positions θ.
NowThe rate of change of

flow kinetic energy Ė is
the rate at which energy

must be pumped into the
flow.

imagine an external agent moving the body at speed U(t) so
that its ends have the common speed Rθ̇1 = Rθ̇2 = U(t). Since
the fluid cannot enter the body, it must have the same speed as
the end-points of the body: v(θ1, t) = v(θ2, t) = U(t). Thus,
the fluid instantaneously acquires the velocity of the body every-
where: v(t) = U(t).

In the absence of the fluid, an external agent would have to supply
a force MU̇ to accelerate the body. To find the additional force re-
quired in the presence of the fluid, we consider the kinetic energy
of the fluid:

E =
1
2

∫

fluid
ρ v2(t) R dθ =

1
2
ρv2(t)(2πR − L). (2)

The rate of change of flow kinetic energy Ė is the rate at which
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energy must be pumped into The negative of the
added mass force
G = −Fadd is called the
‘acceleration reaction
force’. It opposes the
motion of an accelerated
body.

the flow:

Ė = ρ v(t) v̇(t) (2πR − L) = ρ U(t) U̇(t) (2πR − L). (3)

Ė must equal the extra power supplied by the external agent, i.e.,
Ė = FaddU(t). Thus, the additional force

Fadd = ρ U̇(t) (2πR − L), (4)

is proportional to the body’s acceleration. The constant of pro-
portionality

μ = ρ(2πR − L) (5)

is called the added mass. Notice that μ is equal to the mass of
fluid. This is peculiar to flows in one dimension. Had we taken
the fluid to occupy an infinitely long channel (instead of a circle),
the added mass would have been infinite. Furthermore, the added
mass is proportional to the fluid density ρ and depends on the
shape of the body, but is independent of the body’s mass The result that uniformly

moving finite bodies in
an unbounded steady
potential flow (see
Section 2.) do not feel
any opposing force is a
peculiarity of inviscid
hydrodynamics called
the d’Alembert paradox.
Strictly speaking, this
result is valid only in the
absence of ‘vortex
sheets’ and ‘free
streamlines’. In
commonly encountered
fluids, viscous forces
introduce dissipation and
surface waves carry
away energy to ‘infinity’
so that an external force
is required even to move
a body at a constant
velocity.

. Cru-
cially, the added force is proportional to the body’s acceleration
as opposed to its velocity. In particular, a body moving uniformly
would not acquire an added mass.

We next turn to bodies accelerated through 2- and 3-dimensional
flows, which are much richer than the one-dimensional example
above. An intrepid reader who cannot wait to explore the analogy
with the Higgs mechanism may proceed directly to Section 5.

2. Two-dimensional Flow Around a Cylinder

We next consider inviscid flow perpendicular to the axis of an
infinitely long right circular cylinder of radius a with axis along
ẑ, as shown in Figure 2. We will find the added mass per unit
length of the cylinder by determining the velocity field of the fluid
flowing around it.

Although the fluid moves in 3d space, the flow is assumed to
be quasi-two-dimensional with translation invariance in the z-
direction. Thus, we take the z-component of the flow velocity
to vanish so that v points in the x-y plane. For simplicity, we fur-
ther take the flow to be irrotational (∇×v = 0) which allows us to
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Figure 2. Snapshot of the
velocity field in the x-y plane
for potential flow past a sta-
tionary right circular cylin-
der of radius a = 2 with
axis along z. Asymptotically
v → −x̂ (U = 1). The thick-
ness of flow lines grows with
fluid speed.

write v = ∇φ in terms of a velocity potential φ. WeA flow with v = ∇φ is
called potential flow.

The velocity potential φ
is analogous to the

electrostatic potential in
terms of which the

electrostatic field is
E = −∇φ. This

guarantees that E is
curl-free as required by

Faraday’s law for steady
magnetic fields.

also take the
flow to be incompressible (∇ · v = 0, this is reasonable as long as
the flow speed is much less than that of sound) which requires the
velocity potential to satisfy Laplace’s equation ∇2φ = 0. To find
φ, we must supplement Laplace’s equation with boundary con-
ditions. The fluid cannot enter the body, so n̂ · v = n̂ · ∇φ = 0
on the surface of the body. Here n̂ is the outward-pointing unit
normal on the body’s surface. Additionally, we suppose that far
away from the body the fluid moves uniformly: v → −Ux̂. In
other words, the cylinder is at rest while the fluid moves leftward
past it.

OurThe velocity potential is
obtained by solving
Laplace’s equation

∇2φ = 0 in the region
occupied by the fluid,

subject to the condition
that the fluid cannot
enter the rigid body.

first task is to solve Laplace’s equation in the x-y plane sub-
ject to the impenetrability boundary condition n̂ · ∇φ = ∂φ

∂r = 0
at r = a and the asymptotic condition φ → −Ur cos θ as r → ∞
(so that v → −U x̂ as r → ∞). Here, the cylinder is assumed
centered at the origin about which the plane-polar coordinates
r =

√
x2 + y2 and θ = tan−1(y/x) are defined. Laplace’s equa-

tion in these coordinates takes the form

∇2φ =
1
r
∂

∂r

(
r
∂φ

∂r

)
+

1
r2
∂2φ

∂θ2
= 0. (6)

We will solve this linear equation by separation of variables and
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the superposition principle. Let We are interested in a
cylinder accelerating
through an otherwise
stationary fluid.
However, it is easier to
solve Laplace’s equation
in a region with fixed
boundaries. So, we
begin by considering
flow around a stationary
cylinder. After finding
the velocity field of this
flow, we will apply a
Galilean boost and move
to a frame where the
cylinder moves at
velocity Ux̂. By making
U time-dependent, we
will find the
acceleration-reaction
force and added mass of
the cylinder.

us suppose that φ is a product
φ(r, θ) = R(r)Θ(θ) where Θ(θ + 2π) = Θ(θ) is periodic around the
cylinder. Upon division by RΘ the partial differential equation
(6) becomes a pair of ordinary differential equations. Indeed, we
must have

1
R

r
d
dr

(
r

dR
dr

)
= − 1
Θ

d2Θ

dθ2
= n2 = constant (7)

since the first and second expressions are functions of r and θ
alone. The separation constant n2 must be positive for Θ to be
periodic. In fact, the equation Θ′′ = −n2Θ describes a simple
harmonic oscillator with solutions

Θn(θ) = An cos nθ + Bn sin nθ. (8)

Periodicity and linear independence then require n to be a non-
negative integer. For each such n, the radial equation has the so-
lution

Rn(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cnrn +

Dn
rn for n > 0 and

C0 + D0 ln r for n = 0.
(9)

Here An, Bn,Cn and Dn are constants of integration. By the su-
perposition principle, the general solution of (6) is

φ(r, θ) = (C0 + D0 ln r) +
∞∑

n=1

(
Cnrn +

Dn

rn

)
(An cos nθ + Bn sin nθ)

(10)
The asymptotic boundary condition implies that C0 = D0 = 0,
C1 = −U and A1 = 1 while Cn = An = Bn = 0 for all other n. The
impenetrability condition gives D1 = −Ua2. Thus, the velocity
potential for flow around the cylinder is

φ(r, θ) = −U cos θ
(
r +

a2

r

)
. (11)

The corresponding velocity field is

v = ∇φ = −Ux̂ + U
a2

r2

(
cos θ r̂ + sin θ θ̂

)
. (12)
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NowWe make a Galilean
boost to a frame where
the fluid is stationary at
infinity, but the cylinder

moves rightward with
velocity Ux̂.

we make a Galilean boost to a frame where the fluid is sta-
tionary at infinity, but the cylinder moves rightward with velocity
Ux̂. The resulting velocity field around the moving cylinder is

v′ = v + Ux̂ = U
a2

r′2
(
cos θ′ r̂′ + sin θ′ θ̂′

)
, (13)

where r′ and θ′ are defined relative to the instantaneous centre of
the cylinder.

ToPart of the energy
supplied by the external

agent to accelerate the
cylinder, goes into the

kinetic energy of the
flow and is manifested as

the added mass of the
cylinder.

investigate the added mass effect, we suppose an external agent
wishes to accelerate the cylinder (of mass M per unit length) at
the rate U̇ = U̇ x̂. Part of the energy supplied goes into the kinetic
energy of the flow and is manifested as the added mass of the
cylinder. Just as the kinetic energy of the cylinder per unit length
(1

2 MU2) is quadratic in U, so is that of the flow:

Kflow =
1
2
ρ

∫ 2π

0

∫ ∞

a

(
v′

)2 r′ dr′ dθ′ =
1
2
ρ

∫
U2a4

r′3
dr′ dθ′

=
1
2
ρπa2U2 ≡ 1

2
μU2. (14)

Here ρ is the density of the fluid per unit area in the r, θ plane.
Thus the total kinetic energy per unit length supplied by the agent
is

Ktotal =
1
2

(M + μ) U2. (15)

The associatedIt can be shown that if
the cylinder had an

elliptical rather than
circular cross-section,

the added mass is
different for acceleration
along the two semi-axes.

If a1 and a2 are the
lengths of the two

semi-axes, the added
masses are μ1,2 = ρπa2

2,1
for motion along the

corresponding semi-axis.
Thus, the added mass is

smaller when the
cylinder presents a

smaller cross-section.

power supplied is K̇total = (M + μ)U̇ ·U ≡ Fext ·U.
Thus, a force Fext = (M + μ) U̇ is required to accelerate the body
at U̇. The mass of the cylinder therefore appears to be augmented
by an added mass per unit length μ = ρπa2. We notice that the
added mass of the cylinder is equal to the mass of fluid displaced,
though this is not always the case as we will learn in Section 3.

3. Added Mass Tensor in Three Dimensions

We have seen that to accelerate a cylinder of mass m perpendic-
ular to its axis in an ideal fluid, an external agent must provide
a force Fadd = μU̇ in addition to the inertial force mU̇ where U
is the velocity of the cylinder. More generally, the body’s accel-
eration need not be directed along Fadd, though we will see that
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Box 1. Euler’s Equation for Inviscid Fluid Flow

Euler’s equation of fluid mechanics is essentially Newton’s second law (mass × acceleration = force) for a
small parcel of fluid of volume δV . To obtain it, we begin by noting that the change in velocity of such a
‘fluid element’ over a small-time dt as it moves from position r to r + dr is

dv = v(r + dr, t + dt) − v(r, t) ≈ ∂v
∂t

dt + (dr · ∇)v. (16)

Dividing by the small time, letting dt → 0 and observing that dr/dt = v, we obtain the instantaneous
acceleration of a fluid element of mass ρ δV : dv/dt ≡ ∂v/∂t + (v · ∇)v. dv/dt is called the material
derivative, it differs from the partial derivative by the quadratically non-linear advection term (v · ∇)v. In
the absence of gravity, the only force on this fluid element is due to the pressure exerted by the surrounding
fluid. This force acts across the surface ∂(δV) of the element and is given by:

Fsurface = −
∫

∂(δV)
pn̂ dS = −

∫

δV
∇p dV ≈ −∇p δV. (17)

We have used a corollary (see Box 2) of Gauss’ divergence theorem to convert the surface integral to a
volume integral and taken ∇p to be constant over the small volume δV . The minus sign is because n̂ is the
outward-pointing normal to the surface, while Fsurface is the compressional force on the element due to its
neighbours. Newton’s second law of motion for the fluid element therefore reads

(ρ δV)
dv
dt
= ∇p δV or

∂v
∂t
+ (v · ∇)v = −∇p

ρ
. (18)

This is Leonhard Euler’s celebrated equation (1757) for flow of an inviscid fluid.

the two are linearly related: Fadd
i =

∑3
j=1 μi jU̇ j. For flows The inertia tensor of a

rigid body is the 3 × 3
matrix Ii j =∫
ρ(r) (r2δi j − rir j) d3r

where ρ(r) is its mass
density and the integral
extends over points r in
the rigid body. Here the
Kronecker symbol δi j is
1 for i = j and 0
otherwise.

in 3
dimensions, the added mass tensor μi j is a real, symmetric, 3 × 3
matrix with positive eigenvalues. It turns out that μi j is propor-
tional to the (constant) density ρ of the fluid and depends on the
shape of the rigid body. However, unlike the inertia tensor Ii j of a
rigid body, μi j is independent of its mass distribution. For exam-
ple, for a sphere of radius a, the added mass tensor is a multiple of
the identity, μi j =

2
3πa

3ρ δi j. In other words, the added mass of a
sphere is half the mass of fluid displaced irrespective of the direc-
tion of acceleration which is always along Fadd. In particular, for
an air bubble in water, the added mass is about 1

2ρwater/ρair ≈ 400
times its actual mass as indicated in the Introduction.
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Let us illustrate a simple consequence of the added mass being
a tensor rather than a scalar. Suppose our rigid body is irreg-
ularly shaped and has an added mass tensor μi j with non-zero
off-diagonal entries. In order to accelerate it along the x̂ direc-
tion, we must apply a force F = mU̇ x̂ + Fadd, where Fadd =

U̇ (μ11 x̂ + μ21ŷ + μ31ẑ). Thus,For bodies less
symmetrical than a

sphere, the added mass
tensor need not be a

multiple of the identity
and the added masses

along different
‘principal’ directions can

be different. The
principal axes associated

with the added mass
tensor of a rigid body

depend on the shape and
orientation of the body

and in general do not
point along the x, y, z

axes of the laboratory
system.

to accelerate the body along x̂, we
would have to supply an added force in a different direction. On
the other hand, even an irregularly shaped rigid body always has
(at least) three ‘principal axes’. They have the property that the
added mass tensor is diagonal (diag(μ1, μ2, μ3)) when expressed
in the principal axis basis. Thus, for instance, a force along the
second principal axis produces an acceleration in the same direc-
tion with added mass μ2. The principal axes are the eigenvectors
of μi j and μ1,2,3 are the corresponding eigenvalues.

In this Section, we derive the added mass effect in 3-dimensional
flows and express μi j as an integral over the surface of the body[4].
As before, consider inviscid, incompressible and irrotational flow
around a rigid body (assumed to be simply connected, i.e. without
holes like a ‘vada’ or doughnut) in a large container. For simplic-
ity, we assume that the external agent accelerates the body along
a straight line without rotating it. The fluid is assumed to be at
rest far from the body (v→ 0 as |r| → ∞) and its velocity v is ex-
pressed in terms of a potential v = ∇φ. Due to incompressibility,
φ must satisfy Laplace’s equation ∇ · v = ∇2φ = 0. Impenetrabil-
ity requires the boundary condition (BC) ∇φ · n̂ = U(t) · n̂ on the
body’s surface where n̂ is the unit outward normal.
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Box 2. Gauss’ Divergence Theorem and its Corollary

Gauss’ divergence theorem relates the integral over a volume V of the divergence of a vector field q to the
flux of the vector field across its bounding surface ∂V (with outward-pointing normal n̂):

∫

V
∇ · q dV =

∫

∂V
q · n̂ dA. (19)

Taking q to have a constant direction q = ϕ(r)c, where c is an arbitrary constant vector and ϕ(r) is any
scalar function, we obtain a corollary of the divergence theorem:

c ·
∫

V
∇ϕ dV = c ·

(∫

∂V
ϕn̂ dA

)
or

∫

V
∇ϕ dV =

∫

∂V
ϕn̂ dA. (20)

This is useful in formulating the Euler equation in Box 1.

The information in φ may be conveniently packaged in a ‘poten-
tial vector field’Φ(r, t). The information in the

velocity potential φ may
be conveniently
packaged in a ‘potential
vector field’ Φ(r, t) as
φ = U · Φ, where U(t) is
the velocity of the body.

To see this, notice that Laplace’s equation
and the BC is a system of inhomogeneous linear equations of the
form Lφ = b where b is linear in U, with solution φ = L−1b. Thus,
φ must be linear in U and may be expressed as φ = U · Φ. Here
Φ(r, t) is independent of U and can depend only on the position of
the observation point r relative to the body’s surface. Being rigid
and in rectilinear motion, the surface of the body is determined by
the location of a marked point in the body, which may be chosen
say, as the center of volume r0. Thus,

φ(r, t) = U(t) ·Φ(r − r0(t)). (21)

For example, for a sphere of radius a centered at the origin at time
t0,

Φ(r, t0) = −1
2

a3 r̂
r2 and φ(r, t0) = −1

2
a3U · r̂

r2 . (22)

The Added Mass Tensor From the Fluid Pressure on the Body

The Bernoulli equation
may be used to evaluate
the total fluid pressure
force on the rigid body.

To obtain the pressure force on the body, we use a generalization
of Bernoulli’s equation (p + 1

2ρv
2 = constant) to time-dependent

potential flows with constant density:

p +
1
2
ρv2 + ρ

∂φ

∂t
= B(t), (25)
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Box 3. Bernoulli Equation for (unsteady) Potential Flow

In fluid mechanics, we often encounter the Bernoulli principle for steady flow[5, 6]. A flow is steady if the
fluid velocity at any location is independent of time. Bernoulli’s equation states that p + 1

2ρv
2 + ρgh is a

constant along streamlines (path followed by a test particle in steady flow). Here ρ is the constant density
of the fluid, g the acceleration due to gravity and h the height of any point on the streamline. It follows
that a rise in pressure is often associated with a drop in flow speed or potential energy. In our discussion of
the added mass effect, we require a generalization of the Bernoulli equation to the unsteady potential flow
around an accelerated body. To derive this equation, we use the vector identity (v·∇)v = ∇

(
1
2 v2

)
+(∇×v)×v

[5] in Euler’s equation (18) from Box 1. Observing that for potential flow ∇ × v = ∇ × (∇φ) = 0, we may
rewrite Euler’s equation for constant density ρ as

∂v
∂t
+ ∇

(
1
2

v2
)
= −∇p

ρ
or ∇

(
p + ρ

∂φ

∂t
+

1
2
ρv2

)
= 0. (23)

Thus we arrive at the unsteady Bernoulli equation for potential flow where the Bernoulli constant B(t) is
independent of location but could depend on time:

p + ρ
∂φ

∂t
+

1
2
ρv2 = B(t). (24)

It may be interpreted as an equation for the evolution of the velocity potential φ. It may be also be used to
eliminate the pressure p in favour of the velocity potential, as we do in Section 3. In contrast to Bernoulli’s
equation for steady flow, (24) holds throughout the fluid and is not restricted to streamlines.

where B(t) is a function of time alone. This version of Bernoulli’s
equation is derived in Box 3 and may be used to write the force
due to pressure on the body as anThe pressure force on the

body can be written as a
sum of an acceleration
reaction force G that is

linear in its acceleration
U̇, and another force G′
which does not depend

on its acceleration. In
the absence of gravity,
G′ vanishes if the fluid

fills the whole of 3d
Euclidean space.

integral over its surface A:

F = −
∫

A
p n̂ dA = ρ

∫

A

(
∂φ

∂t
+

1
2

v2
)

n̂ dA. (26)

The Bernoulli constant B(t) does not contribute as the integral∫
A n̂ dA vanishes over the closed surface A of the body. We may

write F as a combination of the acceleration reaction force G and
a G′ which does not depend on acceleration, by using the factor-
ization φ = U ·Φ:

F = ρ
∫

A
U̇ ·Φ n̂ dA +

∫

A

[
1
2
ρv2 − ρU · v

]
n̂ dA ≡ G+G′. (27)
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Box 4. Multipole Expansion of Velocity Potential φ

For large r = |r|, φ admits the multipole expansion: φ = c0+c1/r+c2/r2+ · · · . c0 can be chosen to vanish as
it does not affect the velocity v = ∇φ. The monopole coefficient c1 must vanish since there are no sources
or sinks in the fluid, just as it does for the electrostatic potential around a neutral body. Therefore, φ can be
at most of order 1/r2 asymptotically as r → ∞. Consequently, |v| = |∇φ| ∼ 1/r3. This can be used to show
that the non-acceleration reaction force G′ vanishes if the fluid extends to infinity in all directions.

In fluids which are at rest at infinity in R3 the second integral G′

vanishes [4]. In a large flow domain of linear extent R, a multi-
pole series (see Box 4) for φ may be used to show that G′ is at
most of O(1/R). The added mass tensor

μi j is a
direction-weighted
body-surface average of
the potential vector field
Φ. It can be shown to be
symmetric and
independent of time,
though it does depend on
the shape of the body
and is proportional to the
density of the fluid.

It is as though the liquid can bounce off the
boundary of the domain and come back to hit the body; this effect
will be ignored henceforth. Though we do not discuss it here,
upon accounting for the effect of gravity (via the acceleration due
to gravity g), G′ includes a buoyancy contribution −ρVolbody g
equal to the weight of the displaced fluid. Thus, we may write the
acceleration reaction force as

Gi = −Fadd
i = −μi jU̇ j where μi j = −ρ

∫

A
Φ j ni dA. (28)

μi j is the added-mass tensor. Now, the rate at which energy is
added to the flow is

Fadd · U(t) =
3∑

i, j=1

μi jU̇ jUi =
d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝
3∑

i, j=1

1
2
μi jUiU j

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (29)

Hence, the kinetic energy K of the flow can be written exclusively
in terms of the added mass tensor and the velocity of the body:

K =
1
2

∫

V
ρv2 dV =

3∑

i, j=1

1
2
μi jUiU j. (30)

Since K ≥ 0, μi j must be a positive matrix, i.e., one with non-
negative eigenvalues.
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Figure 3. Examples of
rigid bodies (an ellipsoid
and its limiting cases)
and their principal added
masses.

Examples of Added Mass Tensors

By solving for potential flow around various rigid bodies, one
obtains their added-mass tensors (see [7] and Figure 3).The added mass of a

sphere with radius a is
one-half the mass of

displaced fluid
independent of the

direction of acceleration:
μi j =

2
3πa

3ρδi j.

For an

ellipsoid ( x2

a2 +
y2

b2 +
z2

c2 = 1) with semi-axes a, b and c, μi j be-
comes diagonal in the principal axis basis. If the semi-axes are
ordered according to a > b > c, then the eigenvalues corre-
sponding to the x, y and z principal axes may be shown to sat-
isfy μx < μy < μz. Roughly, the added-mass grows with cross-
sectional area presented. In particular, if a = b (ellipsoid of revo-
lution), the corresponding added-mass eigenvalues μx and μy are
equal. Taking c → 0, the ellipsoid becomes an elliptical disk
with vanishing added mass eigenvalues for acceleration along its
plane, in which case the body does not present any cross-sectional
area: μx = μy = 0. Keeping c = 0 and taking a = b, we get a
circular disk whose principal added-masses are μx = μy = 0 and
μz = (8/3)ρa3.A point particle and a

one-dimensional body
(e.g. a bent wire) moving
in three dimensions have
vanishing added masses.

Shrinking an elliptical disk further (c → 0 and
b → 0), we find that a slender rod of length 2a has vanishing
added-mass for acceleration along any direction. Subject to im-
penetrable boundary conditions, such a rod cannot displace fluid.

The virtual inertia per unit length of an infinite right circular
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Figure 4. Flow with
asymptotic velocity v =

x̂ past a sphere of radius
a = 2. The thickness of
flow lines grows with fluid
speed. (a) Stokes flow at low
Reynolds number R � 1
and (b) cartoon of turbulent
wake downstream of sphere
at Reynolds number R ∼
106.

cylinder, when accelerated perpendicular to its axis, equals the
mass of displaced fluid (see Section 2.). In fact, the added mass
tensor per unit length of a cylinder of radius a with axis along z,
is given by μi j/L = πa2ρ diag(1, 1, 0). The added mass is also

known as virtual inertia.
More generally, the added mass effect extends to two-dimensional
as well as four and higher dimensional flows. For example, a
circular disk of radius a accelerated through planar potential flow
has a 2 × 2 added mass matrix μi j = πσa2δi j. Here σ is the
(constant) areal density of fluid. At flow speeds low

compared to the speed of
sound (|v| � cs), flows
may be taken to be
incompressible
(∇ · v = 0) and the
density usually assumed
constant.

4. Inclusion of compressibility, vorticity and viscosity

In the preceding sections, we restricted ourselves to incompress-
ible, inviscid and irrotational flows. Though not directly rele-
vant to the added mass effect, in this section we briefly indicate
the kinds of phenomena that occur when these restrictions are re-
laxed. This will also be helpful in making the analogy with the
Higgs mechanism. At flow speeds low compared to the speed
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of sound (|v| � cs), flows may be takenAt higher flow speeds,
density variations are
important leading to

compressible flow. New
phenomena such as

sound waves and shock
waves arise.

to be incompressible
(∇ · v = 0) and the density usually assumed constant. At higher
flow speeds, density variations are important leading to compress-
ible flow, and several new phenomena such as sound waves and
shock waves arise. On the other hand, dropping the assumption of
irrotationality allows the flow to have local angular momentum or
vorticity w = ∇×v. Such flows cannot be treated using a velocity
potential φ alone, and one needs to return to the velocity field v.
In fact, inThe continuity and

Navier-Stokes equations
need to be augmented by
an ‘energy equation’ for

the evolution of pressure,
or a constitutive law
relating pressure to

density.

the presence of viscosity, vorticity can be generated and
diffused through the fluid even if none were present initially. In
order to describe such non-ideal flows, we would need to consider
the more complete system of continuity and Navier-Stokes (NS)
equations [4, 5]

∂ρ

∂t
+∇·(ρv) = 0 and

∂v
∂t
+v·∇v = −∇p

ρ
+ν

(
∇2v +

1
3
∇(∇ · v)

)

(31)

rather than just Laplace’s equation for the velocity potential (see
Section 3.). Here p is the pressure and ν the (kinematic) viscosity
with dimensions of area per unit time. The physical phenomena

As flow speeds increase,
smooth ‘laminar’ flows

tend to become
increasingly irregular

and eventually turbulent.

manifested in such flows, and their mathematical treatment are
significantly richer and more complicated than what we have de-
scribed above.

To accelerate a rigid body through a viscous fluid, an external
agent must overcome not just the body’s (added) inertia, but also
a drag force which is found to depend on the body’s speed rather
than its acceleration.Unlike the added mass

force, the viscous drag
force on a moving body

depends on the body’s
speed rather than its

acceleration.

Viscous flows are characterised by a di-
mensionless parameter called the Reynolds number R = aU/ν
where a is of order the linear size of the body and U its speed. R
may be regarded as a measure of the relative importance of vis-
cous (ν∇2v) to inertial (v · ∇v) forces in the NS equation. When
R � 1 (e.g. slow flow of highly viscous honey) we have ‘creep-
ing’ flow. In creeping flow past a sphere (or a cylinder), Stokes
(1851)Viscous flows are

characterised by the
dimensionless Reynold’s

number R which is
inversely proportional to

the viscosity.

showed that the magnitude of the drag force is propor-
tional to U. In fact, creeping flow past a cylinder (perpendicular
to its axis, see Figure 4) is laminar and displays various sym-
metries (left-right, up-down and translation invariance along the
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Figure 5. Variation of
drag coefficient CD with
Reynolds number R for flow
perpendicular to axis of a
circular cylinder of radius
a (based on Figure 41-1 of
[5]). Here R = aU/ν is in-
creased by cranking up the
asymptotic flow speed U.
See [8] for a picture of a von
Kármán vortex street and
flow visualizations at vari-
ous Reynolds numbers.

axis). As the Reynolds number is increased, the flow successively
loses its symmetries and becomes increasingly turbulent (see [8]).

Integrating There is a range of
Reynold’s numbers,
corresponding to
velocities applicable to
automobiles, where the
drag force is
approximately
proportional to the
square of velocity.

the pressure on the surface of the body, one obtains
the total fluid force on the body. The horizontal component FD

of this force is called drag, while the vertical component is called
lift. The drag force varies with the Reynolds number through a
dimensionless drag coefficient CD(R). In fact, the drag force on a
cylinder of length l and radius a in a flow of asymptotic speed U
can be expressed as FD = CD l a ρU2. For low R � 10, CD ∝ 1/R
as calculated by Stokes for steady creeping flow, while it plateaus
out (see Figure 5) for 104 < R < 105. The empirical observation
that the drag coefficient is enhanced at these Reynold’s numbers
compared to Stokes’ calculation was called the drag crisis. The
drag crisis was resolved by Ludwig Prandtl who argued that even
when R = aU/ν → ∞, viscosity cannot be ignored in a thin
boundary layer around solid bodies (see Figure 4). Vorticity and
turbulence that is generated in such boundary layers can diffuse
into a turbulent wake producing additional dissipation.
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Box 5. Non-zero Photon Mass in Superconductors and Plasmas

Photons in vacuum are massless and travel at the speed c of electromagnetic waves or light. Each component
of the electric and magnetic field in an EM wave satisfies the d’Alembert wave equation 1

c2
∂2χ

∂t2 − ∇2χ = 0.
These waves are transversely polarized, since in the absence of charges ∇ · E = ∇·B = 0, so that these fields
(E(r, t) = Ekei(k·r−ωt) whereω = c|k|) are orthogonal to the direction k̂ of propagation (k̂·Ek = k̂·Bk = 0). In
superconductors and plasmas however, photons become massive - a ‘mass’ term enters the wave equation:
1
c2
∂2χ

∂t2
− ∇2χ + m2χ = 0. Consequently, photons travel at a speed less than c and display both transverse

and longitudinal polarizations. This photon mass can be explained by an ‘abelian’ version of the Higgs
mechanism. The Meissner effect is a physical manifestation of this photon mass: magnetic fields are
expelled from a superconductor except over a thin surface layer whose thickness is given by the London
penetration depth. Similarly, in plasmas the electric field of a test charge is screened beyond the Debye
screening length [9]. Both the penetration depth and screening length are inversely proportional to the
photon mass, so that they diverge in vacuum.

5. Analogy with the Higgs Mechanism

JustThe mass of a force
carrier is inversely

proportional to the range
of the corresponding

force.

as photons mediate the electromagnetic force, the W± and
Z0 gauge bosons mediate the weak nuclear force responsible for
beta decay. The mass of each of these force carriers is inversely
proportional to the range of the corresponding force. For instance,
the Coulomb potential (∝ 1/r) between electric charges has an ef-
fectively infinite range corresponding to the masslessness of pho-
tons. Similarly, the range of the strong nuclear force between pro-
tons and neutrons is given by the range of the Yukawa potential (∝
e−r/�/r). The latter is of order the reduced Compton wavelength
(� = �/mc ≈ 1 femtometer) of π-mesons (m ≈ 0.139 GeV/c2)
which mediate the strong force.

OnThe electromagnetic
force has an infinite

range, corresponding to
the masslessness of

photons.

the other hand, the weak nuclear force is very short-ranged
(≈ 0.001 femtometers), which requires the W± and Z0 gauge
bosons to be very massive (80-91GeV/c2; by contrast, the proton
mass is only 0.938GeV/c2). However, including mass terms for
the W± and Z0 particles in the theory explicitly breaks the ‘gauge’
symmetry of the equations and unfortunately destroys the predic-
tive power (‘renormalizability’) of the theory. The Higgs mecha-
nism solves this problem by a process of ‘spontaneous’ (see Box
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Box 6. Spontaneous Symmetry Breaking

Spontaneous symmetry breaking in the Higgs mechanism is achieved through a potential V(ϕ) = λ(|ϕ|2−a2)
for the complex scalar field ϕ shown above. Here the vacuum expectation value (vev) of the scalar field is
a = 5 and the scalar ‘self-coupling’ is λ = 1. Though V is circularly symmetric, a ‘particle’ (the blue dot)
in its minimum energy state must lie at a particular point along the circular valley, thereby ‘spontaneously’
breaking the rotation symmetry. The lowest-lying excitation is a ‘Goldstone mode’ corresponding to a
particle rolling arbitrarily slowly along the circular valley.

6) rather than ‘explicit’ breaking In the Higgs mechanism,
mass terms in the
Lagrangian for gauge
bosons arise through a
matrix whose
eigenvalues are the
squares of their masses.

of gauge symmetry. It was pro-
posed in the work of several physicists including Peter Higgs,
Robert Brout, François Englert, Gerald Guralnik, Carl Hagen and
Tom Kibble in 1964, building on earlier work of Philip Anderson
in superconductivity (see Box 5). The W± and Z0 bosons are nom-
inally massless, but appear to be massive due to interactions with
the Higgs scalar field whose condensate permeates all of space
like a fluid (the strength of this condensate is measured by the
vacuum expectation value (vev) of the Higgs field ≈ 246GeV/c2).
Thus Gauge bosons acquiring

masses via the Higgs
mechanism is similar to
a rigid body gaining
mass when accelerated
through a fluid. The
gauge boson mass
matrix is reminiscent of
the added mass tensor.

gauge symmetry is not spoilt, and the predictive power of
the theory is restored. It turns out that in the Higgs mechanism,
the mass terms arise through a 4×4 matrix whose eigenvalues are
the squares of the masses of the W± and Z0 gauge bosons as well
as the photon.

Recalling our discussion of the added mass effect, gauge bosons
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acquiring masses viaThe gauge bosons
collectively play the role

of a rigid body and the
Higgs field is analogous

to the fluid.

the Higgs mechanism sounds like the vir-
tual masses of a rigid body accelerated through a fluid along its
principal directions. Moreover, the gauge boson mass matrix is
reminiscent of the added mass tensor. In fact, there is a delight-
ful analogy between these two physical phenomena which allows
us to intuitively understand the Higgs mechanism by appealing to
the fluid mechanical added mass effect [2, 3]. The ‘Higgs added
mass correspondence’ proceeds as follows. TheThe number of gauge

bosons is equal to the
dimension of the space

in which the fluid flows.

gauge bosons are
collectively like a rigid body and the Higgs field is like the fluid.
The density of the fluid is like the strength of the Higgs conden-
sate (the vacuum expectation value of the Higgs field). Moreover,
the number of gauge bosons is analogous to the dimension of the
space in which the fluid flows. In fact, weVanishing added mass

for acceleration along
the face of a thin plate is
analogous to a massless

gauge boson (e.g.
photon).

may picture the corre-
spondence as relating the Euclidean space in which the fluid flows
(with the rigid body at its origin) to the linear space spanned by
the gauge bosons (the ‘Lie algebra’ of the ‘gauge group’). Fur-
thermore, a direction for the acceleration of the rigid body is anal-
ogous to the choice of a direction in the gauge Lie algebra. As
mentioned, the added mass tensor μi j plays the role of the gauge
boson mass matrix Mab. Just as accelerating the body in different
directions could result in different added masses, various direc-
tions in the Lie algebra could correspond to gauge bosons with
possibly different masses. In fact, given a pattern of gauge boson
masses, one may associate with it a rigid body moving through
an ideal fluid. For instance, ifA rigid body that

corresponds to the W±
and Z0 gauge bosons

(with masses
mW+ = mW− < mZ) is an

ellipsoid of revolution
with semi-axes

r1 = r2 > r3.
Acceleration along the

two larger semi-axes
(where the body presents

a smaller cross-section)
would result in lesser

added masses,
corresponding to the

lighter W± bosons.

all gauge bosons had equal masses,
the corresponding rigid body could be taken to be a sphere. In-
terestingly, the acceleration of a rigid body along a flat direction
(such as along the plane of a thin sheet) produces no added mass,
corresponding to a zero eigenvalue of μi j. This vanishing added
mass is like a massless gauge boson such as the photon and cor-
responds to the direction of an unbroken gauge symmetry. For
example, a hollow right circular cylindrical shell corresponds to
a pair of equally massive gauge bosons (for acceleration perpen-
dicular to its axis) and a massless photon (for acceleration along
its axis).

When a sphere moves at constant velocity through an ideal fluid,
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Higgs Mechanism Added-Mass Effect
Gauge bosons (e.g. photons, W±, Z0 bosons) Rigid body
Higgs scalar field Fluid
Number of gauge bosons Dimension of space in which fluid flows
Strength of Higgs condensate (vev) Constant density of fluid
Direction in linear space spanned by gauge
bosons

Direction of acceleration of rigid body

Gauge boson mass matrix Mab Added mass tensor μi j of rigid body
System of gauge bosons with equal masses Spherical rigid body
System of W± and Z0 gauge bosons with
mW± < mZ

Ellipsoid of revolution with semi-axes r1 =

r2 > r3

Massless photon Zero added mass for acceleration along thin,
flat direction of body

Pair of equally massive gauge bosons and a
photon

Hollow right circular cylindrical shell

Spontaneous breaking of gauge symmetry on
interaction with Higgs field

Breaking of fore-aft pressure symmetry when
sphere is accelerated

Goldstone mode ‘Benign’ flow around body moving uniformly
through inviscid fluid

Higgs boson – longest wavelength mode of
Higgs scalar field

A long-wavelength fluid mode around an ac-
celerated body

Quantum fluctuations around constant
strength of Higgs condensate

Compressional waves in otherwise constant
density flow

Semi-classical loop expansion in powers of � Expansion in powers of Mach number de-
scribing effects of compressibility

Table 1. The Higgs added-
mass correspondence.its upstream and downstream hemispheres have the same pressure

distributions. This fore-aft symmetry breaks when the sphere is
accelerated (the pressure on the front hemisphere is on average
more than that on its rear). This is somewhat analogous to the
spontaneous breaking of the gauge symmetry (see Box 6) when
the gauge bosons interact with the Higgs field. When a body
moves at constant velocity through inviscid flow, it does not re-
quire an external force to keep it moving (d’Alembert’s paradox)
and the flow around it is maintained without any energy input.
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The Goldstone mode is
like the ‘benign’ flow

around a non-accelerated
(uniformly moving)

body.

This ‘benign’ flow is analogous to the ‘Goldstone mode’ which
is produced when gauge bosons do not interact with the Higgs
field and remain massless. Just as an accelerating body ‘carries’ a
flow and acquires an added mass, it is as if the W boson ‘car-
ries’ the Goldstone mode and becomes massive. Remarkably,
the elusive Higgs particle has a simple interpretation in this anal-
ogy. Indeed, the Higgs particle which is the longest wavelength
mode of oscillation of the Higgs field may be thought of as anal-
ogous to a long-wavelength wave in the fluid around an accel-
erated body. More generally, quantum fluctuations around the
scalar vacuum expectation value are analogous to density fluctu-
ations (e.g. sound waves) aroundThe Higgs particle,

which is the longest
wavelength excitation of

the Higgs field, may be
thought of as analogous

to a long-wavelength
wave in the fluid around

an accelerated body.

constant density flow. In fact,
the semi-classical ‘loop expansion’ in powers of Planck’s con-
stant (�) that accounts for quantum fluctuations is analogous to
an expansion in powers of the Mach number that is used to de-
scribe effects of compressibility around the limit of incompress-
ible (constant density) flow. We conclude by summarizing the
analogy between the Higgs mechanism and the added mass effect
in Table 1.
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