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The distribution of inverses modulo a prime
in short intervals

by

S. M. Gonek, G. S. Krishnaswami and
V. L. Sondhi (Rochester, NY)

Let ν denote the multiplicative inverse of ν modulo an odd prime p and
set

N = {ν (modp) : M < ν ≤M +N},
where M ≥ 0 and N ≥ 1 are integers such that (M,M + N ] ⊆ (0, p).
The elements of N are known to be well-distributed in various senses. For
instance, C. Cobeli [1] has shown that the fractional parts of representatives
of N divided by p are uniformly distributed (mod 1) when N � p1/2+ε.

Here we wish to study the distribution of the elements of N in “short”
intervals (m,m+H], 1 ≤ m ≤ p, where H < p. To this end we set

f(m,H) = |{n ∈ (m,m+H] : n (mod p) ∈ N}|
(here | | denotes cardinality) and estimate

Mk(H, p) =
p∑

m=1

(f(m,H)−HN/p)k.(1)

Since each element of N is counted in exactly H of the intervals (m,m+H],
1 ≤ m ≤ p, the mean of f(m,H) is

1
p

p∑

m=1

f(m,H) = HN/p.

Therefore,Mk(H, p) is the kth moment of f(m,H) about its mean. Now the
probability that an integer selected at random from [1, p] is congruent to an
element of N is N/p. Thus, if the “events” m+ h (modp) ∈ N , 1 ≤ h ≤ H,
were independent, we should have

Mk(H, p) = µk(H,N/p)p,
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where µk(H,P ) is the kth moment of a binomial random variable X with
parameters H and P . That is,

µk(H,P ) := E((X −HP )k) =
H∑

h=1

(
H

h

)
P h(1− P )H−h(h−HP )k.

We note that µ1(H,P ) = 0 and µ2(H,P ) = HP (1 − P ). C. Cobeli [1] has
recently shown that

M2(H, p) = µ2(H,N/p)p+O(H2p1/2 log2 p).

Our main result extends this to larger values of k.

Theorem. Let k, N and H be positive integers with 1 ≤ N,H < p.
Then

Mk(H, p) =
p∑

m=1

(f(m,H)−NH/p)k

= µk(H,N/p)p+O(Hkp1/2 logk p).

Here and elsewhere, unless otherwise indicated, implied constants depend
on k.

One can show (see Montgomery and Vaughan [3]) that for a fixed k,

µk(H,P )� (HP )[k/2] +HP

uniformly for 0 ≤ P ≤ 1 and H = 1, 2, . . . Thus our theorem immediately
leads to an upper bound for Mk(H, p).

Corollary 1. Let k, H and N be positive integers with 1 ≤ H,N < p.
Then

Mk(H, p)� p(HN/p)[k/2] +HN +Hkp1/2 logk p.

One can also show (see [3]) that

µk = (νk + o(1))(HP (1− P ))k/2

as HP (1− P )→∞, where

νk =
{

1 · 3 · . . . · (k − 1) if k is even,
0 if k is odd

denotes the moments of a normal random variable with mean 0 and standard
deviation 1. Using this together with our theorem, we obtain

Corollary 2. If H = o(p1/(2k)/log p) and (HN/p)(1 − N/p) → ∞,
then

Mk(H, p) = (νk + o(1))p((HN/p)(1−N/p))k/2.
Thus, f(m,H) is approximately normal with mean NH/p and variance

(HN/p)(1−N/p) in appropriate ranges of H and N .
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Our final result is an estimate for the moments of gaps between consec-
utive terms of N . Let n1, . . . , nN be representatives of the residue classes
comprising N lying in (0, p) and arranged in increasing order. Also set

Sκ(p) =
N−1∑

i=1

(ni+1 − ni)κ.

From Corollary 1 we shall deduce

Corollary 3. Let ε be an arbitrarily small positive number and let κ
be any positive number less than 3/2. Then

Sκ(p)� N(N/p)−κ

for 1 ≤ N < p when 0 < κ ≤ 1, and for p3/(2(3−κ))+ε � N < p when
1 < κ < 3/2. We also have

Sκ(p)� N(N/p)−κ

for p3/4+ε � N < p and all 0 < κ < 3/2. In particular , for 0 < κ < 3/2
we have

Sκ(p) ≈ N(N/p)−κ,

provided that pmax{3/4, 3/(2(3−κ))}+ε � N < p.

1. Proof of the Theorem. For the convenience of the reader we state
two necessary lemmas without proof. The first, a special case of Theorem 1
in [2], depends on the Riemann hypothesis for curves.

Lemma 1. Let p,N , and N , be as above and let a1, . . . , as be distinct
integers (mod p) with s ≤ N . Then

∑

1≤x≤p
x+ai (mod p)∈N

(1≤i≤s)

1 = p(N/p)s +O(sp1/2 logs p)

uniformly for 1 ≤ s ≤ N < p. Here the constant implied by the O-term is
absolute.

A proof of our second lemma may be found in Montgomery and
Vaughan [3].

Lemma 2. Let µk(H,P ) be as in the Theorem. Then

µk(H,P ) =
k∑

r=0

(
k

r

)
(−HP )k−r

( r∑

t=0

(
H

t

)
S(r, t)t!P t

)
,

where S(r, t) denotes a Stirling number of the second kind , that is, the num-
ber of partitions of a set of cardinality r into exactly t non-empty subsets.
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We now proceed with the proof of the Theorem. Expanding the right-
hand side of (1) by the binomial theorem and taking the sum over m inside,
we find that

Mk(H, p) =
k∑

r=0

(
k

r

)
(−HN/p)k−r

p∑

m=1

f(m,H)r.(2)

Here we use the convention that f(m,H)0 = 1 even when f(m,H) = 0. Let
us set

Mr(H) =
p∑

m=1

f(m,H)r.

Then we have M0(H) = p, and for r ≥ 1,

Mr(H) =
p∑

x1=1
x1 (mod p)∈N

. . .

p∑

xr=1
xr (mod p)∈N

p∑

m=1
m≤xi≤m+H

(1≤i≤r)

1.(3)

Let B be a subset of t ≤ r distinct elements of [1, p), each of which is
congruent (mod p) to some element of N . By the definition of S(r, t), the
Stirling number of the second kind, we see that the number of maps from a
set of cardinality r onto a set of cardinality t is S(r, t)t!. Hence, this is also
the number of terms in the r outer sums on the right-hand side of (3) for
which {x1, . . . , xr} = B. We therefore obtain

Mr(H) =
r∑

t=1

S(r, t)t!
∑

B (mod p)⊆N
|B|=t

p∑

m=1
B⊆(m,m+H]

1.

Here B (mod p) ⊆ N means that x (modp) ∈ N for each x ∈ B. Writing

d(B) = max
xi,xj∈B

|xi − xj |,

we see that the innermost sum equals max(0,H − d(B)). Thus, grouping
terms according to the size of d(B) as well as t, we find that

Mr(H) =
r∑

t=1

S(r, t)t!
H−1∑

d=0

(H − d)
∑

B⊆N
|B|=t
d(B)=d

1(4)

=
r∑

t=1

S(r, t)t!
H−1∑

d=0

(H − d)N(t, d),

say. Note that N(1, 0) = N , while N(1, d) = 0 for d > 0. For t > 1, if we set
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a1 = 0 and at = d, then we find that

N(t, d) =
∑

1≤a2,...,at−1<d
ai distinct

∑

1≤x≤p
x+ai (mod p)∈N

(1≤i≤t)

1.

The inner sum equals p(N/p)t + O(tp1/2 logt p) by Lemma 1, and this is
counted

(
d−1
t−2

)
times by the outer sum. Hence, for t > 1,

N(t, d) = p

(
d− 1
t− 2

)
(N/p)t +O(dt−2p1/2 logt p).

Note that the implicit constant in the O-term depends on t, so ultimately
on k, but not on p or d. Using these estimates in (4), we obtain

Mr(H) = HN +
r∑

t=2

S(r, t)t!

×
H−1∑

d=0

(H − d)
(
p

(
d− 1
t− 2

)
(N/p)t +O(dt−2p1/2 logt p)

)

= HN + p

r∑

t=2

S(r, t)t! (N/p)t
H−1∑

d=0

(H − d)
(
d− 1
t− 2

)

+O(Hrp1/2 logr p)

for r ≥ 1. Here it is to be understood that if r = 1 the sum vanishes.
The sum over d may be evaluated using the relation

(
i
j

)
= i

j

(
i−1
j−1

)
and

the identity (
0
j

)
+
(

1
j

)
+ . . .+

(
l

j

)
=
(
l + 1
j + 1

)
.

From these we find that
H∑

d=0

(H − d)
(
d− 1
t− 1

)
=
(
H

t

)
,

so that

Mr(H) = HN + p

r∑

t=2

S(r, t)t! (N/p)t
(
H

t

)
+O(Hrp1/2 logr p).

As S(r, 1) = 1 for r ≥ 1, we can include the term HN in the sum by
beginning it at t = 1. Moreover, since S(r, 0) = 0 for r ≥ 1, we may add the
term t = 0 in as well. Thus, we find that when r ≥ 1,

Mr(H) = p

r∑

t=0

S(r, t)t! (N/p)t
(
H

t

)
+O(Hrp1/2 logr p).(5)
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Finally, using the convention S(0, 0) = 1 and recalling our initial observation
that M0(H) = p, we see that (5) actually holds for r ≥ 0.

Using this in (2) and then applying Lemma 2, we obtain

Mk(H, p) = p

k∑

r=0

(
k

r

)
(−HN/p)k−r

r∑

t=0

(
H

t

)
S(r, t)t! (N/p)t

+O(Hkp1/2 logk p)

= pµk(H,N/p) +O(Hkp1/2 logk p).

This completes the proof of the Theorem.

2. Proof of Corollary 3. To prove Corollary 3 we modify an argument
of Montgomery and Vaughan [3]. Set

D(x) =
N−1∑

i=1
ni+1−ni>x

1.

Then we have

Sκ(p) = κ

p�

0

D(x)xκ−1 dx.(6)

We first establish the upper bound. For 0 ≤ x ≤ 4p/N we use the trivial
estimate D(x) ≤ N and find that

κ

4p/N�

0

D(x)xκ−1 dx ≤ N(4p/N)κ � N

(
N

p

)−κ
.(7)

We bound D(x) for larger x by noting that if ni+1 − ni > H, then
∑

m<n<m+H
n (mod p)∈N

1−HN/p = −HN/p

for ni ≤ m < ni+1 −H. Thus, if k is a non-negative integer, we have

N−1∑

i=1
ni+1−ni>H

(ni+1 − ni −H)(HN/p)2k ≤M2k(H, p).(8)

Now suppose that HN ≥ p. Then by Corollary 1 the right-hand side of (8) is

� p(HN/p)k +H2kp1/2 log2k p.

Moreover, by the definition ofMk(H, p) this also holds when k = 0. On the
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other hand, taking H = [x/2], we see that the left-hand side of (8) is

≥
N−1∑

i=1
ni+1−ni>x

(ni+1 − ni −H)(HN/p)2k ≥ H(HN/p)2kD(x).

Thus, for x ≥ 4p/N we find that

D(x)� N(xN/p)−k−1 + (N/p)−2kx−1p1/2 log2k p.

Suppose first that 0 < κ < 1. Taking k = 0 in the above, we obtain
p�

4p/N

D(x)xκ−1 dx� p

p�

4p/N

xκ−2 dx� N(N/p)−κ,(9)

for 1 ≤ N < p. On the other hand, if κ > 1, we choose k large enough so
that k + 1 > κ (so, in particular, k ≥ 1), and obtain

p�

4p/N

D(x)xκ−1 dx� N(N/p)−k−1
p�

4p/N

xκ−k−2 dx

+ (N/p)−2kp1/2 log2k p

p�

4p/N

xκ−2 dx

� N(N/p)−κ(1 + (N/p)κ−2k−1pκ−3/2 log2k p).

Hence, we deduce in this case also that
p�

4p/N

D(x)xκ−1 dx� N(N/p)−κ,(10)

provided that

p
2k−1/2
2k−κ+1 log

2k
2k−κ+1 p ≤ N < p and k + 1 > κ.

Note that in order for the N -range to be non-trivial when k ≥ 1, we must
have κ < 3/2. Thus, upon combining (6), (7), (9) and (10), we find

Sκ(p)� N(N/p)−κ(11)

for 1 ≤ N < p if 0 < κ < 1, and for p
2k−1/2
2k−κ+1 log

2k
2k−κ+1 p ≤ N < p if

1 < κ < 3/2, where k is any integer such that k+1 > κ. When 1 < κ < 3/2,
we achieve the largest N -range by minimizing the exponent

2k − 1/2
2k − κ+ 1

= 1− 3/2− κ
2k − κ+ 1

of p subject to k + 1 > κ. The minimum clearly occurs when k = 1, so
we obtain (11) for p3/(2(3−κ)) log2/(3−κ) p ≤ N < p. Finally, we note that
when κ = 1, (11) follows from the definition of S1(p) for any N such that
1 ≤ N < p. This gives the upper bound stated in Corollary 3.
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To treat the lower bound we again consider the cases 0 < κ < 1 and
κ ≥ 1 separately. First suppose that κ ≥ 1. By Hölder’s inequality we have

S1(p)κ ≤ Nκ−1 Sκ(p),(12)

and we require a lower bound for S1(p) = nN − n1. By Lemma 1 with
s = 2, a1 = 0, and a2 = (p − 1)/2, say, it follows that there is a pair of
elements of N that are � p apart, provided that N � p3/4 log p. Hence
S1(p)� p for such N , and we deduce from (11) that

Sκ(p)� N

(
N

p

)−κ
.

For 0 < κ < 1 we apply Hölder’s inequality in the form

S1(p)q ≤ Sκ(p)(S(q−κ)/(q−1)(p))
q−1,

where q is any real number greater than 1. We have S1(p) � p when N �
p3/4 log p, as before, and also the upper bound

S(q−κ)/(q−1)(p)� N(N/p)−(q−κ)/(q−1)

for 1 < (q − κ)/(q − 1) < 3/2 and p
3
2 (3− q−κ

q−1 )+ε/2 � N < p. It therefore
follows, on taking q sufficiently large, that

Sκ(p)� pq/(N q−1(N/p)κ−q) = N(N/p)−κ

for p3/4+ε � N < p. This gives the required lower bound.
The final assertion of the corollary follows immediately on combining the

upper and lower bounds for Sκ(p).
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