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Abstract

In this Letter certain fundamental physics issues relating to recent theories of so-called “spin
quantum plasmas” are examined. It is shown that the derivations and some of the results obtained
in these theories contradict well-established principles of quantum mechanics, especially in their
treatment of fermions and spin. The analysis presented suggests that the aforementioned theories
do not apply for any range of temperatures at the stated densities and furthermore fail to make
any experimentally accessible and testable predictions.
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In the last few years a number of publications have appeared in which spin-1/2 quantum plasma
equations (sometimes called Spin Quantum Hydro Dynamics [SQHD]) are derived and applied to
various problems; typical works are [1, 2, 3] and many papers cited there and in the review[4]. The
purpose of this Letter is to raise certain fundamental quantum physics issues which appear to have
been overlooked in these works. For example, the recent review article[4], quotes identical formulae
for the “spin magnetisation density” (in Eq.(18), p. 890 and on p. 901 following Eq.(97) et seq.), cit-
ing [1], in apparent contradiction to its own stated views on the theory of the degenerate electron gas.
Unless clarified and related to well-known works in the quantum theory of Fermi systems[5, 6, 7], the
results derived in these works would appear to be inconsistent with well-established physical prin-
ciples. Indeed, critiques of this nature, related to (but not identical with) the point of view adopted
here, have already appeared [cf. Vranjes et al, [11], Bonitz et al, [12]]. Our work differs from [11]
in its specific focus on the erroneous treatment of fermions in the cited papers on spin quantum plas-
mas. It also differs from the important critical study by Bonitz et al[12] where the authors compare
“quantum hydrodynamical” (QHD) predictions [13] [though not those associated with intrinsic spin
effects, which is the subject of this Letter] with density functional (DFT)-based simulations.
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We consider first the paper by Marklund and Brodin[1], as this appears to form the basis for all
subsequent works in this area. The authors make the explicit claim: “In this Letter, we present for
the first time the fully nonlinear governing equations for spin-1/2 quantum electron plasmas. Starting
from the Pauli equation describing the non relativistic electrons, we show that the electron-ion plasma
equations are subject to spin-related terms. These terms give rise to a multitude of collective effects,
of which, some are investigated in detail. Applications of the governing equations are discussed,
and it is shown that under certain circumstances the collective spin effects can dominate the plasma
dynamics.”[our italics].

We have two major (related) concerns with the theory of spin quantum plasmas, as presented in
the papers cited. Firstly, the derivation of the “spin quantum plasma equations” in [1] starts with the
independent electron approximation in which the Coulomb interaction of the electron gas is neglected
and the single-electron, non-relativistic Pauli equation is invoked [cf. Eq.(1) of [1]]. This assumption
was also made by Sommerfeld in his theory of the free-electron gas in a metal [5, 6, 7, 8, 9, 10]. How-
ever, in the paragraph preceding this equation, the authors state that they assume [unlike Sommerfeld
who explicitly invokes Fermi-Dirac(FD) statistics for the electron gas] the simple product represen-
tation of the N -electron wave function of the system. They state, apparently in justification: “Thus,
we will here neglect the effects of entanglement and focus on the collective properties of the quantum
electron plasma”. In our view, it is a serious error to ignore anti-symmetrization of the many-electron
wave function and FD statistics. This plainly contradicts Pauli’s exclusion principle. The latter is
not only a mathematical consequence of relativistic quantum field theory via Pauli’s own “spin and
statistics” theorem [14], but is also supported by numerous experimental results accumulated over a
century on fermions in atomic and condensed matter physics.

The authors’ neglect of the special type of electronic correlation implied by the exclusion princi-
ple, especially when dealing with any many-identical-fermion system when the temperature is well
below the Fermi temperature [defined for example in [6, 7, 8] and in Eq.(2) below] vitiates their
theory. This neglect is contrary to the fundamental principle of condensed matter theory, that when
the electron thermal de Broglie wavelength [λ = ~

√
2π

(meT )1/2 ] is of order or larger than the inter elec-

tron distance [n−1/3
e , see [10], p. 226], the exclusion principle constraints and FD statistics are not

dispensable luxuries but mandatory necessities. Marklund and Brodin’s use of the simple product
wave function is only acceptable for distinguishable fermions or when the Fermi gas is so hot that
Maxwell-Boltzmann(MB) statistics applies - as it does in fusion plasmas, for example, where MB
distributions describe thermodynamic equilibria and approximate local thermodynamic equilibrium
under collisional conditions [cf.[8],p.42]. This can happen only when λ � n−1/3

e . When this con-
dition fails to hold, it is essential to use Slater determinantal wave functions or a second-quantized
formalism in working out all average, fluid properties of the electron gas [5, 6]. The failure to do so
can result in some strange properties being assigned to the electron gas, at variance with both standard
theory and experiments. It is well-known[op. cit. [5, 6, 7, 8, 9]] that the negligible electronic contri-
bution to the specific heat and magnetic properties such as the smallness of Pauli spin-paramagnetism
and Landau diamagnetism are direct consequences of FD statistics of the electron gas.

Secondly, we note that an immediate consequence following from the authors’ neglect of FD
statistics for the electron gas is that, their formula for the magnetisation of the electron plasma-
treating, as they do, the ion fluid as a uniform neutralising background for simplicity- is grossly in
error. According to them, the magnetisation spin current is,

jsp = ∇ × [2nµBS] (1)

Here, n is the conduction electron number density and S is the local average “spin vector” of the elec-
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trons at the elementary volume over which n is reasonably constant. Marklund and Brodin identify
µBB0/T as a dimensionless measure of quantum effects. Here B0 is the ambient external magnetic
field, µB = e~

2me
= 9.4×10−24 A.m2 , the Bohr magneton and T , the electron temperature (we measure

temperatures in energy units and use SI units throughout). The numerator is evidently the intrinsic
electron spin-magnetic moment energy in the external field. It is known that the classical thermal
Larmor gyro motion of the electron in a magnetic field is associated with a Larmor gyromagnetic mo-
ment such that µLB0 = E⊥ = 2

3 E ' T . Hence, the parameter in question is simply, µB/µL . Marklund
and Brodin correctly state that in high temperature plasmas or in the presence of significant fields,
this parameter is small and hence “spin quantum effects” are negligible in comparison with the usual
gyromagnetic moment effects. What they fail to mention is the existence and physical significance of
the degeneracy parameter, defined by D = T/TF , where the Fermi temperature

TF =
~2

2me
(3π2 n)2/3. (2)

In order to apply MB statistics, it is essential that D � 1[8]. This “degeneracy condition” for FD
statistics is equivalent to the principle stated earlier; thus, D � 1 implies, λ � n−1/3 . In metals,
with n ' 1028 to 1029 m−3 , TF is a few eV [cf. Table 1.1 and Table 2.1 in [6]]. Hence at room
temperature, the conduction electron gas is highly degenerate [D ' 10−2 ] and the authors’ claim
that at “low temperatures” quantum spin effects could be important is essentially incorrect since the
spin magnetisation ought, by Pauli “blocking”, to be of order 2(n+ − n−)µBb , where b is the unit
vector in the local magnetic field direction and n± = n

2 [1 ± 3µBB0
2TF

] . Here n± refer respectively to the
number of electrons per unit volume with their intrinsic spin vectors parallel and antiparallel to the
local magnetic field. Note that n+ + n− = n; n+−n−

n = O[ T
TF

] [cf. [8, 9, 10]]. Physically this means
that at temperatures “low” compared to the Fermi temperature [cf. Eq.(2)], which depends solely on
the electron number density and physical constants, only electrons in a layer close to the Fermi level
[estimated by n( T

TF
)] contribute to the magnetisation current[6, 7]. This is also the direct consequence

of the kinetic theory of Fermi liquids [cf. [5]] from which any reasonable fluid theory of the electron
plasma ought to be derived using an appropriate Chapman-Enskog asymptotic expansion in powers
of the relevant Knudsen number (inverse collisionality parameter measuring the departure from local
thermodynamic equilibrium [9, 5]). Essentially the same arguments underly the standard theories
of electronic specific heats and Pauli spin paramagnetism and Landau diamagnetism. This analysis
of the situation shows that the “average intrinsic spin vector” S appearing in the above equations
cannot possibly be of unit magnitude but must be of order [ n+−n−

n ]b , where b is a unit vector. On
the other hand, when T � TF and MB statistics apply [as happens in all fusion and astrophysical
plasmas except in white dwarf cores], the quantum intrinsic spin effects are entirely negligible both
on individual electrons and collectively. Under these conditions, an individual electron possesses a
“Larmor magnetic moment”, µL = T/B in a magnetic field of magnitude B . The magnetic moment
from its intrinsic spin has a magnitude µB = e~

2me
. It is clear that the force felt by the electron in

an inhomogeneous field is many orders of magnitude larger than that due to its intrinsic spin in any
magnetic field since for all cases µL � µB , as noticed previously and also noted by Marklund and
Brodin.

In view of the above discussion, it is easy to see that the papers by Mahajan and collaborators[2, 3]
suffer from contradictory assumptions in dealing with the electron gas in a metal. On the one hand
they explicitly assume that S is a unit vector which leads to a very large estimate for the “spin
magnetisation current density” given by the Marklund-Brodin formula Eq.(1) quoted above. Thus,
we may estimate, jsp ' 2n µB

LS
' 105 to 106A.m−2 , where, LS is the gradient length-scale of the

spin field. We note that equilibrium conditions require that this should also be of the same order
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as the density length-scale. The above estimate corresponds to a deliberately chosen “macroscopic”
scale of 1m. Any smaller choice [e.g. LS ' 10−2 m] will make the current density estimate even
larger! This corresponds to virtually a “saturation magnetic induction” of 0.1 to 1 Tesla, a value
more typical of core electrons in a ferromagnetic material. On the other hand, the authors require
an extremely low temperature T ' 30K in order to prevent electron-electron and electron-phonon
collisions totally damping the electromagnetic wave that moves into their highly inhomogeneous spin
density-dominated medium. This low collision rate is due essentially to Pauli blocking which was
not taken into account in their equations. The problem is that their formalism and equations are valid
neither at high temperatures nor at low temperatures. At high temperatures Larmor gyromagnetic
moments will dominate over quantum spin effects and Coulomb collisions imply very short mean-
free paths at high densities. At low temperatures the exclusion principle makes the assumption of
a unit S invalid. Furthermore, nowhere do the authors discuss the basic equilibrium state involving
significant spin density gradients. In particular, even if their equations are valid, an experimentalist
attempting to verify the predicted instability of the light wave would want to know how one might
create such a medium. The assumption by the authors of a saturation magnetisation for the degenerate
electron gas comes at the cost of Fermi energy, and hence corresponds to creating a highly excited
state of the system. Also required is the formulation of the Poynting theorem which describes the
pumping of the wave at the expense of the spin gradients. The authors’ model does make a startling
prediction: if one shines light (above the cut-off frequency) at a suitable metal at low temperatures
with a suitably prepared internal magnetic field of a very large magnitude (of order 1 Tesla) and spin-
density field S of large spatial variability, it would amplify, i.e., lase. Our estimates of the spin current
density taking into account the conditions suggest that this result is incorrect. Their model equations
do not consider the energy equation [more importantly, the equation of state] of the electron gas they
discuss, nor the possible strong damping effects of the neglected electron-electron interactions. It is
clear that their equations are not derivable from the Fermi-liquid kinetic/transport equations discussed
in the existing literature[5], since our estimates show that in the relevant limits, the terms involving
intrinsic spin are far too small. Indeed, fluid-like models can only be applied when the wave length
of any perturbation is significantly large compared with the inter particle distance. A comparison
between the pressure gradient terms and the “Bohm potential” term [cf. [4], Eqs.(17,27)] reveals
that when this condition is satisfied, Bohm potential is negligible and certainly less important than
neglected off-diagonal stresses due to interactions. This is demonstrated by the estimates:∣∣∣∣∣− 1

ne
∇PF

∣∣∣∣∣ ' k δTF '
π2/3

3me
~2n−1/3

e k δne (3)

and the Bohm term ' ~2

2me
k3
(
δne
ne

)
where k is a typical wave number and δne is the density perturba-

tion. We see that in order for the Bohm term to be comparable with the usual scalar Fermi pressure,
we must have 1/k ' n−1/3 , when fluid models will certainly breakdown!

In conclusion, the “spin quantum plasma theories” (SQHD) proposed in Refs.[1, 2, 3] and em-
ployed apparently without change in [4] and many authors cited therein appear to be fundamentally
flawed in that some of the underlying assumptions employed in their derivation and some of the con-
sequent results contradict well-established principles of quantum mechanics. Our “Occam’s Razor”
position regarding SQHD models is as follows: a “reduced” hydrodynamic model based on free-
electron gas ideas [thereby neglecting exchange effects and electron-phonon interactions so important
for phenomena such as superconductivity] and deriving quantum spin effects from the Pauli equa-
tion invoking FD and MB statistics in appropriate limits cannot contain physics different from those
already incorporated in Boltzmann equations modelling Fermi Liquid Theory. The new, startling
effects, claimed by the proponents of SQHD, seem contradictory to the simple estimates presented
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and hence to FLT itself. Thus, in our view, in the absence of an acceptable, physically rigorous,
Chapman-Enskog derivation of fluid equations based on the extant, reduced Boltzmann-kinetic (FLT)
approaches, the applicability of these theories to experimental situations and the predictions of SQHD
appear to be questionable. Indeed, our estimates already suggest that such a rigorous derivation will
only lead to small corrections negligible in comparison with interaction effects not taken into account
in the free-particle Hamiltonians used in Refs.[1, 2, 3, 4]. It is noteworthy that so far we have found
only a single prediction[2] based on SQHD which could be tested in principle against experiment.
We note that other authors [11, 12] have criticised QHD and have pointed to the dangers of misusing
fluid models outside their MB realms of validity. Such models apply only at sufficiently high temper-
ature, to classical, low density gaseous plasmas, close to local thermodynamic equilibrium. They are
relevant only to long wavelength phenomena, and cannot generally describe collective kinetic effects
like Landau damping/phase-mixing. A discussion of neutron star applications is outside the scope of
this work.

We thank Dr. R. Ganesh for his critical reading of the manuscript and his useful suggestions. We
are grateful to numerous colleagues for valuable discussions and suggestions. The work of GSK was
supported by a DST Ramanujan Fellowship of the Govt. of India.
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