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Abstract

The integrable 1+1-dimensional SU(2) principal chiral model (PCM) serves as a toy-model for 34-1-
dimensional Yang-Mills theory as it is asymptotically free and displays a mass gap. Interestingly, the
PCM is ‘pseudodual’ to a scalar field theory introduced by Zakharov and Mikhailov and Nappi that is
strongly coupled in the ultraviolet and could serve as a toy-model for non-perturbative properties of
theories with a Landau pole. Unlike the ‘Euclidean’ current algebra of the PCM, its pseudodual is
based on a nilpotent current algebra. Recently, Rajeev and Ranken obtained a mechanical reduction
by restricting the nilpotent scalar field theory to a class of constant energy-density classical waves
expressible in terms of elliptic functions, whose quantization survives the passage to the strong-
coupling limit. We study the Hamiltonian and Lagrangian formulations of this model and its classical
integrability from an algebraic perspective, identifying Darboux coordinates, Lax pairs, classical r-
matrices and a degenerate Poisson pencil. We identify Casimirs as well as a complete set of conserved
quantities in involution and the canonical transformations they generate. They are related to Noether
charges of the field theory and are shown to be generically independent, implying Liouville
integrability. The singular submanifolds where this independence fails are identified and shown to be
related to the static and circular submanifolds of the phase space. We also find an interesting relation
between this model and the Neumann model allowing us to discover a new Hamiltonian formulation
of the latter.

1. Introduction

Itis well-known that the 141-dimensional SU(2) non-linear sigma model (NLSM) and the closely related
principal chiral model (PCM) for the SU(2)-valued field g(x, ) are good toy-models for the physics of the strong
interactions and 3+ 1-dimensional Yang-Mills theory. They have been shown to be asymptotically free and to
possess a mass-gap [1]. Non-perturbative results concerning the S-matrix and the spectrum of the 1+1-
dimensional NLSM and PCM have been obtained using the methods of integrable systems by Zamolodchikov
and Zamolodchikov [2] (factorized S-matrices), by Polyakov and Wiegmann [3] (fermionization) and by
Faddeev and Reshetikhin [4] (quantum inverse scattering method). Interestingly, a ‘pseudodual’ to the PCM
introduced in the work of Zakharov and Mikhailov [5] and Nappi [6] is strongly coupled in the ultraviolet,
displays particle production and has been shown by Curtright and Zachos [7] to possess infinitely many non-
local conservation laws. Thus, this dual scalar field theory could serve as a toy-model for studying certain non-
perturbative aspects of 3+1-dimensional A¢* theory which appears in the scalar sector of the standard model.
Before proceeding with our discussion of this dual scalar field theory, it is interesting to note that variants of
this model, their integrability and the pseudoduality transformation have been investigated in various other
contexts. For instance, a generalization to a centrally-extended Poincaré group leads to a model for gravitational
plane waves [8]. On the other hand, a generalization to other compact Lie groups shows that the pseudodual
models have 1-loop beta functions with opposite signs [9]. Interestingly, the sigma model for the non-compact
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Heisenberg group is also closely connected to the above dual scalar field theory [10]. Similar duality
transformations have also been employed in the AdSs x S’ superstring sigma model in connection with the
Pohlmeyer reduction [11] and in integrable A-deformed sigma models [12]. The above dual scalar field theory
also arises in a large-level and weak-coupling limit of the Wess-Zumino-Witten model and is also of interest in
connection with the theory of hypoelliptic operators [13]. In another direction, attempts have been made to
understand the connection (or lack thereof) between the absence of particle production, integrability and
factorization of the tree-level S-matrix in massless 2-dimensional sigma models [14].

Returning to the SU(2) principal chiral model, we recall that it is based on the semi-direct product of an
su(2) current algebra and an abelian algebra (‘Euclidean’ current algebra) [15]. On the other hand, its dual is
based on a step-3 nilpotent algebra of currents I = g~'¢/ /X and ] = g~'¢/\, where X isa dimensionless
coupling constant (see equation (19)). Systems admitting a formulation based on quadratic Hamiltonians and
nilpotent Lie algebras are particularly interesting, they include the harmonic and anharmonic oscillators as well
as field theories such as A¢*, Maxwell and Yang-Mills [13]. Interestingly, the equation of motion (EOM) of the
PCM (J = AI’) can be solved by expressing the currents I = ¢/Xand] = ¢’ in terms of an su(2)-valued scalar
field ¢(x, t). The zero-curvature consistency condition (I — J'/A = A[I, J]) then becomes a non-linear wave
equation:

¢ ="+ Ao, ¢'l. (1)
Recently, Rajeev and Ranken [13] studied a class of constant energy-density ‘continuous wave’ solutions to
(1) obtained via the ansatz

@(x, t) = eXR(t)e ™ + mKx where K = 1](% )

and R(#) isa traceless 2 x 2 anti-hermitian matrix. The continuous waves depend on two constants, a
wavenumber k and a dimensionless parameter m. The reduction of the nilpotent scalar field theory to the
manifold of these continuous waves is a mechanical system, the ‘Rajeev-Ranken’ (RR) model, with three degrees
offreedom R, = Tr (R, /2i) where Tr X = —2 tr X. Interestingly, the continuous wave solutions remain
non-trivial even in the limit of strong coupling so that their quantization could play a role in understanding the
microscopic degrees of freedom of the corresponding quantum theory. In [13], conserved quantities of the RR
model were used to reduce the EOM for R(¢) to a single non-linear ODE which was solved in terms of the
Weierstrass @ function.

In this article, we study the classical dynamics of the RR model focussing on its Hamiltonian formulation and
aspects of its integrability especially through its algebraic structures. We begin by reviewing the passage from the
PCM to the nilpotent scalar field theory, followed by its reduction to the RR model in sections 2 and 3. Just as the
canonical Poisson brackets (PBs) between I and its conjugate momentum in the Lagrangian of the PCM lead to
the Euclidean Poisson algebra among currents I and J [15], the canonical PBs between ¢ and its conjugate
momentum are shown to imply a step-3 nilpotent Poisson algebra among these currents. In section 4.3, we
identify canonical Darboux coordinates (R,;, kP,) on the six-dimensional phase space of the RR model and a
Hamiltonian formulation thereof. These coordinates are used to deduce a Lagrangian formulation, as a naive
reduction of the field theoretic Lagrangian does not do the job. Interestingly, since the evolution of R; decouples
from that of the remaining variables, it is possible to give an alternative Hamiltonian formulation in terms of the
variables L = [K, R] + mK and S = R + K /) introduced by Rajeev and Ranken (see section 4.1). The latter
include a non-dynamical constant L; = —mk but have the advantage of satisfying a step-3 nilpotent Poisson
algebra which may be regarded as a finite dimensional version of the current algebra of the scalar field theory.
Remarkably, the EOM in terms of the S and L variables admit another Hamiltonian formulation with the same
Hamiltonian but PBs that are a finite dimensional analogue of the Euclidean current algebra of the PCM.
Moreover, the nilpotent and Euclidean Poisson structures are compatible and combine to form a Poisson pencil
as shown in section 4.2. However, all the resulting Poisson structures are degenerate so that this Poisson pencil
does not lead to a bi-Hamiltonian structure. In section 5.1, we find Lax pairs and classical r-matrices with respect
to both Poisson structures and use them in section 5.2 to identify a maximal set of four conserved quantities in
involution (¢, m, s?and h). These conserved quantities are quadratic polynomials in Sand L. While ¢ and m are
Casimirs of the nilpotent S-L Poisson algebra, s> and h are Casimirs of the Euclidean Poisson algebra. While
hk? = Tr SLisloosely like helicity, the Hamiltonian is proportional to s?%k? = Tr S? upto the addition of a term
involving c¢. In section 5.3, we find the canonical transformations generated by these conserved quantities and
the associated symmetries. In section 5.4 we also relate three of the conserved quantities to the reduction of
Noether charges of the field theory. In section 5.6, we show that the conserved quantities are generically
independent and (a) identify submanifolds of the phase space where this independence fails and (b) the
corresponding relations among conserved quantities. We also discover that these singular submanifolds are
precisely the places (found in section 5.5) where the equations of motion may be solved in terms of circular
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rather than elliptic functions. The independence and involutive property of the conserved quantities imply
Liouville integrability of the RR model [16]. Interestingly, we also find a mapping of variables that allows us to
relate the EOM and Lax pairs of the RR model to those of the Neumann model [17, 18]. In section 6 this map is
used to propose a new Hamiltonian formulation of the Neumann model with a nilpotent Poisson algebra.
Despite some similarities between the models, there are differences: while Pand Jin the Neumann model are a
projection and a real anti-symmetric matrix, the corresponding S and L variables of the RR model are anti-
hermitian, so that the Poisson structures as well as r matrices of the two models are distinct. We conclude with a
brief discussion in section 7.

2. From the SU(2) PCM to the nilpotent scalar field theory

The 141-dimensional principal chiral model is defined by the action
1 1
— fo—1 — —15\2 _ —15/\2
Secre = 37 [ Tr (0,0%g Nasde = = [ Tr [~ 9? - (¢ '/l 3)

with primes and dots denoting x and ¢ derivatives. Here, A > 0 is a dimensionless coupling constant and
Tr =—2 tr . The corresponding equations of motion (EOM) are non-linear wave equations for the components
of the SU(2)-valued field g and may be written in terms of the Lie algebra-valued time and space components of
theright current, r, = g7 ¢ and , = g7 '¢”:
§—8"=48'¢—¢g'g7g or ip—1 =0 )
An equivalent formulation is possible in terms of left currents [, = (0,,8) gil. Note that ryand r; are
components of a flat connection; they satisfy the zero curvature ‘consistency’ condition

i — 1o+ [, n] = 0. 5)

Following Rajeev and Ranken [13], we define right current components rescaled by A, which are especially useful
in discussions of the strong coupling limit:

I = %n and ] = iro. (6)

In terms of these currents, the EOM and zero-curvature condition become

J=AI' and = \[IJ] + i}/. )
These EOM may be derived from the Hamiltonian following from Spcy (upon dividing by A),
_1 2y 1p
HPCM = 2 Trfdx()J + )\]) (8)
and the PBs:
{Iu(x)) Ib(y)} =0, {]a(x)’ ]b(y)} = _Azfabc]c(x)ﬁ(x - }’)
and {J,(x), (1)} = —XNeawe L. (x)6(x — y) + 806 (x — y) for a, b=1,2, 3. ©)

Since both I'and J are anti-hermitian, their squares are negative operators, but the minus signin Tr ensures that
Hpcy > 0. The Poisson algebra (9) is a central extension of a semi-direct product of the abelian algebra
generated by the I, and the su(2) current algebra generated by the /.. It may be regarded as a (centrally extended)
‘Euclidean’ current algebra. These PBs follow from the canonical PBs between I and its conjugate momentum in
the action (3) [15]. The multiplicative constant in {], J;,} is not fixed by the EOM. It has been chosen for
convenience in identifying Casimirs of the reduced mechanical model in section 4.2.

The EOM j = AIis identically satisfied if we express the currents in terms of a Lie algebra-valued
potential ¢:

I= % and J= ¢’ or r, = Ae,0¥¢ with 8w = ((1) _01) and €% =1. (10)

The zero curvature condition (I — J'/A = A[I, J]) now becomes a 2nd-order non-linear wave equation for the
scalar ¢ (with the speed of light re-instated):

& = 2" + A, ). (11)

The field ¢ is an anti-hermitian traceless 2 x 2 matrix in the su(2) Lie algebra, which may be written as a linear
combination of the generators t, = ¢, /2i where g, are the Pauli matrices:

3



10P Publishing

J. Phys. Commun. 3 (2019) 025005 G S Krishnaswamiand T R Vishnu

qﬁ:(ﬁat,,:%q%a with ¢, =itr(¢ o) =Tr(pty) for a=1,2,3. (12)
i

The generators are normalized according to Tr (¢,1,) = &, and satisfy [t,, ] = €z .. Asnotedin[13],a
strong-coupling limit of (11) where the A[¢, ¢'] term dominates over ¢”, may be obtained by introducing the
rescaled field ¢ (&, 7) = N2/3¢(x, t), where & = xand 7 = A/3t. Taking A — 0o holding ¢ fixed gives the
Lorentz non-invariant equation ¢ = c[¢,, sz]. Contrary to the expectations in [13], the ‘slow-light’ limit
¢ — 0holding A fixed is not quite the same as this strong-coupling limit.

The wave equation (11) follows from the Lagrangian density (with ¢ = 1)

_ L 12 l y nl — L | l w
£= T (567 7 + 2016, 1) = 50,:6,0%, + Leme 60,0, (3
The momentum conjugate to ¢pis m = ¢/\ — (1/3)[¢, ¢'] and satisfies
s ¢_/, E y / l Yy — ¢_N Q / A ! Q ’ / A "
== + 3[¢,¢]+ 3[¢,¢] 5 + 3 [, ¢'] + 3[7T,¢]+ 5 e, '], ¢'1 + 9[[(]5,(25 1, &1
(14)
The conserved energy and Hamiltonian coincide with Hpcy of (8):
_1 52 /2 _1 1 / )2 1.,
E 2)\Trfdx[¢ 4+ ¢ and H 2Trfdx[)\(7r+3[¢,¢] + 50 ] (15)

If we postulate the canonical PBs
{80, 6,(N} =0, {G(x), m(P)} = pa6(x — ) and {m(x), m()} =0, (16)

then Hamilton’s equations ¢ = {¢, H}and 7= = {m, H} reproduce (14). The canonical PBs between ¢and
imply the following PBs among the currents I, J and ¢:

o), (N} =0, {1,(x), Jy(»)} = 0ap0:0(x — )y {0,(x), I(¥)} = Sap0(x — ),

{6.(x); ()} =0 and {Li(x), ,(»)} = E‘;bc e ®) + (8.(x) = ¢ (1D 6(x — y). a7)
These PBs define a step-3 nilpotent Lie algebra in the sense that all triple PBs such as
{10, (N}, L(2)}, Ta(w)} (18)

vanish. Note however that the currents I and J do not form a closed subalgebra of (17). Interestingly, the EOM (7)
also follow from the same Hamiltonian (8) if we postulate the following closed Lie algebra among the currents

{]a(x)> ]b(y)} =0, {Ia(x)> ]b(y)} = 5ubax5(x - )’) and {Ia(x); Ib()/)} = Eabc]cé(x - )’) (19)

Crudely, these PBs are related to (17) by ‘integration by parts’. As with (17), this Poisson algebra of currents is a
nilpotent Lie algebra of step-3 unlike the Euclidean algebra of equation (9).

The scalar field with EOM (11) and Hamiltonian (15) is classically related to the PCM through the change of
variables r, = A¢,, 0V¢. However, as noted in [7], this transformation is not canonical, leading to the moniker
‘pseudodual’. Though this scalar field theory has not been shown to be integrable, it does possess infinitely many
(non-local) conservation laws [7]. Moreover, the corresponding quantum theories are different. While the PCM
is asymptotically free, integrable and serves as a toy-model for 341D Yang-Mills theory, the quantized scalar
field theory displays particle production (a non-zero amplitude for 2— 3 particle scattering), has a positive 3
function [6] and could serve as a toy-model for 3+1D \¢* theory [13].

3. Reduction of the nilpotent field theory and the RR model

Before attempting a non-perturbative study of the nilpotent field theory, it is interesting to study its reduction to
finite dimensional mechanical systems obtained by considering special classes of solutions to the non-linear
wave equation (11). The simplest such solutions are traveling waves ¢(x, £) = f(x—vt) for constant v. However,
for such ¢, the commutator term — A[vf’, f'] = 0 so that traveling wave solutions of (11) are the same as those
of the linear wave equation. Non-linearities play no role in similarity solutions either. Indeed, if we consider the
scaling ansatz o, ) = K7¢(x, t) where ¢ = Aoxand 7 = A Pt, then (11) takes the form:

Km2g — N2 — NTETIN[G, §] = 0. (20)

This equation is scale invariant when a = Fand~y = 0. Hence similarity solutions must be of the form
d(x, ) = YP(n) wheren = x/tand ¥ satisfies the linear ODE

7727/’” _ 1/}// + 2777/}/ — _)\UM/) q//] = 0. 21
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Recently, Rajeev and Ranken [13] found a mechanical reduction of the nilpotent scalar field theory for which
the non-linearities play a crucial role. They considered the wave ansatz:

d(x, t) = eFR(t)e ™ + mKx with K = ék@ (22)

which leads to ‘continuous wave’ solutions of (11) with constant energy density. These screw-type configurations
are obtained from a Lie algebra-valued matrix R(f) by combining an internal rotation (by angle ocx)and a
translation. The constant traceless anti-hermitian matrix K has been chosen in the 3rd direction. The ansatz (22)
depends on two parameters: a dimensionless real constant 7 and the constant K; = —k with dimensions of a
wave number which could have either sign. When restricted to the submanifold of such propagating waves, the
field equations (11) reduce to those of a mechanical system with 3 degrees of freedom which we refer to as the
Rajeev-Ranken model. The currents (10) can be expressed in terms of R:

I= ieK"Re*K" and ] = e®([K, R] + mK)e X, (23)

These currents are periodic in x with period 27 /|k|. We work in units where ¢ = 1 so that and J have
dimensions of a wave number. If we define the traceless anti-hermitian matrices

L =[K,R] + mK and S:R+§K, (24)

then it is possible to express the EOM and consistency condition (7) as the pair
L=[K,S] and S = \[S, L]. (25)
In components (L, = Tr (L t,) etc.), the equations become
Li=kS;, Ly=-kS, L;=0,
S1=A(S2Ls — $3Ly), Sy = A(S3L1 — SiL3) and S5 = A(S1Ly — S,Ly). (26)
Here, L; = —m kisa constant, but it will be convenient to treat it as a coordinate. Its constancy will be encoded

in the Poisson structure so that it is either a conserved quantity or a Casimir. Sometimes it is convenient to
express L, , and Sy , in terms of polar coordinates:

Ly =krcosf, L,=krsinf, S =kpcos¢ and S, = kpsin¢. 27)

Here, rand pare dimensionless and positive. We may also express L and S in terms of coordinates and velocities
(hereu = R3/k — 1/)\):

k —m Rz + ZRI 1 uk Rl — 1R2
L=— . and S=—| . . or
2i\R, — iR m 2i\R, + iR, —uk

L1 = kRz, L2 = —le, L3 = —H’lk, Sl = Rl, Sz = Rz and S3 = uk. (28)

Itis clear from (24) that L and S do not depend on the coordinate R;. The EOM (25, 28) may be expressed as a
system of three second order ODEs for the components of R(#):

R] = )\k(RlR3 — mRz) — szl) Rz = Ak(R2R3 =+ le) — szz and R3 = _T)\k(Rlz + Rzz)t (29)

Rajeevand Ranken used conserved quantities to express the solutions to (29) in terms of elliptic functions. Here,
we examine Hamiltonian and Lagrangian formulations of this model, certain aspects of its classical integrability
and explore some properties of its conserved quantities. We also relate this model to the Neumann model and
thereby find a new Hamiltonian-Poisson bracket formulation for the latter.

4. Hamiltonian, Poisson brackets and Lagrangian

4.1. Hamiltonian and PBs for the RR model

This mechanical system with 3 degrees of freedom and phase space M¢_; (RS with coordinates L,, S,,) can be
given a Hamiltonian-Poisson bracket formulation. A Hamiltonian is obtained by a reduction of that of the
nilpotent field theory (15). From (22), we have Tr ¢* = TrR*and Tr ¢ = Tr (K, R] + mK)2. Thusthe
ansatz (22) has a constant energy density and we define the reduced Hamiltonian to be the energy (15) per unit
length (with dimensions of 1 /area):

2 2 2 2
H=— %Tr [(s - %K) + LZ] _ % pheg B %[Rj + QR+ R+ m). (30)
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We have multiplied by A for convenience. PBs among S and L which lead (25) are given by
{Lm Ly }I/ =0, {Saa Sp }1/ = AéapcLe and {Sm Ly }l/ = —€ac K. (31)

We may view this Poisson algebra as a finite-dimensional version of the nilpotent Lie algebra of currents I and J
in (19) with K playing the role of the central 6’ term. In fact, both are step-3 nilpotent Lie algebras (indicated by
{, -}, in the mechanical model) and we may go from (19) to (31) via the rough identifications (up to conjugation
by e*):

Jo— Loy I, — i(sa - %)) 6abax6(~x - )’) — —éeaprc K and {>} - A{'>'}1/- (32)

Note that the PBs (31) have dimensions of a wave number. They may be expressed as { f, g}, = 7820, f g
where the anti-symmetric Poisson tensor field 2o = (0 A|JA B)withthe3 x 3blocks Ay = —eupc K,
and Bub = /\5ubch-

This Poisson algebra is degenerate: 2( has rank four and its kernel is spanned by the exact 1-forms d L; and
d(S; + (\/k) (L12 + L22) /2). The corresponding center of the algebra can be taken to be generated by the
Casimirs mk? = Tr KLand ck? = Tr ((L*/2) — (KS/\)).

Euclidean PBs: The L-S EOM (25) admit a second Hamiltonian formulation with a non-nilpotent Poisson
algebra arising from the reduction of the Euclidean current algebra of the PCM (9). It is straightforward to verify
that the PBs

{Sa> Sple = 0, {La, Lp}e = —AéapcLe and {Lg, Sple = — AeapeSe (33)

along with the Hamiltonian (30) lead to the EOM (25). This Poisson algebra is isomorphic to the Euclidean
algebrain 3D (e(3) or is0(3)) a semi-direct product of the simple s11(2) Lie algebra generated by the L, and the
abelian algebra of the S,,. Furthermore, it is easily verified that s?%k* = Tr S?and hk?> = Tr SL are Casimirs of
this Poisson algebra whose Poisson tensor we denote 7. It follows that the EOM (25) obtained from these PBs are
unaltered if we remove the Tr S? term from the Hamiltonian (30). The factor A in the {L,, S;}. PBis fixed by the
EOM while thatin the {L,, L, }. PB is necessary for h to be a Casimir.

Formulation in terms of real antisymmetric matrices: It is sometimes convenient to re-express the 2 x 2 anti-
hermitian su(2) Lie algebra elements L, Sand Kas 3 X 3 real anti-symmetric matrices (more generally we would
contract with the structure constants):

Ly= %EklmLm with L; = Ejklf:kl and similarly for S and K. (34)
The EOM (25) and the Hamiltonian (30) become:
f=-2[& 38, §=-2)\S5,I] and H= —tr (§ — R/\? + ID. (35)

Moreover, the nilpotent () (31) and Euclidean (¢) (33) PBs become

- o~ A ~ - ~ -
{Suts Spqlv = ;(5qu1>1 — Opilig + OqiLiy — Op L),

. 1 . _ 5 _ .
{Ski> Lpghy = *E(équpl — 0piKig + 6qKip — O1pKgp) and {Lys, Lpgh, = 0 (36)

-~ pY - - - -
and {Lkl) qu}s = _z(équpl - 6plqu + (SqlLkp - 6kaql))
SO A ~ ~ ~ ~ ~ o~
{Ski> Lpg)e = _z(ékqspl — OpiSkq + 0pSkp — OkpSq) and  { Sy, Spq}e = 0. (37)

Interestingly, we notice that both (36) and (37) display the symmetry {Sy, L4} = {Lu, Spq}. The Hamiltonian
(35) along with either of the PBs (36) or (37) gives the EOM in (35).

4.2. Poisson pencil from nilpotent and Euclidean PBs
The Euclidean {-,-}. (33) and nilpotent {-, -},, (31) Poisson structures among L and S are compatible and
together form a Poisson pencil. In other words, the linear combination

{fgla=0 —a){f gy + off, g} (33)

defines a Poisson bracket for any real c. The linearity, skew-symmetry and derivation properties of the
a-bracket follow from those of the individual PBs. As for the Jacobi identity, we first prove it for the coordinate
functions L, and S,. There are only four independent cases:

6
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{(Sa> Sp} o Scla + cyclic = —(1 — @) Aéegpa((1 — @) €4 Ke + X€geeSe) + cyclic = 0,

{La> Ly} o Leda + cyclic = a?Negpa €aeeLe + cyclic = 0,

{(Sa> S} > Leda + cyclic = —(1 — a)aX€gpg €aeeLe + cyclic = 0 and

f{La> Ly} as Scla + cyclic = aléna (1 — @) €4 Ke + aXegeS,) + cyclic = 0. (39)

The Jacobi identity for the a-bracket for linear functions of L and S follows from (39). For more general
functions of L and S, it follows by applying the Leibniz rule (§; = (L1 5,3, S1,2,3)):
. Of Og Oh .
{{f’ & h}o + CYChC = 3_23_23_§k({{£1’ 5]} @ gk}a + CYCIIC) =0. (40)

As noted, both the nilpotent and Euclidean PBs are degenerate: ¢ and m are Casimirs of {, - },, while those of
{-, -} are s’ and h. In fact, the Poisson tensor 7, = (1 — @)zg + v is degenerate for any avand has rank 4. Its
independent Casimirs maybe chosenas (1 — a)(m/)\) + ahand (1 — a)c — as?/2, whose exterior
derivatives span the kernel of #,,. The vand € PBs become non-degenerate upon reducing the 6D phase space to
the 4D level sets of the corresponding Casimirs. Since the Casimirs are different, the resulting symplectic leaves
are different, as are the corresponding EOM. Thus these two PBs do not directly lead to a bi-Hamiltonian
formulation.

4.3. Darboux coordinates and Lagrangian from Hamiltonian
Though they are convenient, the S and L variables are non-canonical generators of the nilpotent degenerate
Poisson algebra (31). Moreover, they lack information about the coordinate R;. It is natural to seek canonical
coordinates that contain information on all six generalized coordinates and velocities (R,, R,) (see (23)). Such
Darboux coordinates will also facilitate a passage from Hamiltonian to Lagrangian. Unfortunately, as discussed
below, the naive reduction of (13) does not yield a Lagrangian for the EOM (29).

It turns out that momenta conjugate to the coordinates R, may be chosen as (see (28))

kP1 = Sl + %le = R1 + %mkRz, kpz = Sz + %mLz = R2 - %mle and

kA k k A . Ak
kPy=-"Qc —m®) + — =83+ — + —(L> + L) = Ry + ==(R? + R). 41
3 Z(C m<) h 3 \ Zk(l 3) 3 2(1 5) (41)
We obtained them from the nilpotent algebra (31) by requiring the canonical PB relations
{Ra, Ry} =0, {B, Py} =0 and {Ry,, kPy} = 0y for a, b =1, 2, 3. (42)

Note that R, cannot be treated as coordinates for the Euclidean PBs (33), since {R;, R} = (1/k?){L;, L,}. = 0.
Darboux coordinates associated to the Euclidean PBs, may be analogously obtained from the coordinates Q in
the wave ansatz for the mechanical reduction of the principal chiral field g = e***Q(¢)e~** given in table 1

of [13].

Since R; does not appear in the Hamiltonian (30) (regarded as a function of (S, L) or (R, R)), we have taken
the momentain (41) to be independent of R; so that it will be cyclic in the Lagrangian as well. However, the
above formulae for P, are not uniquely determined. For instance, the PBs (42) are unaffected if we add to P, any
function of the Casimirs (¢, m) as also certain functions of the coordinates (see below for an example). In fact,
we have used this freedom to pick P; to be a convenient function of the Casimirs. Moreover, {Rs, kP;} = lisa
new postulate, itis not a consequence of the S—L Poisson algebra.

The Hamiltonian (30) can be expressed in terms of the R’s and P’s:

3 p2 2 2
g = 2 T+ )\Tm(Rle — R,P) + %(RE + Rzz)[Rf + R m?— ;(g - i)] + ”17 (43)
The EOM (25), (28) follow from (43) and the PBs (42). Thus R, and kP;, are Darboux coordinates on the 6D
phase space MS_, = R®. Note that the previously introduced phase space M¢_; is different from M _p, though
they share a 5D submanifold in common parameterized by (L; », S1 2,3) or (Ry 5, P15 3). MSG, 1 includes the
constant parameter Ly = —m kas its sixth coordinate but lacks information on R; which is the ‘extra’ coordinate
in M§_p.

Lagrangian for the RR model: A Lagrangian L., (R, R) for our system may now be obtained via a Legendre

transform by extremizing kP,R, — H with respect to all the components of kP:

3

Linech = %[Z R} — Mmk(RR, — RR) + k(R2 + RH(ARs — k) — mzkz]. (44)
a=1

Rsisacyclic coordinate leading to the conservation of kP;. However Ly, does not admit an invariant form as

the trace of a polynomial in R and R. Such a form may be obtained by subtracting the time derivative of
(Mk/6)(R3(R? 4 RP)) from Lppeq, to get:
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Lo = Tr[% - %([K, Rl + mK)? + %R[R, mK] + %R[R, K, R]]]
2
Ll ((s - 5) 4 )\R[S _K L] - iR[s _ Kk, R]]]. (45)
2 A A 3 A

The price to pay for this invariant form is that R; is no longer cyclic, so that the conservation of P; is not manifest.
The Lagrangian L, ., may also be obtained directly from the Hamiltonian (43) if we choose as conjugate
momenta kIT, instead of the kP, of (41):

I, =P, — §R1R3, I, =P, — §R2R3 and II; = P; — %(Rﬁ + RD). (46)

Interestingly, while both Lyec and L., give the correct EOM (29), unlike with the Hamiltonian, the naive
reduction L,y of the field theoretic Lagrangian (13) does not. This discrepancy was unfortunately overlooked
in equation (3.7) of [13]. Indeed Ly, differs from L, ., by aterm which is not a time derivative:

A\m .
Liaive = Loy + e Tr K [R, R]. (47)

To see this, we put the ansatz (22) for ¢ in the nilpotent field theory Lagrangian (13) and use

Tr¢’ = TrR% Tr¢ = Tr(K, R] + mK)* and

2
Tr 910, )= TrRIR, [K, R+ mK] + 2522 4 1) (48)
to get the naively reduced Lagrangian
1o A 1 ,
Liaive = Tr ER + ;R[R, [K, R] + mK] — 5([K, R] + mK)~|. (49)

In obtaining L ,,;,. we have ignored an x-dependent term as it is a total time derivative, a factor of the length of
space and multiplied through by A. As mentioned earlier, L, ;. does not give the correct EOM for R, and R, nor
doesitlead to the PBs among L and S (31) if we postulate canonical PBs among R, and their conjugate momenta.
However the Legendre transforms of Liechs Lpech a0d Lpaive all give the same Hamiltonian (30).

One may wonder how it could happen that the naive reduction of the scalar field gives a suitable
Hamiltonian but not a suitable Lagrangian for the mechanical system. The point is that while a Lagrangian
encodes the EOM, a Hamiltonian by itself does not. It needs to be supplemented with PBs. In the present case,
while we used a naive reduction of the scalar field Hamiltonian as the Hamiltonian for the RR model, the
relevant PBs ((31) and (42)) are not a simple reduction of those of the field theory ((19) and (16)). Thus, it is not
surprising that the naive reduction of the scalar field Lagrangian does not furnish a suitable Lagrangian for the
mechanical system. This possibility was overlooked in [13] where the former was proposed as a Lagrangian for
the RR model.

5. Lax pairs, 7-matrices and conserved quantities

5.1.Lax Pairs and r-matrices
The EOM (25) admit a Lax pair (A, B) with complex spectral parameter (. In other words, if we choose

A() = —KC + LC+ ; and B(¢) = g (50)

then the Lax equation A = [B, A]atorders ¢* and (® are equivalent to (25). The Lax equation implies that

Tr A"({) is a conserved quantity for all Cand everyn = 1,2, 3 .... Toarrive at this Lax pair we notice that

A = [B, Alcanlead to (25)if L and Sappear linearly in A as coefficients of different powers of (. The coefficients
have been chosen to ensure that the fundamental PBs (FPBs) between matrix elements of A can be expressed as
the commutator with a non-dynamical r-matrix proportional to the permutation operator. In fact, the FPBs
with respect to the nilpotent PBs (31) are given by

8
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{A(C)Qf A(C’)}V = *ﬁ(fubcldc - 6achf(C + C/))Uu ® Op
= j(La — C+ K)o ® oy — 0. @ o)
+ LZ(LZ T il)(0: ® 03 — 03 @ o). D
4N T

Here, 0. = (07 & i0y) /2. These FPBs can be expressed as a commutator

{AOT A =1[r(¢ ¢, AQ ® T+ 1T® A(¢))] where
N . 1 ’
r(, (= ) with P = 2[1 + ;::laa ® aa]. (52)

To obtain this r-matrix we used the following identities among Pauli matrices:

oQo.—o0 Qo = %[P, o3RI = —%[P, I ® 03] and
0 ®o3— 03 0 =%£[P, 0w @Il = F[P, I ® oy]. (53)

We may now motivate the particular choice of Lax matrix A (50). The nilpotent S-L PBs (31) do not involve S, so

the PBs between matrix elements of A are also independent of S. Since P(A ® B) = (B ® A) P, the commutator

[P, A ® I+ I® A] = 0ifAisindependent of (. Thus for r oc P, S can only appear as the coefficient of ¢ in A.
The same commutator form of the FPBs (52) hold for the Euclidean PBs (33) if we use

AP
26 ¢
provided we define a new Lax matrix A. = A/¢% The EOM for Sand L are then equivalent to the Lax equation
A. = [B, A.]atorder ( *and ¢ '. In this case, the FPBs are

(G ) =Nr (G () = — (54)

{AE(C)Q? AE(C’)}E = 4(1 /(Afubch + (é + %]Gabcsc]au & Op. (55)

5.2. Conserved quantities in involution for the RR model
Equation (52) for the FPBs implies that the conserved quantities Tr A”(() are in involution:

{TrA"(Q)F TrA((N} = mnTr[r((, (), A" @ A1) + A1) @ A'((N] =0 (56)

form,n = 1,2,3 .... Each coefficient of the 2nth degree polynomial Tr A”(() furnishes a conserved quantity in
involution with the others. However, they cannot all be independent as the model has only 3 degrees of freedom.
Forinstance, Tr A({) = 0but

Te 40 = ¢ KoK, — 20 LK, + 20(Lefe = 3ea) 3 B L, (57)
2 A A X
In this case, the coefficients give four conserved quantities in involution:
s%k? = TrS%, hk*= TrSL, mk*= TrKL = —kL;
I? 1 1 k
and ck?= Tr|— — —KS|= —L,L, + —S:. 58
( ) \ ) 2 ata \ 3 ( )

Factors of k* have been introduced so that ¢, 1,  and s> (whose positive square-root we denote by s) are
dimensionless. In [13], h and ¢ were named C; and C,. ¢ and m may be shown to be Casimirs of the nilpotent
Poisson algebra (31). The value of the Casimir L is written as —#1 in units of k by analogy with the eigenvalue of
the angular momentum component L, in units of . The conserved quantity Tr SL is called / for helicity by
analogy with other such projections. The Hamiltonian (30) can be expressed in terms of s> and c:
H= kz(ls2 +c+ L) (59)
2 2

It will be useful to introduce the 4D space of conserved quantities Q with coordinates ¢, s, m and & which
together define a many-to-one map from M¢_; to Q. The inverse images of points in Q under this map define
common level sets of conserved quantities in M§_; . By assigning arbitrary real values to the Casimirs ¢ and m we
may go from the 6D S-L phase space to its non-degenerate 4D symplectic leaves M2, given by their common
level sets. For the reduced dynamics on M2 , s> (or H) and h define two conserved quantities in involution.

The independence of ¢, m, h and sis discussed in section 5.6. However, higher powers of A do notlead to

.. . 1 . .
new conserved quantities. Tr A> = Osince Tr (f,1,t.) = 5 €ape for t, = o, /2i. The same applies to other odd

9
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Figure 1. A trajectory with initial conditions §(0) = 0.1and ¢(0) = 0.2 plotted for 0 < ¢ < 200/k on a generic common level set of
the conserved quantities ¢, 1, s and h. The common level setis a 2-torus parameterized by the polar and azimuthal angles 6 and ¢ and
has been plotted for the values ¢ = 1/2, h = 0, m = s = 1with k = X\ = 1.Itis plausible that the trajectory is quasi-periodic and
dense on the torus so that any additional conserved quantity would have to be a constant.

powers. On the other hand, the expression for A*(¢) given in appendix, along with the identity
Tr (ta tyte td) - — i (6ab 6cd - 6115 6bd + 6ad 617::) giveS

1 1 cs? + K2 2he  ms? 52 2
F““@‘2¢W<(—V—VtrKﬂ@@+r—my4

,l 5 l 2)6 l 7718
+(mc )\h)g‘ (c+2m+2m ¢ +4m( 4C. (60)

Evidently, the coefficients of various powers of { are functions of the known conserved quantities (58). Itis
possible to show that the higher powers Tr A%, Tr A%, ... also cannot yield new conserved quantities by
examining the dynamics on the common level sets of the known conserved quantities. In fact, we find that a
generic trajectory (obtained by solving (65)) on a generic common level set of all four conserved quantities is
dense (see figure 1 for an example). Thus, any additional conserved quantity would have to be constant almost
everywhere and cannot be independent of the known ones.

Canonical vector fields on M$_;: On the phase space, the canonical vector fields vy = 1809y, f) associated
to conserved quantities, follow from the Poisson tensor of section 4.1. They vanish for the Casimirs
(Ve = V,, = 0) while for helicity and the Hamiltonian (H = E k%),

kv, = L28L1 — L18L2 + 82851 — 81852 and

A
kVg = S,01, — S0, + ?[(5214 — L,83)0s, + (S3L1 — SiL3)0s, + (S1L, — S,L1)0s,]. (61)

The coefficient of each of the coordinate vector fields in Vi gives the time derivative of the corresponding
coordinate (upto a factor of k?) and leads to the EOM (26). These vector fields commute, since [V, V] = — Vigny-

Conserved quantities for the Euclidean Poisson algebra: As noted, the same Hamiltonian (30) with the {-, -} .
PBsleads to the S-L EOM (25). Moreover, it can be shown that ¢, 1, s and k (58) continue to be in involution
with respect to {-, - }. and to commute with H. Interestingly, the Casimirs (¢, 7) and non-Casimir conserved
quantities (s>, 1) exchange roles in going from the nilpotent to the Euclidean Poisson algebras.

Simplification of EOM using conserved quantities: Using the conserved quantities we may show that i, # and
¢ are functions of u = S3/k alone. Indeed, using (31) and (27) we get

7 . Lil,—LiL kp
=2 = Nk2pkisin®(0 — ¢), 0= 2 12— 2P cos(0 —
= P () T - cos( ?)
and ¢ = M = km\ + [ cos(f — ¢). (62)
S+ S P
Now r, pand 6 — ¢ may be expressed as functions of u and the conserved quantities. In fact,
pr=st—ul r*=2c—m?— ZTM and h = Tlr(28L = —mu + rpcos(d — ). (63)

10
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Thus we arrive at
i’ = )\Zkz[(s2 — uz)(Zc — m? — ZTu) —(h+ mu)z] = 20k (u), (64)
b— k| —Em | g ¢:km+m(m). (65)
2 —m?— 2 st —u?

A

Moreover, the formula for & in (63) gives a relation among u, 6 and ¢ for given values of conserved quantities.
Thus, starting from the 6D S-L phase space and using the four conservation laws, we have reduced the EOM to a
pair of ODEs on the common level set of conserved quantities. For generic values of the conserved quantities, the
latter is an invariant torus parameterized, say, by 6 and ¢. Furthermore, #? is proportional to the cubic x(u) and
may be solved in terms of the p function while 6 is expressible in terms of the Weierstrass ( and o functions as
shownin[13].

5.3. Symmetries and associated canonical transformations
Here, we identify the Noether symmetries and canonical transformations (CT) generated by the conserved
quantities. The constant m = —L;/k commutes (relative to {-, - },) with all observables and acts trivially on the
coordinates R, and momenta P;, of the mechanical system.

The infinitesimal CT R3;— R; + ¢ corresponding to the cyclic coordinate in Ly, (44) is generated by
(eXk/2)(2¢c — m?) = ek(P; — 1/)) (41). Liyecn is also invariant under infinitesimal rotations in the R,—R,
plane. This corresponds to the infinitesimal CT

O6R, = c€,p Ry, OP, = c€qpPy for a,b=1,2 and 6R3; = 6P; = 0, (66)

with generator (Noether charge) ek[h + (Am/2)(2¢ — m?)]. The additive constants involving m may of course
be dropped from these generators. Thus, while P; (or equivalently ¢) generates translations in R3, i (up to
addition of a multiple of P5) generates rotations in the R;—R; plane. In addition to these two point-symmetries,
the Hamiltonian (43) is also invariant under an infinitesimal CT that mixes coordinates and momenta:

2
6R, =2¢P, 6B, = sx[%(}g - %) — (RE+RY) — %]Ra for a=1,2

while 6R; = £[2P; — A(R? + R})] and 6P; = 0. (67)
This CT is generated by the conserved quantity

ek[s2 + 2¢ + Am(h + (ATm)(Zc — mz))] (68)

which differs from s* by terms involving i and ¢ which serve to simplify the CT by removing an infinitesimal
rotation in the R,—R, plane as well as a constant shift in R;. Here, upto Casimirs, (68) is related to the
Hamiltonian via s> + 2¢ = (1/k?)(2H — k*/)X).

The above assertions follow from using the canonical PBs, {R,, kP,} = 8, to compute the changes
0R, = {R,, Q} etcgenerated by the three conserved quantities Q expressed as:

2
h=PiR, — PRy — mPs, C=§(P3—i)+m7 and

3 2
s2=3" P} + AmegR.Py — 3P3 + A—(Rl2 + RZZ)[RIZ + Rf — i(P3 - l) + mz] + iz (69)
= A 4 A A N

5.4. Relation of conserved quantities to Noether charges of the field theory
Here we show that three out of four combinations of conserved quantities (Ps, h — m/ )\ and H) are reductions
of scalar field Noether charges, corresponding to symmetries under translations of ¢, x and . The fourth
conserved quantity L; = —mk arose as a parameter in (22) and is not the reduction of any Noether charge. By
contrast, the charge corresponding to internal rotations of ¢ does not reduce to a conserved quantity of the RR
model.

Under the shift symmetry ¢ — ¢ + nof(11), the PBs (16) preserve their canonical form as
om = (1/3)[n, ¢'] commutes with ¢. This leads to the conserved Noether density and current

. o 19, ¢ . 9 (9, 9]
J = Trn()\ — ) and j Trn( )\ + — ) (70)

11
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The conservationlaw 0;j, + 0,j, = 0isequivalentto (11)[7]. Taking i oc A, all matrix elements of Q* =
f (¢ — (\/2)[¢, #']) dx are conserved. To obtain P; (41) as a reduction of Q° we insert the ansatz (22) to get

Qs = f eX*Q%eXx dx where Q° =R — A[R, [K, R] + mK]. (71)

\S]

Expanding Q° = Q,t, and using the Baker-Campbell-Hausdorff formula we may express

~s ~

. Ql . st =s 03
S = cos kxo, — sinkxoy) — dx + cos kxoy + sinkxo,) == dx + — dx. 72
Q = [ (cosko o) de+ [ (coskso o) ds+ [QF 72)

The first two terms vanish while Q; = P;so that Q° = I Pst5, where [is the spatial length.

The density (P = Tr ¢¢’/\)and current (—& = —(1/2)\) Tr (qbz + ¢'%)) (15) corresponding to the
symmetry x — x + € of (11)satisfy 9,P — 9, = Oor Tr (¢ — ¢'')¢’ = 0.The conserved momentum
P=Tr f I] dx per unitlength upon use of (24) reduces to

2
P=Tr f ieK"R([K, R] + mK)e Kedx = %Tr (s - %K)L - %(h - %) (73)

As shown in section 4.1, the field energy per unit length reduces to the RR model Hamiltonian (30).

Infinitesimal internal rotations ¢ — ¢ + 6[n, ¢](for n € su(2) and small angle #) are symmetries of (13)
leading to the Noether density and current:

i, = Tr(§[¢, é] — %w, (6, ¢’]]) and j = Tr(—§[¢, &' + g[as, (6, ¢'>]]) (74)

and the conservationlaw Tr n[¢>, ‘37;&” — [ dﬂ]] = 0. However, the charges Q" = f j, dx donot

reduce to conserved quantities of the RR model. This is because the space of mechanical states is not invariant
under the above rotations as K = ikos /2 picks out the third direction.

5.5. Static and Circular submanifolds

In general, solutions of the EOM of the RR model (25) are expressible in terms of elliptic functions [13]. Here, we
discuss the ‘static’ and ‘circular’ (or ‘trigonometric’) submanifolds of the phase space where solutions to (25)
reduce to either constant or circular functions of time. Interestingly, these are precisely the places where the
conserved quantities fail to be independent as will be shown in section 5.6.

Static submanifolds: By a static solution on the L-S phase space we mean that the six variables L, and S, are
time-independent. We infer from (26) that static solutions occur preciselywhen §; = S, = Oand
S;L, = S;L; = 0. These conditions lead to two families of static solutions 35 and X,. The former isa
3-parameter family defined by S , 5 = 0 with the L, being arbitrary constants. The latter is a 2-parameter family
where L; and S; are arbitrary constants while L; , = S, , = 0. We will refer to ¥, 5 as ‘static’ submanifolds of
MS_; . Their intersection is the L axis. Note however, that the ‘extra coordinate’ Rs(f) corresponding to such
solutions evolves linearly in time, R;(¢) = R3(0) + (S3 + k/\)t.

The conserved quantities satisfy interesting relations on >, and ¥5. On ¥, we must have h = Fsgn(k) ms
and ¢ = m?/2 + sgn(k) s/ with s > 0 where the signs correspond to the two possibilities S3 = +s|k|.
Similarly, on 3 we musthaves = h = Qwith 2¢ — m? > 0. While X3 may be regarded as the pre-image (under
the map introduced in section 5.2) of the submanifold s = 0 of the space of conserved quantities Q, 3, is not the
inverse image of any submanifold of Q. In fact, the pre-image of the submanifold of @ defined by the relations
that hold on ¥, also includes many interesting non-static solutions that we shall discuss elsewhere.

Circular or Trigonometric submanifold

As mentioned in section 5.2 the EOM may be solved in terms of elliptic functions [13]. In particular, since from
(64) 2 = 2X\k*x (u), u oscillates between a pair of adjacent zeros of the cubic , between which x > 0. When
the two zeros coalesce u = S;/k becomes constant in time. From (26) this implies S;L, = S,L,, which in turn
implies that tan § = tan ¢ or  — ¢ = nr for an integer n. Moreover, p, rand = ¢ become constants as from
(65), they are functions of u. Thus the EOM for S; = kp cos ¢ and S, = kp sin ¢ simplifyto §; = — @S, and

S, = ¢S, with solutions given by circular functions of time. The same holds for L, = kr cos @ and L, = kr sin §
as I} = kS;and L, = —kS; (26). Thus, we are led to introduce the circular submanifold of the phase space as
the set on which solutions degenerate from elliptic to circular functions. In what follows, we will express it as an
algebraic subvariety of the phase space. Note first, using (27), that on the circular submanifold

12
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b=b=(1rL == 22 75)
¢ r Ll Lz
Thus EOM on the circular submanifold take the form
S . . . kST : kS?
L3 = 53 = O, Ll = kSZ, L2 = —kSl, Sl = i and Sz = —i (76)
Ly L
The non-singular nature of the Hamiltonian vector field Vi ensures that the above quotients make sense.
Interestingly, the EOM (26) reduce to (76) when S and L satisfy the following three relations
S (SxL);=0, Z5:—AL(S x L), =kS? and Z3: AL,(S x L), = kS (77)

Here (S x L); = $;L, — S,L, etc. The conditions (77) define a singular subset C of the phase space. C may be
regarded as a disjoint union of the static submanifolds 33, and 35 as well as the three submanifolds C, C; and C,
of dimensions four, three and three, defined by:

C:8=0, S,=0, = and either =, or =3,
Cll Sl =0, SZ = 0, Ll =0 and E3
and Cz: S] =0, Sz =0, L2 =0 and Ez. (78)

Gy, Cy, 35 and X; lie along boundaries of C. The dynamics on C (where L , and S , are necessarily non-zero) is
particularly simple. We call C the circular submanifold, it is an invariant submanifold on which S and L are
circular functions of time. Indeed, to solve (76) note that the last pair of equations may be replaced with

Li/L = S,/Siand L, /L, = S, /S, which alongwith S,L, = S,L, implies that S, , = aL, , for a constant

a > 0. Thuswe must have $; = kasS, and S, = —kaS; with the solutions

Si/k = Asin(kat) + Bcos(kat) and S,/k = —Bsin(kat) + A cos(kat). (79)

A and Bare dimensionless constants of integration. As a consequence of =, or =3 (77), the constant values of
Ly = —kmand S; = u kmustsatisfy the relation u = —a(a + Am) /. The other conserved quantities are
given by

and

2 2 2 2

1m2+A —Q—B_Za(a—i-)\m)) h:A +B+am(a+)\m)
o? )2 a A

. az(a—i—)\m)z.

sP=A + B
)\2

(80)
Though we do not discuss it here, it is possible to show that these trigonometric solutions occur precisely when
the common level set of the four conserved quantities is a circle as opposed to a 2-torus. Unlike 3, and X3, the
boundaries C; and C, are not invariant under the dynamics. The above trajectories on C can reach points of C; or
C,, say when S or S, vanishes. On the other hand, in the limit A = B = 0and a = 0, the above trigonometric
solutions reduce to the 3, family of static solutions. What is more, X, lies along the common boundary of C; and
C,.Finally, when A, Band « are all zero, Sy, S, and S; must each vanish while L, L, and L; are arbitrary constants.
In this case, the trigonometric solutions reduce to the ¥; family of static solutions.

5.6. Independence of conserved quantities and singular submanifolds

We wish to understand the extent to which the above four conserved quantities are independent. We say thata
pair of conserved quantities, say fand g, are independent if df and dg are linearly independent or equivalently if
df A dg is notidentically zero. Similarly, three conserved quantities are independentif df A dg A dh # 0 and so
on. In the present case, we find that the pairwise, triple and quadruple wedge products of dc, dh, dm and ds> do
not vanish identically on the whole L-S phase space. Thus the four conserved quantities are generically
independent. However, there are some ‘singular’ submanifolds of the phase space where these wedge products
vanish and relations among the conserved quantities emerge. This happens precisely on the static submanifolds
¥, .3 and C which includes the circular submanifold and its boundaries discussed in section 5.5.

Arelated question is the independence of the canonical vector fields obtained through contraction of the
1-forms with the (say, nilpotent) Poisson tensor 7. The Casimir vector fields V; and V,, are identically zero as dc¢
and dm lie in the kernel of 7. Passing to the symplectic leaves M}, we find that the vector fields corresponding
to the non-Casimir conserved quantities Vg and V), are generically linearly independent. Remarkably, this
independence fails precisely where M_? intersects C.

Conditions for pairwise independence of conserved quantities: The 1-forms corresponding to our four
conserved quantities are

13
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k2ds? = 2S,dS,, k*dc = L,dL, + %d&, —kdm = dL; and k?dh = S,dL, + L,dS,. (81)
None of the six pairwise wedge products is identically zero:
4 3
k?dsz A dh = 5,5dS, A dLy + %(SQL;, — SyLo)dS, A dSp, %dm A ds? = 5,dS, A dLs

k¥dm A dh = S,dL, A dLs + L,dS, A dLs, kdc¢ A dm = L,dLs A dL, + ;dL; A dSs

S kS,
7ds A dc=S,LydS, N dL, + S ds, A dSs
. 1 kL,
k*dh N dec = E(SuLb — SyLy)dL, N dL, — Zbi3 L,L,dL, N dS, + 3 das, N dSs
+ (ki - LaL3)dLa A dSs. (82)

Though no pair of conserved quantities is dependent on M¢_; , there are some relations between them on certain
submanifolds. For instance, ds> A dh = ds* A dm = 0 onthe 3D submanifold 35 (where s = 0) while
dh A dm = 0 onthe curvedefinedby S, , = L; ,3 = Owhereh = m = 0. Similarly, ds?> A dc = 0 onboth
these submanifolds where s = 0and M¢? = ks respectively. Moreover, dh A dc = 0 on the curve defined by
Si2 = Ly = L} — kS5 /) = 0 where k*h* = Xc*. However, the dynamics on each of these submanifolds is
trivial as each of their points represents a static solution. On the other hand, the Casimirs # and ¢ are
independent on all of M$_; provided 1/ \k? = 0.

Conditions for relations among triples of conserved quantities: The four possible wedge products of three
conserved quantities are given below.

5
k?dh A ds? A dim = S,8,dS, A dLy A dLs + %(SuLb — SyL)dS, A dS, A dLs

6
k?dSZ ANdh Adc= %Su(SbLC — SCLh)dSu N dLb A dLC -+ (S]Lz — SQL1)§d81 N dSZ N dS3

+ [(suLs ~ SyL)L, — S“Tsfk]dsg A dSy A dLs

+ > L(SaLy — SyLo)LedS, A dSy A dL,
a,b=3

ki“ dS, A dLs A dSs

5
k?dm A ds* A de = S,LydS, A dL; A dL, +

ksdﬂ’l A dh A dec= (Sle — Sle)dLl N dL2 A dL3 + (kia — LuL3)dLa A dL3 A dS3
kL,
— > LoLydL, A dLs A dSy + 3 dS, A dLs A dSs. (83)

b=3

Itis clear that none of the triple wedge products is identically zero, so that there is no relation among any three of
the conserved quantities on all of M$_;. However, as before, there are relations on certain submanifolds. For
instance, ds> A dm A dc = ds> A dh A dc = ds*> A dh A dm = 0 onboth the static submanifolds Y5 and X,
of section 5.5. On &, we have the three relations s = (\2/4)(2¢ — m?)?, X(2¢s? — h?)? = 456 and h* = m*s%.
Onthe otherhand, dh A dm A dc = 0 only on the static submanifold ¥, on which the relation
4h? = NXm?(2¢ — m?)? holds.

Vanishing of four-fold wedge product and the circular submanifold: Finally, the wedge product of all four
conserved quantities is

7
k?dh A d52 Adm A dc= (Sle — Sle) [deLl A sz N dL3 A dSb

- ;dSl A dS; A dSs A dLs — LpdS; A dS; A dLy A dL3]

+ [S“ibk + (LS — saL3)Lb]dsu A dS; A dL, A dLs. (84)

This wedge product is not identically zero on the L-S phase space so that the four conserved quantities are
independent in general. It does vanish, however, on the union of the two static submanifolds >, and ;. Thisis a
consequence, say, of ds?> A dm A dc vanishing on both these submanifolds. Alternatively,if S, = S, = 0, then
requiring dh A ds*> A dm A dc = 0implies either S; = 0 or L, = L, = 0. Interestingly, the four-fold wedge
product also vanishes elsewhere. In fact, the necessary and sufficient conditions for it to vanish are =, =, and =5
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introduced in (77) which define the submanifold C of the phase space that includes the circular submanifold C
and its boundaries C; ; and 3, 5.

Consequent to the vanishing of the four-fold wedge product dh A ds®> A dm A dc, the conserved quantities
must satisfy a new relation on C which may be shown to be the vanishing of the discriminant A(c, m, s, h) of
the cubic polynomial

x (W) = u® — Aew? — (s + Mm)u + %(262 — W2 — m?%?). (85)

The properties of x help to characterize the common level sets of the four conserved quantities. In fact, x hasa
double zero when the common level set of the four conserved quantities is a circle (as opposed to a 2-torus) so
thatitis possible to view C as a union of circular level sets. Note that A in fact vanishes on a submanifold of phase
space that properly contains C. However, though the conserved quantities satisfy a relation on this larger
submanifold, their wedge product only vanishes on C. The nature of the common level sets of conserved
quantities will be examined elsewhere.

Independence of Hamiltonian and helicity on symplectic leaves M},: So far, we examined the independence of
conserved quantities on M¢_; which, however, is a degenerate Poisson manifold. By assigning arbitrary real
values to the Casimirs ¢ and m (of {-, -} ) we go to its symplectic leaves Mﬁn. L, ,and S, , furnish coordinates on
M}, with

S3(Ly, Ly) = %((Zc - m?) — %(le + Lzz)) and L; = —mk. (86)

The Hamiltonian H = Ek* (or k%2 = 2(H — ¢k — k2/2)?)) and helicity h are conserved quantities for the
dynamics on M_},. Here we show that the corresponding vector fields V and V;, are generically independent on
each of the symplectic leaves and also identify where the independence fails. On M}, the Poisson tensor 7 is
nondegenerate so that Vyand V}, arelinearly independent iff dE A dh = 0. We find
K3dE A dh = (S1L, — SyLy)(kdS; A dS; + ASsdLy A dLs)

+ > (ASpLs — SsLy)Ly — kSuSp)dL, A dSy. (87)

a,b=1,2

Here S5 and L; are as in (86). Interestingly,the conditions for dE A dh to vanish are the same as the restriction to
M., of the conditions for the vanishing of the four-fold wedge product dh A ds*> A dm A dc (84).Itis possible
to check that this wedge product vanishes on M,%, precisely when S, , and L, , satisfy the relations =,,=, and =5
of (77),where S5 (86) and Ly = —m k are expressed in terms of the coordinates on M. Recall from section 5.5
that (77) s satisfied on the singular set C C M¢_; consisting of the union of the circular submanifold C and its
boundaries C; ; and 3, 5. Thus,on Mﬁn Vgand Vj arelinearly independent away from the set (of measure zero)
given by the intersection of C with M. For example,the intersections of C with M}, are in general 2D
manifolds defined by four conditions among Sand L: =, and =, (with S; , = 0) as well as the condition(86) on S;
and finally Ly = —m k. This independence along with the involutive property of E and h allows us to conclude that
the system is Liouville integrable on each of the symplectic leaves.

We note in passing that the E and h when regarded as functions on M¢_; (rather than M) are independent
everywhere except on a curve that lies on the static submanifold 3,. In fact, we find that dJE A dh vanishes iff
S1, =L, =0and S} + kS;/\ = L{.

6. Similarities and differences with the Neumann model

The EOM (25) and Lax pair (50) of the RR model have a formal structural similarity with those of the Neumann
model. The latter describes the motion of a particle on ™! subject to harmonic forces with frequencies a, - -+,
an[18]. In other words, a particle moves on SN~! C RN and is connected by N springs, the other ends of which
are free to move on the N coordinate hyperplanes. The EOM of the Neumann model follow from a symplectic
reduction of dynamics on a 2N dimensional phase space with coordinates xy, ---, xyand y, - -+, ¥n. The
canonical PBs {x, y;} = 0y and Hamiltonian

1 1
H==3Ji+=> axi (88)
452 25

lead to Hamilton’s equations

%k = —Jux; and y, = —Juy, — axxx (no sum over k). (89)

Here, Ji; = x¢y; — X;¥x1is the angular momentum. Introducing the column vectors X = x;and Y, = yyand the
frequency matrix 2 = diag(ay, ---, ay), Hamilton’s equations become
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X=—JX and Y = —JY — QX. (90)
Itis easily seen that X X is a constant of motion. Moreover, the Hamiltonian and PBs are invariant under the
‘gauge’ transformation (X, Y) — (X, Y 4+ €X) for ¢ € R. Imposing the gauge condition X'(Y + ¢ (#)X) = 0
along with X* X = 1 allows us to reduce the dynamics to a phase space of dimension 2(N — 1). If we define the
rank 1 projection P = X X‘then] = X Y* — Y X'and Pare seen to be gauge-invariant and satisfy the evolution
equations

J=1Q,P] and P=[P,]]. (1)

The Hamiltonian (88) in terms of ], Pand ) becomes

1 1
Hyey = tr| =272 + —QP). 92
N ( 4 2 ©2)

The PBs following from the canonical x—y PBs

Ukts Jog} = SkgJpt — Opidiq + Oqilkp — OnpJas
{Pii> Jpq} = OkqBp1 — Op1Prq + 0qPrp — OpPy and {Py, Ppg} = 0 (93)

and the Hamiltonian (92) imply the EOM (91). This Euclidean Poisson algebra is a semi-direct product of the
abelian ideal spanned by the P’s and the simple Lie algebra of the J's.

Notice the structural similarity between the equations of the RR model (25) and those of the Neumann
model (91). Indeed, under the mapping (L, S, K, A) — (J, P, 2, 1), the EOM (25) go over to (91). The Lax pair
for the Neumann model [18]

1
¢

and that of the RRmodel A.(¢) = —K + L/¢ + S/(A¢?) and B(¢) = S/ (50) are similarly related for A = 1.
Despite these similarities, there are significant differences.

L) =-Q+4 T+ ép and M(Q) = %P with I = [M, L] (94)

(a) While L and S are Lie algebra-valued traceless anti-hermitian matrices, J and P are a real anti-symmetric and
areal symmetric rank-one projection matrix. Furthermore, while Kis a constant traceless anti-hermitian
matrix ((ik/2) o3 for su(2)), the frequency matrix €2 is diagonal with positive entries.

(b) The Hamiltonian (92) of the Neumann model also differs from that of our model (30) as it does not contain
a quadratic term in P. However, the addition of (1/4) tr P?to (92) would not alter the EOM (91) as tr P?is
a Casimir of the algebra (93).

(c) The PBs (93) of the Neumann model bear some resemblance to the Euclidean PBs (37) of the
RR model expressed in terms of the real anti-symmetric matrices S and I of section 4.1. Under the map
(L, S, \) — (J, P, 1), the PBs (37) go over to (93) up to an overall factor of —1/2. On the other hand, if we
began with the { Iy, §pq Je PBimplied by (37) and then applied the map, the resulting {J, P} PB would be off
by a couple of signs. These sign changes are necessary to ensure that the J-P PBs respect the symmetry of P as
opposed to the anti-symmetry of S. This also reflects the fact that the symmetry { Sy, L pq) = (L, §pq} is
not present in the Neumann model: {Ji, Ppg} = {Pii> Jpq}-

(d) Though both models possess non-dynamical r-matrices, they are somewhat different as are the forms of the
fundamental PBs among Lax matrices. Recall that the FPBs and r-matrix (54) of the RR model, say, for the
Euclidean PBsare (here, k, I, p,q = 1,2):

A biq0pp

{AE(C)? AS(C,)}E = [fs(C) C/)’ AE(C) QI+I® AE(C,)] and re(g’ Cl)klpq = _m-

(95)

This 7-matrix has a single simple pole at { = ¢’. On the other hand, the FPBs of the Neumann model may be
expressed as a sum of two commutators

(LT LN} = [n2(C, ¢, LO) @ 11 = [ra(¢, ©), T © L(C]. (96)
The corresponding r-matrices have simple poles at { = +(’ (here, k, L, p,g = 1, -, N):
Suby _ Sudy by Buby
(=¢ ¢+¢ ¢=¢ ¢+¢
Note that the anti-symmetry of (96) is guaranteed by the relation 11 (¢, (iipg = 71(C5 (Nikgp-

New Hamiltonian formulation for the Neumann model: An interesting consequence of our analogy is a new
Hamiltonian formulation for the Neumann model inspired by the nilpotent RR model PBs (36). Indeed,

112(¢, C/)klpq = -

and 151(¢’, Qkipg =

= —12(G iipg- - (97)
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suppose we take the Hamiltonian for the Neumann model as
H = Hyey + ~ tr P2 = tr(fl]z +lopy lPZ) (98)
et Ty L 2 4

and postulate the step-3 nilpotent PBs,

{Piss Joghy = — kg1 + 0p18%g — 6 hp + O1p gty
{Pkla qu}l/ = 5kq]pl - 6pl]kq - 6ql]kp + 6kp]ql and {Ikl» Ipq}l/ =0, (99)

then Hamilton’s equations reduce to the EOM (91). These PBs differ from those obtained from (36) via the map
(L, S, K, \) — (J, P, Q, 1)byafactor of 1/2 and a couple of signs in the { P, P}, PB. As before, these sign
changes are necessary since P is symmetric while S is anti-symmetric. It is straightforward to verify that the
Jacobi identity is satisfied: the only non-trivial case being { { P, P}, P} + cyclic = 0 where cancellations occur
among the cyclically permuted terms In all other cases the individual PBs such as { { P, J}, J} are identically zero.
Though inspired by the s1(2) case of the RR model, the PBs (99) are applicable to the Neumann model for all
values of N.

7. Discussion

In this paper, we studied the classical Rajeev-Ranken model which is a mechanical reduction of a nilpotent scalar
field theory dual to the 14-1-dimensional SU(2) principal chiral model. We find a Lagrangian as well as a pair of
distinct Hamiltonian-Poisson bracket formulations for this model. The corresponding nilpotent and Euclidean
Poisson brackets are shown to be compatible and to generate a (degenerate) Poisson pencil. Lax pairs and r-
matrices associated with both Poisson structures are obtained and used to find four generically independent
conserved quantities which are in involution with respect to either Poisson structure on the six-dimensional
phase space, thus indicating the Liouville integrability of the model. The symmetries and canonical
transformations generated by these conserved quantities are identified and three of their combinations are
related to Noether charges of the nilpotent scalar field theory. Two of these conserved quantities (¢ and m or s
and h) are shown to lie in the centers of the corresponding Poisson algebras. Thus, by assigning numerical values
to the Casimirs we may go from the 6D phase space of the model to its 4D symplectic leaves M., or M}, on
which we have two generically independent conserved quantities in involution, thereby rendering the system
Liouville integrable. Though all four conserved quantities are shown to be generically independent, there are
singular submanifolds of the phase space where this independence fails. In fact, we find the submanifolds where
pairs, triples or all four conserved quantities are dependent and identify the relations among conserved
quantities on them. Remarkably, these submanifolds are shown to coincide with the static’ and ‘circular/
trigonometric’ submanifolds of the phase space and to certain non-generic common level sets of conserved
quantities.

As an unexpected payoff from our study of the algebraic structures of the RR model, we find a new
Hamiltonian formulation for the Neumann model. Though we find that the equations of motion, Hamiltonians
and Lax pairs of the models are formally related, their phase spaces, Poisson structures and r-matrices differ in
interesting ways.

Though we have argued that the RR model is Liouville integrable, it remains to explicitly identify action-
angle variables on the phase space. It is also of interest to find all common level sets of conserved quantities and
describe the foliation of the phase space by invariant tori of various dimensions. The possible extension of the
algebraic structures and integrability of this mechanical reduction to its quantum version and its parent
nilpotent scalar field theory is of course of much interest. We intend to address these issues in future work.
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Appendix. Calculation of Tr A*({) for the Lax matrix

In section 5.2 we found that the conserved quantities Tr A”({) are in involution and obtained four independent
conserved quantities ¢, m, s and h by takingn = 2. Here, we show that the conserved quantities following from
Tr A*(¢) are functions of the latter. We find that
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At = [(B(KKpK:Kyg) — (" (KaKpKcLg + LKy K Kgq + KoLy K Ky + KoKy Lo Kg)

K,K,K. S,
+ 46(—% + L,KyK.Ly + K,LyK.Ly + K,K,L. Ly
~ SaKeKeKa KoKy — LSZ’;{“K‘* + L,KyL. Ky + K LyL Ky — LKI’SCK")
L, K, K. Sy K,Ly,K.S; K,KyL.S;
+ 5( . + +
¢ A A A
4 SKeRela g ok, + —K“SI’AK‘L”Z LKLy — KuLyLoLy + JaKoScla
" S.LyK.K, n L,Sp,K.Ky n S.KyL.Ky n K,SyL.K, n L,K,S. Ky " KoLpScKa LaLchKd)
A A A A A A
" <4(SuKbKCSd _ L, Ly K. S, n K,SyK. Sy _ L,K, LSy _ K,Ly,L:Sy4 n K,K,S:S4
N A 22 A A 22
S.LyK. Ly L,SyK. Ly S.KyL:.Ly K,SyL.Ly L,K,S.Ly K,L,S.Ly
- - — - - - + L,LyL:Ly
A A A A A A
S.Sp KKy _ S.LyL.Ky _ L,SyL.Ky n S.KyS.Ky B L,L,S.Ky n KquSCKd)
22 A A 22 A 22
+ C3(_SaLchSd _ LaSchSd _ SaKthSd _ KaSchSd _ LaKbSch _ KuLbSch + LuLchSd
22 22 N 22 22 2 A
S.SpK Ly SaLyL.Ly L,SyL:Ly S.KyScLy L,L,S:Ly
- + + — +
22 A A 22 A
_ KaSbSch _ SquLch _ SuLbSch _ LaSbSch
22 N N 2
SaSpK. Sy S.LyL:Sy L,SyL:Sy S.KyS. Sy L,L,S:S4 K, SpS:S4
> a c a
+¢ (7 » + 2 + 2 o \ + 2 o B
" SaSpL:Ly n SaLypS. Ly n L,SyScLg _ SaSbSCKd)
22 22 22 )
SaSpL:Sq SaLpS:S4 L,SpS:S4 SaSpScLy SaSpS:Sa
+ C( v T T tT . )+ " ]tutbtctd-
(100)

Evaluating the trace yields the polynomial (60) whose coefficients are functions of the conserved quantities
¢, m, s and h, thus showing that Tr A* does not lead to any new conserved quantity.
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