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Comment on “Spin-Gradient-Driven Light Amplification in a Quantum Plasma”
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A comment on the Letter by S. Braun, F. A. Asenjo and S. M. Mahajan, Phys. Rev. Lett., 109,
175003 (2012). We show that recent arguments for light amplification driven by inhomogeneous
quantum spin fields in low temperature electron plasmas in metals are invalid. In essence, a neglect
of Pauli ‘blocking’ led the authors to over-estimate the effects of intrinsic spin.
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Recently, Braun, Asenjo, and Mahajan [1] made a
startling prediction: an electromagnetic (EM) wave
above the cut off frequency, incident on a metal at low
temperatures (∼ 30 K), will amplify in the presence of
a conduction electron spin field S with large gradients.
This prediction is based on spin quantum hydrodynamic
(SQHD) equations derived in [2] and the ‘quantum spin
vorticity’ formalism of [3]. The authors treat the metal
as a free electron plasma with a uniform neutralizing
ion background. However, their equations are not valid
for conduction electron densities (n ≃ 1029/m3) in met-
als at low temperatures, due essentially to a neglect of
Pauli blocking in the derivations of [2, 3]. For such n,
the Fermi temperature TF = (h̄2/2me)(3π

2n)2/3 is a
few eV. Hence, even at room temperature, the electron
gas is highly degenerate. When T ≪ TF the (thermal)
de Broglie wavelength exceeds the interelectron distance,
the electron gas obeys Fermi-Dirac (FD) statistics. Un-
fortunately, the authors’ equations (based on [2]) assume
a factorized form for the N -electron wave function, ig-
noring the antisymmetrization required by the Pauli ex-
clusion principle. Consequently, the electron spin mag-
netization current is greatly overestimated. They use
the formula jsp = ∇ × [2nµBS] [Eqs. (2), (3) in [1]]
where µB = eh̄/2me. However, in a degenerate elec-
tron gas, the spin magnetization ought, by Pauli block-
ing, to be of order 2(n+ − n−)µBb where b is the unit
vector in the local magnetic field (B0) direction. Here,

n± = n
2

[

1± 3µBB0

2TF

]

[4, 5] are the number densities of

electrons with spins parallel and antiparallel to B0 and
(n+ − n−)/n = O(T/TF ). At temperatures T ≪ TF ,
only electrons close to the Fermi level [estimated by
(T/TF )n] contribute to the magnetization current, as
well as any electron dynamics. Thus, S must have a size
≃ [n+ − n−]b/n, invalidating the authors’ assumption
[Eq. (1) of [1]] that S is a unit vector. This assumption
leads to a huge jsp ≃ 2n(µB/LS) ≃ 106A.m−2, where,
LS = 1m is a macroscopic gradient length-scale. Any

smaller LS will make jsp even larger. This corresponds
to a near ‘saturation magnetic induction’ of 1 Tesla, a
value more typical of spin-polarized core electrons in a
ferromagnet than conduction electrons in a metal. A sat-
uration magnetization is problematic, coming at the cost
of Fermi energy, which corresponds to creating a highly
excited state. Thus, when T ≪ TF , Pauli blocking en-
sures that quantum spin effects are suppressed, as is well
known [5] from the smallness of Pauli paramagnetism and
Landau diamagnetism. Fermi liquid theory and quantum
Boltzmann equations are required in this regime[4]. On
the other hand, when T ≫ TF and Maxwell-Boltzmann
statistics apply, quantum spin effects are negligible, being
a small perturbation [of O(µBB/T ) ≪ 1] to the standard
Vlasov kinetics (as also stated in [2]). At high temper-
atures, Larmor moments µL = T/B dominate over spin
moments (µL ≫ µB). Also, at any T , the quantum spin
force µB∇B is a very small perturbation to the classical
orbit theory based on the Lorentz force. Furthermore,
Coulomb collisions are non-negligible at high densities.
The authors require a low T ≃ 30K to prevent collisions
from damping the EM wave moving into their inhomoge-
neous spin density-dominated medium. This low collision
rate is due to Pauli blocking[4, 5]. It is inconsistent to use
Pauli blocking to suppress collisions, but ignore its effect
on the spin magnetization. Owing to these omissions and
contradictions, the authors’ equations are valid neither
at high nor low T . Moreover, they do not consider the
equation of state of the electron gas nor the basic equilib-
rium state [involving significant spin gradients], around
which they linearize their equations [(6)-(8) of [1]] for spin
and EM fields. Discussion of the conditions needed [in
principle] to create such a medium, and a Poynting theo-
rem describing the pumping of the EM wave by the spin
gradients, would lend credence to their predictions. For
other critiques of hydrodynamical treatments of quantum
plasmas (“QHD”) see [6, 7]. This Comment (see [8] for
a more detailed discussion and references) focuses on the
erroneous treatment of electrons in [1].
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Addendum to Comment

Date: March 2, 2014.

In [9], the authors of [1] offer a Reply to our Com-
ment. They accept the validity of our criticisms. In
particular, they agree that (1) the average spin field S is
not a unit vector and (2) that Pauli blocking will greatly
reduce the spin magnetization current in low tempera-
ture metallic plasmas, and thereby reduce any instabil-
ity. They go on to state that at low temperatures, the
light wave growth rate as well as electron-electron colli-
sion/damping frequency will both be brought down by
the factor α = T/TF , yielding

ΓPB = αΓold and νee ∼
kBT

2

h̄TF
. (1)

Thus they estimate the ratio of collisional damping to
growth rate as

νee
ΓPB

∼
kBT

h̄Γold
. (2)

They assert that, in principle, this ratio could be less than
unity for sufficiently low temperatures, thereby implying
amplification of the light wave.
It is true that in an ‘ideal metal’, the electron collision

rate νee will scale like T 2 [cf. [4], also Eq.(17.66) in [5]].
In reality, at very low temperatures [when, T ≪ TDebye],
the ‘residual resistance’ of a metal due to impurity or lat-
tice defect scattering leads to a temperature-independent
collision rate ν0. If such a temperature-independent colli-
sion frequency is used, then the authors’ estimate for the
ratio of collision rate to growth rate ν0

ΓPB
∼ TF ν0

TΓold

would
be more than unity for sufficiently low temperatures, im-
plying that collisions prevent any light amplification.
Even if we accept νee = kBT

2/h̄TF as a reasonable
low temperature collision rate, as well as their method of
estimating the effect of Pauli blocking [i.e., that ΓPB =
T
TF

Γold], we find for solid state plasmas, that the ratio of
collision to growth rate νee/ΓPB is less than unity only for
very low temperatures T <

∼ 0.025K. Collisional damp-
ing of the wave will overwhelm the claimed effect for any
higher temperature. What is more, even at such a low
temperature, the EM wave would have to travel at least
c/ΓPB ∼ 30 km in their medium to be significantly am-
plified. To obtain these estimates for solid state plasmas
considered by the authors, we take ne ≈ 1029m−3, cor-
responding to a Fermi temperature kBTF ≈ 1 eV ≈ 104

K and a plasma frequency ωpe ≈ 1.6 × 1016 s−1. Now
from Fig. 1 of their Letter [1], the maximum value of
Γold is 2.5 × 10−7 × ωpe ≈ 4 × 109 s−1. Using their

formulas νee ∼ kBT 2

h̄TF

and νee
ΓPB

∼ kBT
h̄Γold

, we find that

kBT <
∼ 2.5 × 10−6 eV ≈ 0.025K for the growth rate to

exceed the collision rate. At T = 0.025 K, ΓPB ≈ 104

s−1 and so the wave must travel c/ΓPB ≈ 30 km in the
medium to be amplified significantly. Thus, even assum-
ing SQHD to be corrected as suggested by the authors,

the effects predicted are negligible [using their own num-
bers and formulae] and are far smaller than many other
neglected effects such as collisionless damping, impurity
scattering, etc.

However, there is a more basic problem. The authors
estimate the effect of FD statistics on the growth rate
to be given by simply multiplying the old (uncorrected)
growth rate Γold by ( T

TF
). This is unacceptable, since the

growth rate has not been derived ab initio using correct

SQHD equations when T ≪ TF . The correct equations
will have drastically reduced spin forces in the electron
momentum equation and much lower spin magnetization
currents in Maxwell’s equations. It is to be checked afresh

using correct equations, whether the mode will grow at

all, for the stated conditions [especially the ‘WKB’ con-
dition kLS ≫ 1, where k is the wave number and LS

the gradient length-scale of the thermally averaged spin
field].

As mentioned in our Comment, it is readily shown from
a consideration of the single-particle electron Hamilto-
nian in classical physics, that an added ‘spin magnetic
moment force’ [≃ |µBohr∇B|] borrowed from relativis-
tic quantum mechanics, is tiny compared to the Lorentz
forces arising from self-consistent electromagnetic fields.
The spin-dependent dipole force can be shown from per-
turbation theory, to modify standard results of wave
propagation in plasmas by minuscule effects. When large
numbers of electrons are considered, there is the further
crucial point that the spins can be oriented [in quantum
theory] along or anti-parallel to the local magnetic field,
and there will be very large cancellations of an already
small effect by quantum and thermal averaging. The au-
thors offer no clear argument to evade these standard
conclusions.
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