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Abstract

In the Higgs mechanism, mediators of the weak force acquire masses by interacting
with the Higgs condensate, leading to a vector boson mass matrix. On the other hand, a
rigid body accelerated through an inviscid, incompressible and irrotational fluid feels an
opposing force linearly related to its acceleration, via anadded-mass tensor. We uncover a
striking physical analogy between the two effects and propose a dictionary relating them.
The correspondence turns the gauge Lie algebra into the space of directions in which the
body can move, encodes the pattern of gauge symmetry breaking in the shape of an associ-
ated body and relates symmetries of the body to those of the scalar vacuum manifold. The
new viewpoint is illustrated with numerous examples, and raises interesting questions, no-
tably on the fluid analogs of the broken symmetry and Higgs particle, and the field-theoretic
analogue of the added mass of a composite body.

Keywords: Higgs Mechanism, Fluid mechanics, Added-mass effect, Mass generation,
Symmetry breaking, Rigid body dynamics.

1 Introduction

In the recently confirmed [1, 2] Higgs mechanism [3, 4, 5, 6], the otherwise massless carriers of
the weak force (W± , Z gauge bosons) acquire masses by interacting with the Higgs medium.
It is tempting to look for analogies where a body gains mass while moving through a fluid, to
complement standard examples of (Abelian) mass generationfor photons in a superconductor
or plasma. Fluid analogies are often unsatisfactory, sincethey suggest resistive effects which
are not present in the Higgs mechanism. However, McClementsand Thyagaraja[7] recently
pointed out that a dissipationless fluid analog for the Higgsmechanism is provided by the
added-mass effect. In its essence, this effect goes at least as far back as Green and Stokes
(see Art. 92 in [8]). To impart an accelerationa = U̇(t) to a body of massm immersed in
an inviscid, incompressible and irrotational fluid, one must apply a force exceedingma, since
energy must also be pumped into the induced fluid flow. The added force Fadd

i = µi j a j(t) is
proportional to the acceleration, but could point in a different direction, as determined by the
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added-mass tensorµi j . µi j depends on the fluid and shape of the body, but not on its mass
distribution, unlike its inertia tensor. For example, the added-mass tensor of a sphere isδi j

times half the mass of displaced fluid. So an air bubble accelerated in water ‘weighs’ about
ρwater

2ρair
≈ 400 times its actual mass. The added-mass effect is different from buoyancy: when

the bubble is accelerated horizontally, it feels a horizontal opposingacceleration reaction force
G = −Fadd aside from an upward buoyant force which is independent ofa and equal to the
weight of fluid displaced.

Here, we develop a novel and precise physical analogy between the added-mass and Higgs
mechanisms. It is not a mathematical duality like the high temperature-low temperature Kramers-
Wannier duality in the Ising model or the AdS/CFT gauge-string duality, but provides a fasci-
natingly new viewpoint on fluid-mechanical and gauge-theoretic phenomena. We discover a
way of associating a rigid body to a pattern of spontaneous symmetry breaking (SSB). We
call this theHiggs Added-Mass (HAM) correspondence, it applies both to Abelian and non-
Abelian gauge models. Consider a 3+ 1 dimensional Yang-Mills theory withd-dimensional
gauge groupG, which spontaneously breaks to a subgroupH when coupled to scalarsφ in a
specified representation ofG, subject to a givenG-invariant potentialV . The correspondence
relates this to a rigid body accelerated (for simplicity) through a non-relativistic, inviscid, in-
compressible (constant density) irrotational fluid which is asymptotically at rest inRd . The Lie
algebraG plays the role of the space through which fluid flows (with location of body as ori-
gin). In particular, the (3+ 1) space-time dimension of the gauge theory is unrelated tod. The
fluid is the analog of the scalar field, while the rigid body plays the role of the vector bosons.
Moreover, we propose a fluid analog for the Higgs particle. The correspondence proceeds
through the respective mass matrices, and relates symmetries on either side, as exemplified by
numerous examples that we present.

We begin this paper in§2 with a description of the added-mass effect, followed in§3 with
a brief statement of the correspondence and several examples of SSB patterns and their corre-
sponding rigid bodies. In each case, rotation and reflectionsymmetries of the body are related to
symmetries ofG/H , endowed with a metric implied by the vector boson mass matrix. Based on
these examples, we present in§4, a detailed dictionary relating various quantities/phenomena
on either side of the correspondence. The reader interestedin a summary of the correspondence
may start with§4. We conclude in§5 with a discussion of interesting questions that the new
viewpoint raises.

2 The Added-Mass Effect

Perhaps the simplest example of the added-mass effect is in 1-dimensional flow. Consider an
arc-shaped rigid body of lengthL surrounded by ideal fluid filling the circumference of a circle
of radiusR. Incompressibility∂θv(θ, t) = 0, along with impenetrability of the body imply that
the flow velocityv everywhere is the same as that of the bodyv = U(t) . The rate of increase
in flow kinetic energy

d
dt

∫

fluid

1
2
ρ v2 Rdθ = ρ(2πR− L)UU̇ (1)

must equal the power supplied by the added forceFaddU(t) . Thus,Fadd is proportional to the
acceleration of the body, which gains an added-massµ = ρ(2πR−L) . µ being equal to the total
mass of fluid is peculiar to this one dimensional toy-model; this is why we choose a circular
flow domain instead of the whole real line.

More generally, following Batchelor [9], consider incompressible (constant density) 3dpo-
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tential flow around a simply-connected rigid body executingpurely translationalmotion at
velocity U(t) (see§B for extension to compressible flows). We restrict to the casewhere ex-
ternal forces do not cause the body to rotate. The fluid, assumed asymptotically at rest, has
velocity v = ∇φ with ∇ · v = ∇2φ = 0. φ is determined by impenetrability:∇φ · n = U(t) · n
where n is the unit outward normal on the body’s surfaceA. The boundary condition con-
strainsφ to be linear inU , which allows us to writeφ(r ) = U ·Φ(r ) where we callΦ(r ) the
potential vector field.Φ(r ) depends on the shape of the body, but not on its velocityU . As
time progresses,Φ = Φ(r − r0(t)) wherer0(t) is a convenient reference point in the body. For
a sphere of radiusa instantaneously centered at the origin,

φ(r ) = − a3

2r3
U(t) · r and Φ = −a3

2
r̂
r2
. (2)

Bernoulli’s equation

p+
1
2
ρv2 + ρ

∂φ

∂t
= constant(t), (3)

allows us to express the total pressure force on the body as

F = −
∫

A
pn dA= ρ

∫

A

(

∂φ

∂t
+

1
2

v2

)

n dA. (4)

Using the factorizationφ = U · Φ , we write F as a sum of an acceleration reaction forceG
and an acceleration-independentG′

F = ρ
∫

A
U̇ ·Φ n dA+

∫

A

[

1
2
ρv2 − ρU · v

]

n dA≡ G +G′. (5)

G′ vanishes in fluids asymptotically at rest inR3 [9]. Using a multipole expansion forφ (see
appendixA), one estimates thatG′ can be at most of order 1/R in a large container of sizeR.
It is as if fluid can hit the container and return to push the body. We ignore this boundary effect.
When acceleration due to gravityg is included,G′ features a buoyant term−ρVbodyg equal to
the weight of fluid displaced, which we suppress. Thus, the acceleration reaction force is

Gi = −µi j U̇ j where µi j = −ρ
∫

A
Φ j ni dA. (6)

The added-mass tensorµi j is a direction-weighted average of the potential vector field Φ over
the body surface. It is proportional to the fluid density and depends on the shape of the body
surface.µi j may be shown to be time-independent and symmetric. The rate at which energy is
pumped into the fluid is−G ·U(t) = µi j U̇ jUi(t) . Thus the flow kinetic energy may be expressed
entirely in terms of the body’s velocity and added-mass tensor (It follows that the added-mass
tensorµi j is a positive matrix):

1
2

∫

V
ρv2 dV =

1
2
µi j UiU j . (7)

To a particle physicist, mass generation in a medium sounds like the Higgs mechanism, and
an added-mass tensor is reminiscent of a mass matrix. To uncover a precise correspondence
between these phenomena, it helps to have explicit examples. By solving potential flow around
rigid bodies, one obtains their added-mass tensors. We willrelate these rigid bodies and their
added-mass tensors to specific patterns of spontaneous gauge symmetry breaking. For a 2-
sphere of radiusa, µi j =

2
3πa3ρδi j is isotropic. The added-mass of a sphere is half the mass of
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fluid displaced, irrespective of the direction of acceleration. For an ellipsoidx2

a2 +
y2

b2 +
z2

c2 = 1, µi j

is diagonal in the principal axis basis. Ifa > b > c, then the eigenvalues satisfyµx < µy < µz.
Roughly, added-mass grows with cross-sectional area presented by the accelerating body. In
its principal axis basis [8]

(µx, µy, µz) =
4
3
π abcρ

(

α

2− α,
β

2− β,
γ

2− γ

)

, (8)

where

α = abc
∫ ∞

0
(a2 + λ)−1∆−1dλ with ∆ =

√

(a2 + λ)(b2 + λ)(c2 + λ) (9)

and cyclic permutations thereof. In particular, for an ellipsoid of revolution witha = b, the
corresponding pair of added-mass eigenvalues coincideµx = µy . On the other hand, by taking
c→ 0 we get an elliptic disk, for which two added-mass eigenvaluesµx andµy vanish. These
correspond to acceleration along its plane. With impenetrable boundary conditions, an elliptic
disk does not displace fluid or feel an added-mass when accelerated along its plane. The third
eigenvalueµz, for acceleration perpendicular to its plane, is4

3πρab2E(1 − b2/a2)−1 , where
E(m) is the complete elliptic integral of the second kind. Taking a = b, the principal added-
masses of a circular disk are (0, 0, (8/3)ρa3) . Shrinking the elliptical disk further, a thin rod of
length 2a has no added-mass. Irrespective of which way it is moved, it does not displace fluid
with impenetrable boundary conditions. The same is true of apoint mass or any body whose
dimension is less than that of the flow domain by at least two (codimension≥ 2). For an infinite
right circular cylinder, the added-mass per unit length foracceleration perpendicular to its axis
is equal to the mass of fluid displaced. If the axis of the cylinder is alongz, then the added-
mass tensor per unit length isµi j

L = πa2ρ diag(1, 1, 0), wherea is its radius. Though these
examples pertain to three dimensional flows, the added mass effect generalizes to rigid bodies
accelerated through plane flows as well as flows in 4 and higherdimensions. The case of plane
flow is well-known and treated for instance in [9]. For example, an elliptical disk with semi-
axesa, b accelerated through planar potential flow has an added mass tensorµi j = πσabδi j

whereσ is the (constant) mass of fluid per unit area. In appendixA we develop the formalism
for the added mass effect in d ≥ 3 dimensions. This will be used in the following sections
where we relate the added mass effect in d-dimensional flows to spontaneous breaking of a
d-dimensional gauge groupG.

3 SSB Patterns and their Rigid Bodies

In the simplest version of the Higgs mechanism, aG =U(1) gauge fieldA in 3+ 1 space-time
dimensions is coupled to a complex scalarφ with potentialV(φ) = −m2|φ|2+λ|φ|4 , (m2, λ > 0)
and Lagrangian

L = 1
2

(E2 − B2) + |(∂µ − igAµ)φ|2 − V(φ). (10)

The space of scalar vacuaM (global minima ofV ) is a circle of radiusη =
√

m2/2λ . If U(1)
were a global symmetry we would have one angular Goldstone mode. A non-zero vacuum
expectation value (vev)〈φ〉 = η leads to complete spontaneous breaking of the symmetry
groupG. If φ = (η+ρ)eiχ/η , we may gauge awayχ and get a mass termg2η2A2 for the photon
(which has ‘eaten’ the Goldstone mode), and a radial scalar mass termm2ρ2 corresponding to
the Higgs particle. In general [10], G breaks to a residual symmetry groupH whose generators
annihilate the vacuum andg2η2A2 is replaced by gauge boson mass terms1

2MabAa
µA

b
µ . We
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say that a spontaneously broken gauge theory corresponds toa rigid body, if vector boson
masses and added-mass eigenvalues coincide.In particular, the dimension ofG must equal
that of the flow domain. We begin with some examples of SSB patterns and associated rigid
bodies. In these examples, the space of scalar vacuaM is the quotientG/H . They reveal
a relation between symmetries ofG/H and of a correspondingideal rigid body. By an ideal
rigid body, we mean one with maximal symmetry group among those with identical added-
mass eigenvalues: for example, a round sphere of appropriate radius, instead of a cube.

1. Consider an SO(3) gauge theory minimally coupled to a triplet of real scalars interacting
via the above potentialV . M is a 2-sphere of radiusη resulting in two Goldstone
modes. They are eaten by 2 of the 3 gauge bosons leaving one massless photon. The
mass-squared matrixM is 2g2η2 diag(1, 1, 0). G =SO(3) breaks toH =SO(2). The
corresponding rigid body moves in fluid filling three dimensional Euclidean space, since
dimG = 3. The rigid body must have one zero and two equal added-mass eigenvalues
to correspond to the mass matrixM . An ideal rigid body that does the job is a hollow
cylindrical shell, sayS1 × [−1, 1]. Such a shell has no added-mass when accelerated
along its axis. Due to its circular cross section, the added-masses are equal and non-zero
for acceleration in all directions normal to the axis.

2. Similarly, an SO(n) gauge theory coupled ton-component real scalars spontaneously
breaks toH =SO(n − 1). The vacuum manifoldM is a sphere Sn−1 of radiusη . We
get n − 1 vector bosons of mass

√
2gη and nγ = (n− 1)(n− 2)/2 massless photons.

A corresponding ideal rigid body moving through fluid fillingR
1
2(n2−n) is the product

Sn−2 × Bnγ , generalizing the cylindrical shellS1 × B1 when n = 3. HereBnγ is a unit
ball |x| ≤ 1 for x ∈ Rnγ . This ideal rigid body has equal non-zero added-masses when
accelerated along the firstn − 1 directions and no added-mass in the remainingnγ flat
directions. We callSn−2 its curved factor and the unit ballBnγ its flat factor. B1 is
the unit interval whileB2 is the unit disk, etc. It is easily seen that forn = 3 and 4,
acceleration along the direction of the interval or in the plane of the disk displaces no
fluid, the same holds forn ≥ 5.

3. For SU(2) gauge fields coupled to a complex scalar doublet with the same potential
V , M is a 3-sphere of radiusη . All 3 gauge bosons are equally massive. The mass-
squared matrix isMab = (g2η2/2) δab and SU(2) breaks completely. A corresponding
ideal rigid body is a 2-sphere of radiusa = (3gη/2π

√
2ρ)1/3 moving through a fluid

in three dimensions. The same group with scalars in other representations could lead to
different SSB patterns and rigid bodies. With adjoint scalars, SU(2) → U(1) with two
equally massive vectors, corresponding to a hollow cylindrical shell moving in 3d.

4. In unbroken gauge theories, all gauge bosons remain massless. Such a theory withd-
dimensional gauge group, corresponds to a point particle (or one of codimension more
than one) moving throughRd , which has no added mass. For instance, SU(2) coupled
to a complex scalar triplet in the potentialV = m2|φ|2 + λ|φ|4 with m2 > 0, remains
unbroken and corresponds to a point particle moving throughR

3 .

5. SU(3) with fundamental scalars breaks to SU(2) andM = S5 . There are 3 massless
photons, 4 vector bosons of massgη/

√
2 and a heavier singlet of mass

√
2gη/

√
3.

The corresponding ideal rigid body moves inR8 . Its curved factor is a 4d ellipsoid
∑4

i=1
x2

i

a2 +
x2

5

b2 = 1 with b < a. The unit ballB3 is its flat factor, which gives rise to three
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vanishing added-mass eigenvaluesµ6 = µ7 = µ8 = 0. Acceleration along the first five
coordinatesx1, . . . , x4, x5 leads to added-mass eigenvaluesµ1 = . . . = µ4 < µ5 since the
semi-axes satisfya > b (higher added-mass when larger cross-section presented).

6. A U(1) gauge theory coupled to a complex scalar with chargegn (φ → einθ(x)φ ) breaks
completely in the above potentialV , leaving one vector boson with mass

√
2gnη . The

corresponding rigid body can be regarded as an arc of a circlemoving through fluid
flowing around the circumference, as in section2.

7. Another illustrative class of theories haveG =U(1)d with couplingsg1, . . . , gd and p
complex scalars in a reducible representation (p ≤ d ensures all Goldstone modes are
eaten). We assume the scalarφ j has chargeq jk under thekth U(1) factor and trans-
forms asφ j → eiq jkθk(x)φ j . They are subject to the potential

∑p
i=1

(

−m2
i |φi |2 + λi |φi |4

)

.
If ηi = (m2

i /2λi)1/2 , the vacuum manifold is ap-torus, the product of circles of radii
ηi : M = S1

η1
× . . . × S1

ηp
. There arep Goldstone modes and the mass-squared matrix

Mab = 2
∑p

j=1 η
2
j q jagaq jbgb is a sum ofp rank-one matrices and generically hasd−p zero

eigenvalues;G = U(1)d breaks toU(1)d−p . A corresponding ideal rigid body moving
in Rd generalizes the cylinder with elliptical cross-section. It is a product of a (curved)
ellipsoid with a (flat) unit ball:{∑p

i=1 x2
i /a

2
i = 1} × Bd−p . For pairwise unequalai , it has

distinct non-zero added-mass eigenvalues when accelerated along x1, . . . , xp and none
along itsd − p flat directions. E.g., a U(1)3 theory with a complex doublet in the above
reducible representation breaks to U(1). The corresponding rigid body is a cylinder with
elliptical cross-section moving inR3 . On the other hand, with 3-component complex
scalars, U(1)3 completely breaks leaving 3 massive vector bosons with generically dis-
tinct masses. A corresponding ideal rigid body is an ellipsoid moving through fluid filling
R

3 .

8. It is interesting to identify the rigid body corresponding to electroweak symmetry break-
ing. HereG = SU(2)L× U(1)Y and H =U(1)Q with a massless photon andmW+ =

mW− < mZ . The corresponding rigid body must move through fluid fillingR4 , and have
principal added-massesµ1 = µ2 < µ3 , µ4 = 0. An ideal rigid body generalizes a hollow
cylinder. It is the 3d hypersurface{∑3

i=1 x2
i /a

2
i = 1} × [−1, 1] with a1 = a2 > a3 > 0,

embedded inR4 . It has an ellipsoid of revolution as cross-section. When accelerated
along x4 , it displaces no fluid, but has equal added-masses when accelerated alongx1

and x2 .

More generally, we may associate an ideal rigid body to any pattern G → H of SSB,
through its vector boson mass-squared matrixMab. Mab can always be block diagonalized into
a p × p non-degenerate block (whose eigenvaluesm2

1, . . . ,m
2
p are the squares of the masses

of the massive vector bosons) and a (d − p) × (d − p) zero matrix corresponding to massless
photons, where dimG = d and dimH = d − p. A corresponding ideal rigid body is a product
of curved and flat factors. To the non-degenerate part ofMab we associate a ‘curved’p − 1

dimensional ellipsoid
x2

1

a2
1
+ . . . +

x2
p

a2
p
= 1. The semi-axis lengthsai are fixed by the vector

boson masses. The ‘flat’ factor of the body can be taken as a (d − p) dimensional unit ball
Bd−p :

{

xp+1, . . . , xd | x2
p+1 + . . . + x2

d ≤ 1
}

. For p = d − 1 it is an interval and forp = d − 2 it
is a unit disk etc. Motion along the flat directionsxp+1 . . . xd does not displace fluid, leading to
d − p zero added mass eigenvalues while acceleration in the firstp directions leads top non-
zero added mass eigenvalues. If the vector boson masses are ordered as 0< m1 = m2 = . . . =
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mp1 < mp1+1 = . . . = mp1+p2 < . . . < mp−pr+1 = . . . = mp , then the corresponding semi-axes of
the ellipsoid satisfy 0> a1 = a2 = . . . = ap1 > ap1+1 = . . . = ap1+p2 > . . . > ap−pr+1 = . . . = ap

since the added mass grows with cross-sectional area presented. Here we have allowed for
degeneracies among the masses, so that there arer distinct non-zero masses with degeneracies
p1, . . . , pr and p = p1+ . . .+ pr . To find an explicit formula for the semi-axesai in terms of the
vector boson masses and fluid densityρ , we would need to solve the potential flow equations
around this rigid body.

3.1 Symmetries ofG/H and of Rigid Body

In all these examples, the ideal rigid body corresponding toa given pattern of symmetry break-
ing is a product of curved and flat factors, with added-mass for acceleration along the former.
The flat factor could be taken as an interval/disk/ball of dimension dimH . The vacuum man-
ifold M = G/H could be endowed with a non-degenerate metric determined bythe vector
boson mass-squared matrixMab, since in all these examples, the number of Goldstone modes
p = dimM is equal to the number of massive vector bosons.Mab is in general degenerate, but
may be block diagonalized into a non-degeneratep× p block and a zero matrix (corresponding
to residual symmetries inH ). The non-degenerate part defines a metricg on the quotientG/H .
G/H is a homogeneous space, so consider any pointm and define its ‘group of symmetries’G
as the subgroup ofO(p) that fixes the metric atm, i.e, RtR= I ,RtgR= g. SoG are orthogonal
symmetries of the metric in the tangent spaceTm(G/H) . By homogeneity,G is independent of
the chosen pointm. ThenG coincides with the group of rotation and reflection symmetries of
the curved factor of the corresponding ideal rigid body. So the groupG consists of symmetries
of both the vector boson ‘mass metric’ and the Euclidean metric in the flow domain inhabited
by the rigid body. Let us illustrate this equality of symmetry groups in the above examples, the
results are summarized in Table 1. To identify the group of symmetries in each case, we go to a
basis in which the mass metricg at a given pointm on G/H is diagonalg = diag(λ1, . . . , λp) .
The eigenvalues are ordered as

0 < λ1 = . . . = λp1 < λp1+1 = . . . = λp1+p2 < . . . < λp−pr+1 = . . . = λp (11)

with p = p1 + . . . + pr . Then one checks that the subgroup of O(p) that commutes withg is
O(p1)× O(p2) × · · · × O(pr) , with O(1)= Z2 .

(A) If G =SU(2), thenM = S3 with round metric (all three eigenvalues equal), and the
group of symmetriesG =O(3) is maximal. The corresponding ideal rigid bodyS2 has
the same isometry group O(3).

(B) If G =SO(p+ 1),M =Sp is round andG = O(p) , coinciding with the isometry group
of the curved factor Sp−1 of the corresponding rigid body.

(C) SupposeG = U(1)d with p scalars as above. ThenM is a p-torus, generically with cir-
cles of distinct radiiηi . The symmetry group atm ∈ M is generated by reflections about
m along thep circumferences, soG = (Z2)p . G coincides with the symmetry group
(generated byxi → −xi ) of the ellipsoid factor{∑p

i=1 x2
i /a

2
i = 1} in the corresponding

ideal rigid body. If two radiiη1, η2 coincide, thenG =O(2)× (Z2)p−2 which agrees with
the symmetries of an ellipsoid of revolution (x2

1/a
2
1 + x2

2/a
2
1 + x2

3/a
2
3 + · · · + x2

p/a
2
p = 1),

which is the curved factor of the corresponding ideal rigid body.
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Gauge groupG Repn. M = G/H H Fluid Ideal Rigid Body G
U(1) 1d cx S1

η {1} S1 Arc [θ1, θ2] Z2

U(1)2 2d cx S1
η1
× S1

η2
{1} R2 Elliptical disk Z2 × Z2

U(1)3 2d cx S1
η1
× S1

η2
U(1) R3 Hollow

elliptical cylinder
Z2 × Z2

U(1)3 3d cx
S1
η1
× S1

η2

×S1
η3

{1} R3 Ellipsoid (Z2)3

SU(2) 2d cx S3
η {1} R3 Sphere O(3)

SO(3) 3d rl S2
η SO(2) R3 Hollow

circular cylinder
O(2)

SU(2)L× U(1)Y 2d cx S3
η U(1)Q R4 Ellipsoid× [a, b] O(2)× Z2

SU(3) 3d cx S5
η SU(2) R8

4d ellipsoid
∑4

i=1
x2

i

a2 +
x2

5

b2

O(4)× Z2

Any G of dim d d-dim cx φ = 0 G Rd Point particle O(d)

Table 1: Patterns of spontaneous symmetry breaking and corresponding rigid bodies for vari-
ous gauge groupsG and scalar field representations (real - rl or complex - cx). The vacuum
manifoldM , residual symmetry groupH , fluid flow domain, ideal rigid body and group of
symmetriesG of the curved factor of the body are listed. The Higgs potential in the case of a
point particle isV = m2|φ|2 + λ|φ|4 , while in all other casesV = −m2|φ|2 + λ|φ|4 as in the text.
These results hold for generic values of chargesqi j , vev ηi and gauge couplings.Sn

η denotes
an n-sphere of radiusη .

(D) If G = SU(2)×U(1) of the electroweak standard model, thenM =S3 . The metric is not
round, asmW , mZ . G =O(2)× Z2 , coinciding with the symmetry group of the curved
factor of the corresponding rigid body.

(E) If G =SU(3) thenM =S5 with non-round metric and the symmetry group on either
side is O(4)× Z2 corresponding to the five non-zero added-massesµ1 = . . . = µ4 < µ5 .

4 The Higgs Added-Mass Correspondence

We now mention some striking analogies between the added-mass effect and Higgs mechanism.
They are summarized in Table 2. The rigid body plays the role of gauge bosons, both can gain
mass. The fluid plays the role of the scalar field. When the bodyis accelerated, some energy
goes into the flow. Figuratively, the body carries fluid, adding to its mass. Similarly, gauge
bosons gain mass by carrying Goldstone modes. The analogy relates the space of fluid flow,
to the Lie algebraG (the location of the body provides an origin for the flow domain and it is
the space of directions in which the body can move that corresponds to the gauge Lie algebra).
The dimensiond of the fluid containerRd equals dimG. The added-mass tensorµi j and the
vector boson mass-squared matrixMab are bothd × d matrices. A direction of acceleration
relative to the body is equivalent to a direction inG. Zero modes ofµi j are directions in which
the acceleration reaction force vanishes. These are like directions of residual symmetry in the
Lie algebraH . A thin disk accelerated along its surface gains no added-mass when moving in
a 3d fluid, just as we have a massless photon along an unbroken symmetry generator ofG. In
general, the number of flat directions of the body is equal to the number of massless vectors.
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Added-Mass Effect Higgs Mechanism
Rigid body Gauge bosons
Fluid Scalar field
Space occupied by fluid Gauge Lie algebra
Dimension of container dimG
Added-mass tensorµi j Mass matrixMab

Added-mass eigenvalues Vector boson masses
Acceleration along flat face Massless photon
Number of flat directions dimH
Sphere moving in 3d SU(2)→ {1}, doublet
Hollow cylinder in 3d SO(3)→ SO(2), triplet
Broken pressure symmetry Broken gauge symmetry
Fluid densityρ vev 〈φ〉 of Higgs scalar
Fi −mai = µi j a j − jν + ∂µFµν = g2〈φ〉2Aν

boundary condition on body
surface

Gauge-scalar coupling

Long wavelength fluid mode Higgs particle
Symmetries of curved body Symmetries ofTm(G/H)

Table 2: The Higgs added-mass correspondence.

We say that a particular spontaneous symmetry breaking patterncorrespondsto a particular
rigid body if the vector boson masses coincide with the added-mass eigenvalues. The latter do
not, generally, determine the body. A sphere and cube of appropriate sizes have identical added-
mass eigenvalues, just as appropriate SU(2) and U(1)3 gauge theories share vector boson mass
spectra. So the correspondence, at this level, relates a class of classical gauge theories to a
family of rigid bodies. Among these rigid bodies there are ‘ideal’ ones, with maximal symmetry
group. The identification ofG with the space of fluid flow related symmetries of the ‘mass’
metric at any point ofG/H to those of the curved factor of the corresponding ideal rigid body
(see§3.1).

Consider a bounded rigid body that moves at constant velocity through an infinite, inviscid,
incompressible, irrotational potential flow without the formation of vortex sheets, wakes or
cavities. It feels no added-mass (this is part of d’Alembert’s ‘paradox’ [9]). However, it is
associated with a ‘benign’ flow not requiring energy input. For example, the flow field around
a uniformly moving sphere of radiusa, instantaneously centered atUtẑ is

v(r , t) =
a3U

2r ′(t)3

[

2 cosθ′(t) r̂ ′(t) + sinθ′(t) θ̂′(t)
]

(12)

where r ′ = r − Utẑ is the position vector of the observation point relative to the center of
the sphere. So a body moving steadily is not coupled to the fluid through energy exchange.
Similarly, if the scalar vacuum expectation value〈φ〉 is non-zero but the gauge couplingg is
zero, then we have spontaneous symmetry breaking and Goldstone modes, but massless gauge
bosons. The Goldstone modes are analogous to the above benign flow.

Is there a broken symmetry in the added-mass effect? When a sphere moves uniformly, from
(12) and Bernoulli’s equation (3), the pressure distributions on the front and rear hemispheres
are identical. This front-back symmetry is broken upon accelerating the sphere. It is a discrete
analog of the broken gauge symmetry. Moreover, spontaneoussymmetry breaking is caused by
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a non-zero vacuum expectation value|〈φ〉| = η . The densityρ is its counterpart. Both occur as
pre-factors in mass matrices (µsphere

i j ∝ ρa3δi j , MSU(2)
ab ∝ η2g2δab) and are exclusively properties

of fluid and scalar field (i.e., not having to do with the rigid body or gauge fields).
Our analogy extends to the dynamical equations of the body (Fi −mai = µi j a j ) and massive

vector boson (− jν + ∂µFµν = g2η2Aν ). The added-massµi j a j is like the Proca mass. The exter-
nal forceFi and currentjν are both sources in otherwise homogeneous equations.∂µFµν = 0
is the analog ofmai = 0: free propagation of electromagnetic waves is like uniform motion
of a rigid body. The impenetrable body-fluid boundary condition is analogous to gauge-scalar
minimal coupling. Other boundary conditions would correspond to non-minimally coupled
scalars.

From the spontaneously broken U(1)d models of§3, we obtain further analogies. There
are 3 ways to prevent spontaneous gauge symmetry breaking: (a) set the gauge couplingsgi

to zero, (b) make the scalars uncharged (ni j → 0) under U(1)d and (c) let the scalar vacuum
expectation valueη→ 0. Similarly, there are 3 ways to make the added force/mass vanish: (a)
set the acceleration componentsai = 0, (b) shrink the body to a point and (c) letρ→ 0.

5 Discussion

In this paper, we have proposed a new physical correspondence between the Higgs mechanism
in particle physics and the added-mass effect in fluid mechanics. While plasmas and super-
conductors illustrate the Abelian Higgs model, the Higgs added-mass correspondence provides
a non-dissipative hydrodynamic analogy for the fully non-Abelian Higgs mechanism. It en-
codes a pattern of gauge symmetry breaking in the shape of a rigid body accelerated through
fluid. A dictionary relates symmetries and various quantities on either side. By identifying the
gauge Lie algebra with the space of fluid flow, and relating added-mass eigenvalues to vec-
tor boson masses, we are able to specify when a particular pattern of spontaneous symmetry
breakingcorrespondsto a particular rigid body accelerated through a fluid. Besides possible
refinements and generalizations (to compressible [see§B] and rotational flows or inclusion of
fermion masses), the new viewpoint raises several interesting questions and directions for fur-
ther research in both fluid mechanics and particle physics (1) The Higgs is the lightest scalar
particle. We conjecture that the fluid analog is a characteristic fluid mode around an accelerat-
ing body, with wave length comparable to the size of the body (rather than the container). There
may be several such modes, which could suggest heavier scalar particles. (2) Understanding
such modes requires extension of the added mass formalism toflows other than those usually
studied in marine hydrodynamics (incompressible potential flow). This would allow for waves
around the body, that could play the role of the Higgs particle. Perhaps the simplest such flows
are compressible potential flow, incompressible flows with vorticity (even in two dimensions)
and surface gravity waves in incompressible flow around an accelerated body. Moreover, den-
sity fluctuations in compressible flow around a rigid body should be analogous to quantum
fluctuations around the scalar vacuum expectation value. Thus the HAM correspondence gives
a new viewpoint and impetus to develop techniques to study the added mass effect in flows
other than those studied so far. (3) We identified a discrete broken symmetry in the added-mass
effect. Is there a continuous one, perhaps having to do with Galilean invariance? (4) The fluid
flow affects the rotational inertia of a rigid body, giving it an added inertia tensor. Is there a
particle physics analog consistent with the quantization of angular momentum? For instance,
could motion through the scalar medium modify the magnetic moments of particles? (5) The
HAM correspondence relates rigid body motion throughd-dimensional flows (see§A) to SSB
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of gauge theories withd-dimensional gauge group. Given the importance and simplifications
in the ’t Hooft limit of multi-color gauge models, one wonders whether there are aspects of
these fluid flows that simplify asd → ∞ . Could a suitabled → ∞ limit provide a starting
point for an approximation method for studying 3d flows? (6) How is the added-mass of a com-
posite body related to the added masses of its constituents?Correspondingly, can one compute
a small correction to the mass of a hadron, from Higgs interactions among a system of quarks
[beyond the Higgs contribution to individual current quarkmasses]? This would be a small
‘Higgs force’ correction to the mass of the proton in addition to the main contributions from
strong and electromagnetic forces.
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A Added mass effect in d ≥ 3 dimensions

The HAM correspondence relates spontaneous breaking of ad-dimensional gauge groupG to
the added mass effect in d-dimensional fluids. Since there is no restriction on the dimension
of G, our correspondence requires an extension of the standard added mass effect [9, 11] to
flows in d ≥ 4, which we give here. Consider incompressible potential flow in Rd around a
simply connected rigid body moving with velocityU(t) . We assume that the body executes
purely translational motion and thatv → 0 asymptotically. The velocity potential satisfies the
Laplace equation∇2φ = 0 subject to impenetrable boundary conditions on the body surface:
n ·∇φ = n ·U . With the origin located inside the body,φ admits a multipole expansion in terms
of Green’s function for the laplacian∇2g(r) = δd(r ) , g(r) = − Γ(d/2)

2πd/2(d−2)
1

rd−2 and its derivatives:

φ(r ) = c/rd−2 + ci∂i(1/r
d−2) + ci j∂i∂ j(1/r

d−2) + . . . (13)

As in the Cauchy contour integral formula, the multipole tensor coefficients (which are linear
in U ) may be expressed as integrals ofφ and its derivatives over the body surfaceA,

c =
Γ(d

2)

2πd/2(d − 2)

∮

A
n · ∇φ(r ) dA, ci =

Γ(d
2)

2πd/2(d − 2)

∮

A

[

(n · ∇φ)r i − φni
]

dA,

ci j =
Γ(d

2)

2πd/2(d − 2)

∮

A

[

(n · ∇φ)r ir j − φ(nir j + n jr i)
]

dA, . . . (14)

For incompressible flow without sources, the monopole coefficient c ≡ 0. As in the 3d case,
the impenetrable boundary condition constrainsφ to be linear inU , which allows us to write it
asφ = Φ · U . The potential vector fieldΦ(r , t) = Φ(r − r0(t)) is independent ofU . r0(t) is a
convenient reference point fixed in the body. As in§2, we use Bernoulli’s equation (3) to write
the pressure-force on the body surfaceA in terms ofφ , and use the factorizationφ = Φ · U to
write the force as the sum of an acceleration reactionG and a non-acceleration forceG′ , as in
(5). From the multipole expansionφ ∼ 1/rd−1 and it follows thatG′ vanishes when the flow
domain is all ofRd . Thus we get the same formula (as in 3d) for the added mass tensor µi j

from the acceleration-reaction force:

Gi = ρ U̇ j

∮

A
Φ j ni dA ≡ −µi j U̇ j ⇒ µi j = −ρ

∮

A
Φ j ni dA. (15)
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Despite appearances,µi j only depends on the dipole term inφ . The linearity of the boundary
condition inU implies thatci = di j U j is linear inU . The constant source doublet/dipole tensor
di j depends only on the shape of the body. Using eqn. (14) for ci and the boundary condition
on the surface, we obtain

ci = di jU j =
Γ(d

2)

2(d − 2)πd/2

∮

A

[

(n · U)r i − φni
]

dA

=
Γ(d

2)

2(d− 2)πd/2
U j

[∫

body
∂ jr i dV−

∮

A
Φ jni dA

]

=
Γ(d

2)

2(d− 2)πd/2

[

Vbodyδi j +
µi j

ρ

]

U j .(16)

Since this is valid for any velocityU we arrive at a relation betweenµi j and the dipole tensor

µi j = ρ

[

2(d − 2)πd/2

Γ(d/2)
di j − Vbodyδi j

]

. (17)

This expression forµi j shows that it only depends on the dipole part ofφ . It does not involve
integrals and gives a simple way of computingµi j once the dipole term inφ is known. Let
us illustrate this with the example of a (d − 1)-dimensional sphereSd−1

R of radiusa, moving
through fluid inRd . A moving sphere instantaneously centered at the origin induces a dipole
flow field with potentialφ = ci∂ir2−d = −(d − 2)r−d c · r . The multipole tensorsci j , ci jk , . . . are
constant tensors of rank> 1, linear inU . Spherical symmetry of the body denies us any other
vector/tensor from which to construct them, so they must vanish. Thedipole coefficient c may
be self-consistently determined by inserting this formulafor φ in (14). One obtains

ci =
ad

(d − 1)(d − 2)
Ui or di j =

ad

(d− 1)(d − 2)
δi j . (18)

Hence, the added mass tensor for a (d − 1)-sphere of radiusa moving inRd is

µ
sphere
i j = ρ

2πd/2ad

d(d− 1)Γ
(

d
2

)δi j =
(Mass of fluid displaced)

(d − 1)
δi j . (19)

This reduces to the well-known results for planar or 3d flow around a disk or 2-sphere. In§5,
we speculate on the possible relevance of a suitabled→ ∞ limit.

B Added mass effect for compressible potential flow

Treatments of the added mass effect assume for simplicity that the flow is inviscid, incom-
pressible and irrotational. However, physically, it is clear that the effect is present even in
compressible or rotational flow. Indeed, according to our correspondence, density fluctuations
around incompressible flow should correspond to quantum fluctuations around a constant vev
for the scalar field. Moreover, to look for a fluid analogue of the Higgs particle, i.e., a ‘Higgs
wave’ around an accelerated rigid body, we need a generalization of the added mass effect to
compressible flow. As is well known, the resulting flows can bevery complicated. Here we
take a small step by formulating the added mass effect for compressible potential flow around
a rigid body executing purely translational motion at velocity U(t) . We assume the flow is
isentropic so that∇p/ρ = ∇h whereh is specific enthalpy. Euler’s equation∂v

∂t + v · ∇v = −∇h
then implies an unsteady Bernoulli equation for the velocity potentialφ ,

∂tφ + (1/2)v2 + h = constant(t). (20)
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For concreteness, we consider adiabatic motion of an ideal gas so that (p/p0) = (ρ/ρ0)γ where
γ = cp/cv is the adiabatic index andp0, ρ0 are reference pressure and density. Thenh =
[γ/(γ − 1)]p/ρ . Of course,φ andρ are to be determined by solving the Euler and continuity
equations subject to initial and boundary conditions. To identify the added force on the body,
it helps to regard the continuity equation and impenetrableboundary condition on the body,
namely

(∇ρ · ∇ + ρ∇2)φ = −∂tρ and n̂ · ∇φ = n̂ · U, (21)

as a system of inhomogeneous linear equations forφ given ρ and U . The rhs of this system
is linear in U (and ρ ), so formally, the solution of this equation can be expressed as φ =
U ·Φ(r , t) + ψ(r , t) where the potential vector fieldΦ and the supplementary potentialψ are
U -independent but depend onρ . To see why this is true, discretize the system as a matrix
equationA(ρ)φ = b. The upper rows of the matrixA encode the operator∇ρ · ∇ + ρ∇2 while
the lower rows encode ˆn · ∇ . The upper rows of the column vectorb represent−∂tρ and the
lower rows contain ˆn · U , so that we may writeb = b1(ρ) + b2(U) whereb2 is linear in U .
Inverting A gives the desired decomposition.

With the aid of Bernoulli’s equation, the force on the body−
∫

A
pn̂ dA becomes

Fi =

(

γ − 1
γ

) ∫

A
ρ

[

∂tφ +
1
2

v2 − const(t)

]

nidA. (22)

Using our factorizationφ = U · Φ + ψ , the force on the body is the sum of an acceleration
reaction forceGi = −µi j U̇ j and a non-acceleration forceG′ :

Gi =
(γ − 1)
γ

U̇ j

∫

A
ρΦ jni dA and G′i =

γ − 1
γ

∫

A
ρ

[

U jΦ̇ j + ψ̇ +
v2

2
− const(t)

]

ni dA. (23)

The added mass tensorµi j = − (γ−1)
γ

∫

A
ρΦ jni dA. To find µi j for a given body, we need to

solve for ρ and v using the equations of motion. Unlike for constant density,where µi j is
constant, here it could change with time and location due to density variations arising from
the acceleration of the body. Corrections to the added mass due to density fluctuations are
analogous to corrections to theW and Z boson masses due to quantum fluctuations around a
constant scalar vev. This interesting phenomenon will be further investigated elsewhere.
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