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Abstract

We present a model for the structure of baryons in which the valence partons interact

through a linear potential. This model can be derived from QCD in the approximation

where transverse momenta are ignored. We compare the valence quark distribution function

predicted by our model with that extracted from global fits to Deep Inelastic Scattering

data. The only parameter we can adjust is the fraction of baryon momentum carried by

valence partons. Our predictions agree well with data except for small values of the Bjorken

scaling variable.
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1 Introduction

This thesis is about the structure of the proton. The proton, along with the neutron is one

of the constituents of the atomic nucleus. For a long time since their discovery, it was not

known whether the proton and neutron had substructure, and if so, what their constituents

were like. The Deep Inelastic Scattering Experiments [1] of the early 1970s found that the

proton was made of point-like constituents called quarks or partons.

These experiments were similar in spirit to the alpha particle scattering experiments

of Rutherford, which established that the atom contains a point-like nucleus. He scattered

alpha particles against a thin gold foil and found that there was a small probability for them

to scatter through wide angles. This would not be possible if the positive charge in an atom

was uniformly distributed. Moreover, the scattering cross-section he measured was that of

a point-like nucleus carrying all the positive charge of the atom! Subsequent experiments

showed that the nucleus was made of protons and neutrons. Charge radii measured in

elastic electron-proton scattering showed that the proton was not elementary. What were

its constituents like?

The Deep Inelastic Scattering experiments scattered electrons against protons. This

time, the scattering was inelastic. The inclusive scattering cross-section was measured and

expressed in terms of ‘structure functions’. The structure functions describe the structure

of the proton. These experiments used the electromagnetic force between the electron and

the constituents of the proton to study the ‘strong force’ that held the proton together. The

electromagnetic force is mediated by the exchange of a photon. By making the wave-length

of the photon small enough, it was possible to ‘look’ deep within the proton.

The startling discovery of the Deep Inelastic Scattering Experiments was that as long
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as one looked closely enough, the structure functions did not depend on the wave-length of

the photon! The constituents of the proton did not have any length-scale associated with

them! This phenomenon is called scaling: the constituents of the proton appeared point-like.

The parton model was proposed by Bjorken, Feynman and others [2] as a simple

explanation of scaling in Deep Inelastic Scattering. The proton was thought of as being

made of point-like constituents called partons. These were identified with the quarks which

were until then, hypothetical particles. Structure functions can be expressed in terms of

parton distribution functions. These describe the distribution of partons within the proton.

Soon after, Quantum ChromoDynamics (QCD), the fundamental theory of strong in-

teractions was discovered. Scaling was understood as a consequence of asymptotic freedom in

QCD [3]. Small violations of scaling were predicted by perturbative QCD. These have been

confirmed by experiments. However, the initial parton distributions cannot be calculated

within perturbative QCD. They have as yet not been understood theoretically. However,

these parton distributions are so important to high energy hadron collisions that they have

been measured and extracted from experimental data in great detail [4, 5, 6].

Understanding the structure functions of quarks in a proton is not unlike understanding

the orbits of planets around the sun or the wavefunctions of electrons in an atom. Under-

standing the latter has proven extremely fruitful in all of science. In the case of the proton,

we are dealing with the strong force rather than the gravitational or electromagnetic.

In this thesis, we shall present a model of interacting partons to explain the distri-

bution of valence quarks in the proton. The quarks are assumed to be relativistic particles

interacting with each other through a linear potential in the ‘null’ coordinate. Their mo-

menta transverse to the direction of the collision will be ignored in favour of the much larger

longitudinal momentum. That collinear QCD can describe hadronic structure functions has

also been proposed by others [7]. The ground state wave function of the proton will be

the one that minimizes its energy. We will approximate the proton wave function with a

product of single parton wave functions. This is analogous to the Hartree approximation in

Atomic Physics. These approximations will allow us to determine the parton wave functions
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as the solution to a non-linear integral equation. We shall study this equation in several

ways (both analytic and numerical) and obtain a fairly complete quantitative picture of the

valence quark distribution.

Finally we will compare our predictions with the parton distributions extracted from

experimental data. Considering that we have at-most one parameter to adjust (the fraction

f, of proton momentum carried by the valence quarks) the agreement is quite good, except

for small values of the momentum fraction xB . In this region, our model is not expected

to be accurate. We may not ignore sea-quarks, gluons and transverse momenta.
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Figure 1. Comparison of the predicted valence parton wavefunction
√
φ(xB) with the MRST [5]

global fit to data. The wavefunction we predict goes to a non-zero constant at the origin. The

‘analytic’ prediction is obtained as a variational approximation. The numerical solution is not

reliable in this region of small xB . The fit to data has a mild divergence at xB = 0.

These results have been described in a recent publication [8]. Furthermore, this interacting

parton model can be derived from QCD [9] in the limit where transverse momenta are ignored.

The question of deriving the spectrum and structure functions of hadrons from QCD is an

old and important one. The meson spectrum and wave functions of two dimensional QCD were

obtained by ’t Hooft [10] in 1974 by a clever summation of planar Feynman diagrams in the large N

limit. Perturbation theory works in the case of mesons since they are described by small fluctuations
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from the vaccuum. However, the baryons remained elusive. Later, Witten [11] suggested that the

baryon can be described by a Hartree Fock approximation in the large N limit of QCD. He carried

out this idea in a non-relativistic context. In the early 1980s, Skyrme’s [12] idea that the baryon

is a topological soliton was revived by Balachandran and others [13] and shown to be consistent

with QCD. Rajeev [9] developed Quantum HadronDynamics (QHD) in two dimensions. Two

dimensional QHD is an equivalent reformulation of two dimensional QCD in terms of observable

particles: the hadrons, rather than the quarks, which are confined within the hadrons. Baryons

are the topological solitons of QHD while mesons are small fluctuations of the vaccuum. The large

N limit of 2dQHD reproduces [9] the meson spectrum and wave functions of ’t Hooft. But it also

allows us to predict the structure of the baryon. Within a variational approximation, the structure

of the baryon can be estimated by a non-linear integral equation [9]. It was found that this integral

equation also had a simple derivation in terms of the parton model [8, 9]. We present this parton

model point of view here.

This thesis is organised into 3 main chapters. Chapter 2 provides background, a discussion

of Deep Inelastic Scattering and the parton model. In Chapter 3 we present the interacting parton

model and derive the integral equation satisfied by the valence quark wave function. Chapter 4

discusses how we solve for the valence quark wave function and comparison with experimental

data. We do not assume much familiarity with particle physics. We will often use terms that are

specialized to this branch of physics, but most of them are defined or explained at some point.
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2 Deep Inelastic Scattering

In electron-proton Deep Inelastic Scattering for instance, a high energy electron scatters against a

proton. The electron does not feel the strong force and its weak interaction is dominated by the

electromagnetic interaction, which is mediated by the exchange of a high energy virtual photon.

Thus the kinematics is described in terms of two 4-vectors: qµ the momentum of the photon and

pµ the momentum of the proton. The photon momentum is space-like, q2 < 0 while pµ is time-

like, p2 = M2
p > 0. Mp is the rest mass of the proton. The scattering is inelastic. The proton

disintegrates producing several hadrons in the final state:

eP → eX

If we sum over all possible final states X, we get the inclusive deep inelastic cross-section, which

is expressed in terms of two dimensionless scalar ‘structure functions’ F1 and F2. Being Lorentz

scalars, they can depend only on p2, p.q and q2. p2 = M2
p is fixed by the mass of the proton. For

convenience, we may take our two independent scalars as Q2 = −q2, and the dimensionless ratio

xB = Q2

2p.q , called the Bjorken scaling variable.

So F1,2 = F1,2(xB , Q
2).

Q2, being the square of the momentum transferred by the photon, sets the energy scale of

the experiment. Q is inversely proportional to the wave length of the photon. An experiment at

large Q2 is therfore looking deep inside the proton. If Q2 >> 1
a2

, we are in the deep inelastic region.

1
a
∼ 100MeV is the inverse charge radius of the proton in its rest frame.

In the deep inelastic region, we will show that xB can be thought of as the fractional mo-

mentum of the quark inside the proton that scatters the photon. This will be made clear in the

context of the parton model to be discussed soon.

The Deep Inelastic Scattering experiments of the early 1970s [1] showed that at sufficiently

large Q2 >> Λ2
QCD, the structure functions were approximately independent of Q2. They depended,
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not on the Lorentz Scalars Q2 or 2p.q separately, but only on their ratio xB. This phenomenon is

called Bjorken scaling.

The structure functions may be expressed in terms of parton distribution functions [14].

They directly describe the structure of the proton. The parton distribution functions φa(xB , Q
2) are

momentum space probability distribution functions. For instance, the up quark parton distribution

function gives the probability density of finding an up quark carrying a fraction xB of proton

momentum, when the proton is probed at the energy scale Q2. As with the structure functions, the

parton distribution functions are essentially independent of Q2. Being probability distributions,

they are the absolute squares of the parton wave functions inside the proton. The reduction from

structure functions to parton distribution functions is made possible by ignoring certain correlations

and the factorization theorem of perturbative QCD [15, 14]. Roughly speaking, the amplitude for

the virtual photon to scatter off the proton is expressed as a sum of products of two factors: the

amplitude for it to scatter elastically off a quark of given momentum and the probability of finding

a quark with that momentum in the proton. While the elastic scattering off a quark of a given

momentum is calculable in perturbation theory, the probability of finding such a quark in the

proton is non-perturbative and yet to be calculated from first principles.

2.1 The Quark Model and Quantum ChromoDynamics

The quark model, based on hadron spectroscopy suggested that for the purpose of quantum num-

bers, the proton is a colorless combination of 2 flavours of quarks: up, up and down. The quarks

are fermions. In addition to quantum numbers like position, spin and charge, quarks carry flavour

(up, down, strange etc.) and color quantum numbers. Color is the analogue of electric charge in

the theory of strong interactions. The number of colors N is 3 in nature. Quantum ChromoDy-

namics (QCD) is the presently accepted theory of the color force. The strong force is mediated

by the exchange of spin 1 bosons called gluons. It was developed partly in analogy with Quantum

ElectroDynamics (QED) which is the theory of the electromagnetic force. QCD is a quantum field

theory with a non-abelian gauge symmetry. While its basic framework is understood, it has proven

very hard to solve and make predictions about non-perturbative effects.

The proton is just one of several particles which take part in strong interactions. They are

collectively called hadrons. Hadrons are broadly classified according to their spin. Integer spin
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bosonic hadrons are called mesons while the half integer spin fermions are called baryons. The

proton and neutron are the lightest and most common baryons. The pions are the lightest mesons.

Free quarks have never been observed in nature: they are confined within the hadrons, which are

colorless combinations of quarks.

In the late 1960s and early 70s, the parton model for hadrons was proposed by Bjorken,

Feynman and others [2] to explain the phenomenon of scaling in Deep Inelastic Scattering. Ac-

cording to the original parton model, in the deep inelastic region, the proton behaved as though it

was made up of essentially free point-like constituents called partons. These partons were identified

with the quarks (u, u and d in the case of the proton).

When probed at even higher energies (larger Q2 ) and small xB , it was found that there

is a small probability of finding anti-quarks (such as u and d ) and even quarks of other flavours

(strange quarks for instance) inside the proton. These did not fit directly into the original parton

model. However, these additional probability distributions were measured and are described in

terms of a phenomenological extension of the original parton model. We now speak of valence, sea,

anti-quark and gluon distributions in the proton. The valence quarks are the 3 quarks (up, up and

down in the case of the proton) of the original parton model. They are named in a loose analogy

with the valence electrons of the atom. One needs to probe deeper into the proton (higher Q2)

before ‘sea’ quarks and anti-quarks become significant.

In this paper we shall primarily be interested in developing a model that predicts the xB

dependence of valence quark wave functions. Since this is the main goal, we shall ignore some other

details and small corrections, which though important and measurable, obscure the main point.

For instance, the wave function depends on the isospin of the baryon (proton or neutron). We

shall calculate a single valence quark wave function ignoring isospin effects, which must therefore

be compared to the isoscalar combination of experimentally measured up and down quark wave

functions in the baryon. Correcting for isospin effects is not hard, but will not be addressed here.

In the physics of strong interactions, our experimental knowledge and precision of measure-

ments far exceeds our theoretical understanding in most areas. In contrast with QED, where theory

and experiment agree to an unprecedented degree, in the non-perturbative regime of QCD we are

barely at the qualitative or 10% level!
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2.2 Deep Inelastic Scattering and the Parton Model

Let us now return to the kinematics of deep inelastic collisions. Up to now we described the

scattering in Lorentz invariant language. To understand the parton model of Feynman better, it

will be useful to consider the ‘infinite-momentum’ frame.

Figure 2. A parton model schematic of a Deep Inelastic Collision. Figure taken from [16].

In this inertial reference frame, the proton has a very large 3-momentum P and we may

ignore its rest mass in comparison pµ = (|P|,P). The proton is thought of as consisting of several

point-like constituents, the partons. The 4-momentum of a given parton is expressed as xpµ where

0 ≤ x ≤ 1 is the fraction of proton momentum carried by the given parton. Deep Inelastic

Scattering is visualized as initially, the elastic scattering of the photon against a parton. The

partons are assumed to have negligible mass m. This is followed by a complicated process of

hadronization in which the partons recombine to form several hadrons in the final state X.

From our point of view, that of predicting parton distribution functions, there is an important

simplification that Deep Inelastic Collisions allow. The component of momentum in the direction

of the collision far exceeds those transverse to it. Therefore, it is reasonable to ignore the transverse

components of the parton momenta. It is this approximation that makes the problem of predicting

hadronic structure functions tractable from a theoretical point of view. We are essentially dealing

with a problem in 2 space-time dimensions.

The parton model also gives us a very useful physical interpretation of the Bjorken scaling

variable, xB. xB was one of the two Lorentz scalars used to parametrize the structure functions.

We will show that xB = Q2

2p.q is the same as the fraction x of proton momentum p carried by the
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parton that scatters off the photon. Momentum conservation implies that (xp + q)2 = m2 where

p is the 4-momentum of the proton, q the momentum of the photon and m the mass of the struck

quark. But m is negligibly small and x2p2 = x2M2
p where Mp is the mass of the proton. In the

deep inelastic region, Q2 >> M2
p and therefore x ∼ Q2

2p.q which we recognize as the Bjorken scaling

variable xB. Therefore we may interpret xB in the deep inelastic region as the fraction of proton

4-momentum carried by a parton.

This parton model interpretation of xB as the fraction of proton momentum carried by a

parton suggests that 0 ≤ xB ≤ 1 at least in the deep inelastic region. This is in fact true in

general. It follows from conservation of 4-momentum in a collision and the fact that the proton

is the lightest baryon. Since xB is a Lorentz scalar, it may be evaluated in any inertial reference

frame. In the lab frame, a photon of 4-momentum qµ = (ν,q) collides inelastically with a proton

of mass Mp at rest. The invariant (mass)2 of the final state X is W2.

Figure 3. Kinematics of a Deep Inelastic Collision in the lab frame. Figure taken from [16].

Even in an inelastic collision, 4-momentum is conserved:

[(ν,q) + (M,0)]2 = W 2

Therefore, q2 + 2Mν + M2 = W 2, where q2 = qµqµ . Writing Q2 for −q2 we see that

Q2 = 2Mν − (W 2 −M2) . Now the proton is the lightest baryon, while the final state X includes

several heavier hadrons, hence W 2 ≥ M2 and xB = Q2

2Mν
≤ 1 . Moreover, since the energy

transfer ν ≥ 0 and Q2 ≥ 0, we have xB ≥ 0. Therefore, 0 ≤ xB ≤ 1 as desired.

While we are still in the lab frame, it will be good to point out precisely what the deep

inelastic limit is. We have xB = Q2

2Mν
. The deep inelastic region of the xB −Q2 parameter space is

the limit of large Q2 and ν keeping xB fixed.
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In the deep inelastic limit, the structure functions are essentially independent of Q2. They

depend only on xB . For instance, F2 falls by about 50% as Q2 increases from 1 to 25 GeV 2,

while the square of the elastic form factor falls by a factor of 106 over the same range! [16]. This

invariance of the Structure Functions on the energy scale of the measurement, Q2 is known as

Bjorken Scaling and was first observed in the Deep Inelastic Scattering Experiments of the 1970s

[1]. The proton when probed at high energies (small distances), appeared to consist of point-like

constituents.

Figure 4. F2 as a function of Q2 at xB = .25. For this choice of xB , there is practically no

Q2 dependence of the structure function, that is, exact scaling. (After Friedman and Kendall [1]

(1972).) Figure taken from [16].

Soon, however, it was found that scale invariance was only an approximate symmetry: the

structure functions had a very slow (logarithmic) Q2 dependence. The accurate prediction of the Q2

dependence of the structure functions is one of the major successes of perturbative QCD. However,

there is as yet no satisfactory theoretical understanding of the xB dependence of the structure

functions. It is essentially controlled by non-perturbative effects. The fundamental theory of

strong interactions QCD has been in place for several years now, but has proven very hard to solve

even approximately. We shall describe a model which allows us to calculate the xB dependence

of hadronic structure functions. This model can be derived as an approximation to the large N

limit of two dimensional QCD. N here is the number of colors. It was actually obtained as an
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approximation to Quantum HadronDynamics(QHD), an equivalent reformulation of 2dQCD in

terms of color invariant observables [9]. However, we are able to interpret and describe this model

in terms of the parton model. It is this parton model point of view that we shall describe in what

follows.

Before describing the interacting parton model, let us introduce a convenient coordinate

system in two space-time dimensions: the null coordinates.

2.3 Null Coordinates

It will prove extremely convenient to use a null coordinate system when describing the kinematics in

the valence parton model. One useful consequence of this is that the relativistic energy-momentum

dispersion relation E = ±
√

p2
1 +m2 will no longer involve complications due to the square-

roots. The sign of energy will be the same as that of momentum! In QHD, the field variable

M(p,q) depends on two space-time points that are separeated by a null distance and thus causally

connected.

As explained earlier, we will ignore the transverse momenta of the partons. We may take

the longitudinal momenta of the partons to be directed along the x1 axis. The two dimensional

space-time position and momentum in cartesian coordinates are (x0, x1) and (p0, p1). Rather than

use p1 as the kinematic variable, we will use the null component of momentum p = p0 − p1. ‘p’

is the momentum along a null line in 2-dimensional Minkowski space. We will use (p0, p) as our

coordinates. This is not an orthogonal coordinate sytem. However, the simplification achieved is

that the mass-shell condition for a particle of mass m: p2
0 = p2

1 +m2 is replaced by p0 = 1
2(p+ m2

p
)

where p = p0 − p1 is the null momentum.

Thus we see that for a particle with positive energy p0, the null momentum must be positive,

unlike in cartesian coordinates. Also note that the fraction x of proton 4-momentum carried by a

parton is the same as the fraction of corresponding null momenta. For brevity, we shall often refer

to null momentum just as momentum. There should be no confusion since we will no longer use

the cartesian coordinate p1.

13



3 The Interacting Valence Parton Model

3.1 The Quark-Quark Potential

We now describe a model for the structure of baryons in the language of the parton model. In the

original quark-parton model, the baryon is made of N partons, which are essestially massless, free

particles. N here is the number of colors, which is 3. We shall keep N arbitrary for now. It is

true that when probed at very small distances (large momentum transfers, Q2), the quarks inside

the proton appear to be free particles. This is called asymptotic freedom [3] in QCD. However,

quarks are confined within the proton. An isolated quark has never been produced. Therefore, even

though the force that binds quarks together is vanishingly small at small distances, it is non-zero

at intermediate distances and does not diminish at large distances. This is in stark contrast to the

electromagnetic and gravitational forces which decrease with distance!

If the partons in our model were indeed free, they would not bind to form a proton. The

only way the proton can have non-trivial structure functions is for the quarks to interact. Since we

are describing a many-body system (N partons), it is simplest to assume an attractive two body

potential between the quarks.

In Quantum Chromodynamics, the force between quarks is mediated by the exchange of

massless spin 1 bosons called gluons. Gluons are the carriers of the color force just as photons are

the quanta of the electromagnetic force. When QCD is dimensionally reduced to 1+1 dimensions

[9], the gauge fields may be eliminated using their equations of motion. What remains is effectively

a long range quark-quark force which is given by a linear two-body potential in the null coordinates.

This linear potential can also be understood in other ways. Since gluons are massless, their

propogator in momentum space is 1
q2

. This is the same as the photon propogator. In 4 space-time

dimensions, the photon propogator corresponds to the 1
|r−r′ | Coulomb potential. However, since

we are in 2 space-time dimensions, we must use the appropriate Coulomb potential, which is the
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Green’s function of the Laplace operator (second derivative with respect to x) in 1 space dimension.

This is 1
2 |x− y|. Notice that this potential is linear, attractive and confining.

Moreover, there is evidence that the quark-quark potential is linear as reported in [17]. This

interacting parton model can be derived as an approximation to Quantum HadronDynamics (QHD)

[8, 9]. In QHD, Lorentz invariance leads to the choice of a linear potential. Translation invariance

implies that it can only depend on the absolute value of the separation |x− y| .

3.2 Wave Function of the Proton

We assume that the proton is made up of N partons (quarks). Therefore, the proton is a relativistic

quantum many-body system. We will describe the proton in terms of a wave function that will

depend on the quantum numbers of the partons (momenta, spin, color and flavour.)

We are interested in knowing the baryon wave function in its ground state, since that is where

the proton spends most of its time. The strategy will be to write down the energy of the baryon

in the state ψ and minimize this energy with respect to different choices of ψ. The configuration ψ

which minimizes the energy is its ground state wave function. This is what we will compare with

experimental data.

The quarks are spin 1
2 fermions transforming under the fundamental representation of the

color group SU(N). However, the proton itself is colorless. (i.e. a color singlet) It must transform

under the trivial representation of SU(N). As mentioned earlier, we will work in the null coor-

dinates. Therefore the wave function of a single parton is ψ̃(a, α, p). Here ‘a’ labels the flavour

(up, down) and the spin quantum numbers of the parton. α labels color and p = p0 − p1 is the

null momentum of the parton. We use ψ̃ to denote the momentum space wave function. The

corresponding position space wave function ψ(a, α, x) is the inverse Fourier transform of ψ̃(a, α, p).

Since the null momentum is always positive, ψ̃ must vanish for negative p. We shall often refer to

this as ‘ψ̃ has only positive support’.

We can think of ψ̃ as a joint probability density. It is a probability density that depends

on two discrete random variables ‘a’ and ‘α’ and one continuous random variable p, for any given

parton. The proton is made up of N partons and has a wave function

ψ̃(a1, α1, p1; · · · ; aN , αN , pN )

Here ai, αi, pi are the spin, flavour, color and null momentum of the ith parton. Since the
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quarks are fermions, the proton wave function should be completely anti-symmetric under inter-

change of a pair of quarks, by the Pauli exclusion principle. However, since the baryon is invariant

under color, the wave function must be completely anti-symmetric in color alone.

ψ̃(a1, α1, p1; · · · ; aN , αN , pN ) =
ǫα1,···,αN√

N !
ψ̃(a1, p1; · · · ; aN , pN )

This means the wave function is completely symmetric in spin, flavour and momentum quan-

tum numbers. Therefore, once color has been factored out, the partons behave like a collection of

bosons.

3.3 Hamiltonian of the N-Parton System

What is the energy of the proton in the state ψ̃(a1, p1; · · · ; aN , pN )? We will express the energy

as a sum of kinetic and potential energies. Consider the case N = 1,i.e. a proton consisting of

a single parton with wave function ψ̃(a, p). The ‘effective mass’ of the parton is µa, which could

possibly depend on what its flavour is. We shall return to a discussion of the effective mass later.

The relativistic kinetic energy-momentum relation expressed in terms of null-momentum is

p0 = 1
2(p + µ2

a

p
).

The probability density that the parton indeed has null momentum p and spin-flavour ‘a’ is

|ψ̃(a, p)|2 . Therefore, the expectation value of the kinetic energy of this single parton baryon is

∑

a

∫ ∞
0

1
2 (p+ µ2

a

p
)|ψ̃(a, p)|2 dp2π

It follows that the kinetic energy of a baryon with N partons is

∑

a1,a2,···,aN

∫ ∞
0

∑N
i=1

1
2(pi +

µ2
ai

pi
)|ψ̃(a1, p1; · · · ; aN , pN )|2 dp1···dpN

(2π)N

(We shall choose our normalization constants for Fourier transforms so that a factor of 1
2π consis-

tently appears in the measure of every momentum space integral.)

The potential energy is most easily expressed in position space. As explained earlier, the

partons interact through a two-body potential. i.e. the potential energy of a pair of quarks at null

coordinates x and y is g2v(x− y), where g is a coupling constant with the dimensions of mass. The

potential v is linear in the separation between the quarks v(x − y) = 1
2 |x − y|. This yields a

potential energy
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g̃2

2

∑

a1,...,aN

∫ ∞
−∞

∑

i6=j v(xi − xj)|ψ(a1, x1; · · · ; aN , xN )|2dx1 · · · dxN

for the system of N partons. The factor of 1
2 is to avoid double counting. ψ(a1, x1; · · · ; aN , xN ) is

the position space wave function of the baryon. It is the inverse Fourier transform of the momentum

space wave function.

ψ(a1, x1; · · · a1, xN ) =
∫ ∞
0 ψ̃(a1, p1; · · · aN , pN )ei

∑

j pjxj dp1···dpN

(2π)N

We said that µa is the effective mass of ‘a’ parton of flavour a inside the proton. This must

be explained. A quark is confined within the proton and cannot be isolated as a bare particle.

Therefore, its bare mass is not a directly measurable quantity. All that matters is its effective

mass µa when confined within the proton. However, one can make an indirect measurement of

of the ‘bare’ quark masses. At high energies, the strong force is essentially zero and the electro-

weak interactions of these essentially free quarks depends on their bare masses. These have been

measured and are called ‘current’ quark masses. The current quark mass of the up and down

quarks, which are the valence quarks in the proton, are about 5 and 8 MeV/c2. This must be

contrasted with the energy scale of the strong interactions ΛQCD ∼ 100 MeV. We see that the bare

up and down quark masses are negligible in comparison. In QCD, the limit of zero quark mass

is the limit of Chiral Symmetry. It is probably best to think of the quark mass parameters ma

as measuring the extent to which Chiral Symmetry is broken in the theory. In nature, the quark

masses are not exactly zero, but they are zero to a good first approximation. It is this limit that

we shall mostly be interested in while comparing our results with experimental data.

Returning to the question of effective and bare quark masses, we mention that a similar

situation exists in the case of an electron in a metal. It has an effective mass that is different

from the mass of a free electron. The term in the energy that involves the effective mass may

be re-expressed as the sum of a term involving the bare mass alone and a term involving the

coupling constant. This latter term is often referred to as the self-energy term. In QED, which is

an interacting theory of the electron, the ‘bare’ electron can emit and re-absorb photons. This part

of the interaction can be thought of as renormalizing the bare mass of the electron, giving rise to

a self-energy

However, these analogies are only to set the context. They cannot be pushed too far, in the

present case, the square of the effective mass is infact negative in the limit of chiral symmetry! In
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this case, the self energy term really arises in 2 dimensional QCD when a quartic operator in the

potential energy is normal ordered [9]. The resulting expression for the effective mass in terms of

the bare mass is µ2
a = m2

a− g̃2

π
, where g̃2 = Ng2. This expression has been derived in the literature

[10, 18].

Adding the potential and kinetic energies, the total energy of the proton is

EN (ψ̃) =
∑

a1···aN

∫ ∞

0

N
∑

i=1

1

2
[pi +

µ2
ai

pi
]|ψ̃(a1, p1; · · · aN , pN )|2 dp1 · · · dpN

(2π)N

+
1

2
g2

∑

a1···aN

∫ ∞

−∞

∑

i6=j
v(xi − xj)|ψ(a1, x1; · · · aN , xN )|2dx1 · · · dxN .

The wave function that minimizes this energy subject to the constraint that the total prob-

ability is 1 is the ground state baryon wave function. Here the norm of ψ̃ is given by

||ψ̃||2 =
∑

a1,···,aN

∫ ∞
0 |ψ̃(a1, p1; · · · ; aN , pN )|2 dp1···dpN

(2π)N

3.4 The Hartree Ansatz

The minimization of the above energy can be thought of as a problem in many-body theory. We

don’t have a general solution to such a problem and must look for approximation methods. An

important simplification can be made since we are describing the ground state of a bosonic system,

since we have factored out the totally anti-symmetric color part of the wave function. Mean field

theory gives a good approximation to the ground state where each boson moves in the mean field

created by the others. Moreover, in the ground state, each of the bosons can be assumed to occupy

the same single particle state. Therefore, in the mean field approximation, we make the ansatz:

ψ̃(a1, p1; · · · ; aN , pN ) = δ(
∑

i pi − P )
∏N
i=1 ψ̃(ai, pi).

In the language of probability distributions, we are assuming that the joint probability dis-

tribution of the N partons is well approximated by the product of N independent (identical) single

parton distributions. Since the null momenta are positive we impose the condition that the null mo-

menta of the partons add up to that of the baryon (P). Therefore, the single parton wave functions

must vanish for p < 0 and p > P . (Infact, the condition is weaker, all we need is the delta function
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factor on the momentum sum above. But the difference is a correlation which is suppressed in

the limit of a large number of partons, N.) Thus we are ignoring quark-quark correlations. When

comparing with data, we will express the wave function in terms of the dimensionless fractional

momentum x = p
P

. In Section 2.2 we showed that this fractional momentum is nothing but the

Bjorken scaling variable xB in the deep inelastic limit.

In practice, this is a very reasonable assumption. It underlies most of the phenomenological

description of Deep Inelastic Scattering. The very fact that one can speak of an up quark momentum

distribution in the proton, without mentioning the simultaneous down quark momentum at which

it was measured means that it is a good approximation to ignore correlations.

Such a mean field approximation is common in many-body physics and is probably best

known in the context of the Hartree approximation of atomic physics. There, we are solving the

Schrödinger equation for a many electron atom. The number of electrons in a neutral atom is

the same as the atomic number Z. The mean field approximation can be thought of as a large-Z

approximation [9]. The fact that it works well even for Helium when Z = 2 encourages us to use it

here for N = 3. For a more precise analogy, see the appendix to [9].

3.5 Momentum Sum Rule and Boundary Conditions

There is one further constraint that the single particle wave function must satisfy: the momentum

sum rule. The expectation value of the total momentum of all the valence partons must equal the

fraction f of the baryon momentum actually available to them

N
∫ P

0 p|ψ̃(p)|2 dp2π = fP.

The valence quarks do not carry all the momentum of the baryon, as in the original parton model.

The parton distributions extracted from Deep Inelastic Scattering data show that roughly half the

momentum of the baryon is carried by the valence quarks. The rest is in the gluons, sea quarks

and anti-quarks. We shall see that the fraction f is the only parameter on which the parton

distributions predicted by our model depend.

The energy per parton is therefore:

E =
∑

a

∫ P

0

1

2
[p+

µ2
a

p
]|ψ̃(a, p)|2 dp

2π
+
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1

2
g̃2

∫ ∞

−∞
v(x− y)

∑

a

|ψ(a, x)|2
∑

β

|ψ(β, y)|2dxdy.

with the potential v(x− y) = 1
2 |x− y| as explained in Section 3.1. The single parton wave function

is determined by minimizing the energy per parton subject to the constraints: ||ψ̃|| = 1 and

ψ̃(a, p) = 0 unless 0 ≤ p ≤ P . We will impose the boundary condition that the wave function

vanish as p→ P . This is because the probability density of a single parton carrying all momentum

of the baryon must be zero. The behavior of the wave function as p → 0 will be worked out in

detail in the next chapter (Section 4.4). It will turn out that for a positive quark mass m > 0, the

wave function vanishes at the origin too. In the limiting case m = 0, the wave function goes to a

non-zero value at the origin.

The condition that the momentum space wave function vanish outside [0,P] looks rather

different in position space. It says that ψ(a, x) must be the value along the real line, of an entire

function. This constraint can be hard to implement especially if we look for numerical solutions.

Hence we work in momentum space.

We also make a comment on the support of the wave function. We have imposed the con-

straint that ψ̃(p) vanish for p > P . i.e. the null momentum of a parton must not exceed that of

the baryon. However, the momentum sum rule states that N
∫ P

0 p|ψ̃(p)|2 dp2π = fP , where f is the

fraction of baryon momentum carried by the N valence partons. But this is just N times the mean

(first moment) of the single parton distribution! We see that the single parton wave function is

primarily concentrated around the region p = fP
N

. For large enough N, it should be reasonable

to allow the wave functions to be non-zero beyond P, since they are vanishingly small for large p

anyway. Thus we may replace the upper limit of integration P, by ∞ especially while obtaining

analytic approximations. Note that we are not saying that P → ∞. This is not a Lorentz invari-

ant statement. P is the null momentum of the baryon and has a fixed value in any given inertial

reference frame.

3.6 Positivity of the Energy

We may reformulate this constrained minimization problem as the solution of a certain non-linear

integral equation. Before proceeding with this, let us make some slight simplifications. We will set

all the parton masses equal to each other. In nature, the up and down current quark masses are
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both roughly zero. Further, let us look for a single parton wave function that is non-zero for only

a single spin-flavour index ‘a’ : ψ̃(a, p) = δa,1ψ̃(p).

This breaks the U(M) invariance of our model spontaneously. This symmetry can be restored

later by the collective variable method as in the theory of solitons, though we shall not address

these issues here.

With these simplifications, the energy is given by:

E =

∫ P

0

1

2
[p +

µ2

p
]|ψ̃(p)|2 dp

2π
+

1

2
g̃2

∫ ∞

−∞
v(x− y)|ψ(x)|2|ψ(y)|2dxdy.

We take a moment to check that the energy is positive (and hence bounded below), so that its

minimization is a well posed problem! This is immediate since the integrands of both the kinetic

and potential energies are positive functions for µ2 = m2 − g̃2

π
≥ 0. The physically interesting

region is the limit of zero quark mass m → 0. This corresponds to a negative value of µ2. This

case is more subtle, the kinetic (
∫ P

0
1
2 [p + m2

p
]|ψ̃(p)|2 dp2π ) and potential energies (1

2 g̃
2
∫ ∞
−∞ v(x −

y)|ψ(x)|2|ψ(y)|2dxdy) remain positive while the self energy term (
∫ P

0
1
2 [−g̃

2

πp
]|ψ̃(p)|2 dp2π ) is negative.

However, it can be shown that this self energy term is cancelled by a portion of the potential energy,

when expressed in momentum space. In practice, this will not be a problem since we will approach

the physically interesting region from positive values of µ2 and see that a sensible limit exists.

3.7 The Energy in Momentum Space

The constraint on the position-space wave function is that it be the boundary value of an entire

function. The same constraint is much simpler in momentum space: it must vanish outside the

interval [0,P]. Therefore, as mentioned in Section 3.5, it will be convenient to express the potential

energy in momentum space. The energy per parton is

E =

∫ P

0

1

2
[p +

µ2

p
]|ψ̃(p)|2 dp

2π
+

1

2
g̃2

∫ ∞

−∞
v(x− y)|ψ(x)|2|ψ(y)|2dxdy.

The potential energy is best understood in the language of electrostatics. It is just the

electro-static potential energy of a charge density ρ(x) = g̃|ψ(x)|2 in one space dimension, where

the Green’s function is 1
2 |x − y|. g̃ here is analogous to the unit of electric charge. The Poisson

integral formula then gives the electrostatic potential
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V (x) = g
∫ ∞
−∞ |ψ(y)|2 |x−y|

2 dy

Rather than refer to V(x) as the electrostatic potential, we must call it the mean potential

due to the partons. It is not to be confused with the 2-body potential v(x − y) between the

quarks! V(x) then satisfies Poisson’s equation V ′′(x) = g̃|ψ(x)|2. The boundary conditions are

V (0) = g̃
∫ ∞
−∞ |ψ(y)|2 |y|

2 dy and as |x| → ∞, V (x) → g̃|x|
2 , which is just the asymptotic form of the

potential of a charge g̃ localized around the origin.

We shall rewrite all of this in momentum space, but will have to be careful since we will

find that the mean potential Ṽ (p) has a −1
p2

singularity at the origin in momentum space. The

momentum space integrals we get will therefore be singular and we will define them as Finite Part

integrals in the sense of Hadamard [19]. These ‘Finite Part’ prescriptions are not to be thought

of as a witch-craft that allows one to assign finite values to divergent integrals, but as a way of

restating the above boundary conditions in momentum space. Ultimately, it is the physics that

determines what the correct definition of an apparently divergent quantity is. As we shall see, these

definitions will turn out to be very natural and motivated by general principles such as analytic

continuation. It is therefore likely that these are the ‘correct’ definitions in other contexts too.

We first rewrite Poisson’s equation for the mean potential in momentum space by Fourier

transforming: −p2Ṽ (p) = W̃ (p) where W̃ (p) is the convolution
∫ P

0 ψ̃(p+ q)ψ̃(q) dq2π . We see that

the mean potential is singular at the origin: Ṽ (p) → −1
p2

as p → 0. It will be useful to note that

W̃ (0) = 1, Ṽ (−p) = Ṽ ∗(p) and W̃ ′(0) = −1
2 |ψ̃(0)|2. Also, by a choice of phase, the wave function

ψ̃(p) may be taken to be real. Therefore Ṽ (p) is real and even.

Therefore, the energy in momentum space is:

E[ψ̃] =
∫ P

0
1
2(p+ µ2

p
)|ψ̃(p)|2 dp2π + g̃

2FP
∫

dpdq
(2π)2

Ṽ (p)ψ̃(q)ψ̃∗(q − p)

where Ṽ (p) = −g̃
p2

∫ P

0 ψ̃∗(p + r)ψ̃(r) dr2π

We see that the integrand in the potential energy has a 1
p2

singularity and we must define it as a

‘Finite Part’ (FP) integral. We will postpone a discussion of Finite Part integrals till we actually

have to evaluate them in the next chapter.
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3.8 Integral Equation for the Ground State Wave Function

We must minimize the above energy functional with respect to the constraint that the norm of ψ

be 1. This is equivalent to minimizing F [ψ̃] = E[ψ̃] + λ||ψ̃||2. λ here is the Lagrange multiplier

enforcing the constraint. Since the functional we are minimizing is quartic in ψ, λ is not the same as

the ground state energy. Therefore the groundstate wave function satisfies the equation δF [ψ̃]

δψ̃
= 0,

which when written out more explicitly reads

1
2 (p+ µ2

p
)ψ̃(p) + g̃FP

∫ P

0 Ṽ (p− q)ψ̃(q) dq2π = λψ̃(p)

Since Ṽ is quadratic in ψ̃, we see that this is a non-linear singular integral equation for ψ̃.

In the next chapter, we will explain how the singular integrals are defined and obtain a

solution to the equation. We must mention that there is a well-developed theory of linear integral

equations, even those with Cauchy-type singularies [19]. But the non-linearities and severity of

the singularities in our case mean that we will have to develop special techniques to deal with our

integral equation.

The strategy will be to understand the ground state wave function from several different

points of view. No single technique may give us the exact solution. We will develop approximation

methods which are valid in distinct special cases. By patching these together, we will obtain both

a qualitative and quantitative understanding of the solution.

3.9 Parameters in the Model

Let us conclude this chapter with a discussion of the parameters in the theory. g̃ is the coupling

constant of the theory. It has dimensions of mass and is related to the coupling constant of two-

dimensional QCD by g̃ = g2N . g is related to the coupling constant of the four dimensional theory

through a multiplicative factor of the order of the inverse transverse size of the proton. This arises

when we ‘integrate over’ transverse coordinates to arrive at this ‘effective’ two-dimensional model.

Though we do not predict the value of the coupling constant, we will see that it cancels out when

we calculate the valence quark distribution.

N is the number of colors, which is the same as the number of valence quarks. Most of the

approximations we have made become exact when N → ∞. We will use the value N = 3 when

comparing with data.
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µ is the ‘effective’ quark mass and is related to the current quark mass by µ2 = m2 − g2

π
. We

will be interested in the limit of chiral symmetry when m → 0. The energy expressed above has

logarithmic divergences in both the potential and self energies when m is exactly zero. However, we

shall define the theory as the limit m → 0. A Frobenius analysis will show that the valence quark

wave function has a sensible limit as m → 0. This can be thought of as an infrared regulation. But

we emphasize that there is no real divergence in the problem, requiring renormalization. In any

event, nature is balanced on a knife-edge at a small, positive value of m!

The limit where m is small keeping g̃ fixed is the extreme relativistic limit. The binding

energy of the system far exceeds the rest-mass of the partons. We will also have occasion to

consider the non-relativistic limit in which µ >> g̃. This is not the physically interesting case as

it corresponds to a baryon made up of heavy quarks. However, in this limit the integral equation

will reduce to a non-linear ordinary differential equation and will give us another way of studying

the solutions.

λ is the Lagrange multiplier enforcing the constraint on the norm of ψ̃. It has no direct

physical meaning and is not equal to the energy of the state ψ̃.

P is the null momentum of the baryon, which in its restframe, is equal to its rest-mass. ψ̃ is

non zero only for 0 ≤ p ≤ P. But when we express the wave function in terms of the dimensionless

Lorentz invariant variable xB = p
P

, we will see that the structure functions do not depend on which

value of P we used (i.e. which inertial reference frame we picked). g̃ too will cancel out. One

can think of P as being measured in units of g̃. When the dimensionless structure functions are

expressed in terms of the dimensionless variable xB, they no longer depend on g̃.

The only free parameter in the theory then, is the fraction f of baryon momentum carried

by the valence partons. It enters through the momentum sum rule N
∫ P

0 p|ψ̃(p)|2 dp2π = fP .
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4 Determination of the Valence Quark Wave Function

4.1 Estimation of the Ground State using Variational Ansatzes

The variational principle of quantum mechanics allows us to estimate the ground state energy and

wave function of a quantum mechanical system. The ground state is the one that actually minimizes

the energy. Therefore, by minimizing the energy within a sub-class of functions in the Hilbert space,

we may obtain an upper bound for the ground state energy and also a qualitative understanding

of the ground state wave function. In practice, a judicious choice of a 1 or 2 parameter family of

variational ansatzes motivated by physical principles can often come spectacularly close to the true

ground state energy.

The energy per parton is given by

E =

∫ P

0

1

2
[p +

µ2

p
]|ψ̃(p)|2 dp

2π
+

1

2
g̃2

∫ ∞

−∞
v(x− y)|ψ(x)|2|ψ(y)|2dxdy.

As a first approximation, we may work on the interval [0,∞) with a function that decays as

p → ∞, as justified in Section 3.5. A simple choice is ψ̃a(p) = Cpe−ap with a > 0, p ≥ 0. Here ‘a’

is a variational parameter controlling the rate of decay of the wave function in momentum space.

C is fixed by normalization. In position space, this positive momentum function has an analytic

continuation to the upper half plane and a double pole at x = −ia: ψ(x) = C
′

(x+ia)2
.

We may calculate the energy of such a state and minimize with respect to a. It is clear on

dimensional grounds that the term
∫ ∞
0

1
2p|ψ̃(p)|2 dp2π scales like 1

a
while all other terms in the energy

scale like a. (‘a’ has dimensions of inverse momentum or length.) Thus there is a value of ‘a’ at

which the energy is minimized among this class of functions.

Eground state ≤ 1
2

√

I1(m2I2 + g̃2I3),
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where I1, I2 and I3 are positive dimensionless pure numbers obtained from the integrations.

We have also tried another class of variational ansatzes: ψ̃(p) = Cpα(1 − p)β . This time, we

work on the finite interval [0, P ] and set P = 1 for convenience. Thus p is the fraction of baryon

momentum carried by the quark. This is the same as the Bjorken Scaling variable xB . The energy

calculations in this case are more formidable but can be performed in terms of hypergeometric

functions. Moreover, we work in momentum space and use the definitions of singular integrals,

which will be presented in Section 4.3. The results, however, are encouraging and easy to state.

Among the choices α, β = 1, 2, 3 we find that the energy is minimized for the choice α = 1 and

β = 2, even as m → 0. There is a further decrease in energy when we consider wave functions

of the form ψ̃(p) = Cpν(1 − p)2 for fractional values of α, 0 < α < 1. Our conclusion is that in

the limit of chiral symmetry (zero current quark mass), the energy is minimized in the limit where

α→ 0. We thus have a qualitative understanding of the momentum space wave function as m→ 0.

It goes to a non-zero constant as p → 0 and then falls off roughly as (1 − p)2 as p→ 1.

We shall see that this picture is re-inforced and made more precise by the other approximation

methods we develop to study the integral equation for ψ̃.

4.2 Non-relativistic Limit

The non-relativistic limit is the limit where the binding energy of the system is small compared to

the rest mass of the quarks. It can be achieved by making the quark mass large compared to the

coupling constant (m >> g̃). In the case of the proton, this is not a very interesting limit since

the up and down quark masses are essentially zero. However, we will be able to understand our

system from a slightly different perspective this way. Besides, it also gave us a way of checking our

numerical procedures. The expression for the energy is:

E =
∫ P

0
1
2(p + µ2

p
)|ψ̃(p)|2 + g̃2

2

∫ ∞
−∞ |ψ(x)|2 |x−y|

2 |ψ(y)|2dxdy.

The relativistic energy-null momentum dispersion relation is p0 = 1
2(p + µ2

p
), p > 0. We see

that p0 has a minimum when p = µ. In the extreme case of no interaction at all (g̃ = 0), the total

energy is just the kinetic energy. In this case the energy is minimized when all the null-momentum

of the parton is concentrated at the value p = µ. In other words, |ψ̃(p)|2 is a delta function at

p = µ.
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The effect of having a small, but non-zero interaction g̃ > 0 is to broaden out the ground

state wave function. In any case, it is concentrated around the minimum of the dispersion curve.

Therefore we may replace the dispersion relation by its quadratic approximation in the neighbour-

hood of its minimum, p = µ. The result should not be surprising. We get the new dispersion

relation

p0 = µ+ k2/2µ,

where k = p − µ is the shifted momentum variable and µ =
√

m2 − g2

π
∼ m is the mass of the

heavy quark.

We immediately recognize this as the non-relativistic energy of a particle of mass µ and

momentum k. Putting this into the expression for the energy per parton, we have

E = µ+
∫

k2

2µ |χ̃(k)|2 dk2π + g̃
2

∫ ∞
−∞ V (x)|χ(x)|2dx.

where χ̃(k) = ψ̃(µ + k) and χ(x) is its Fourier transform. V(x) is the effective potential

satisfying Poisson’s equation with boundary conditions as in Section 3.7:

V ′′(x) = g|χ(x)|2

To minimize this energy we vary with respect to χ(x) and impose the constraint ||χ|| = 1.

The result is a Schrödinger-like equation.

−1
2µχ

′′(x) + g̃
2V (x)χ(x) = λχ(x)

It is non-linear, since V itself depends on χ. However, it can be solved by iteration. We start with

a guess for the ground state wave function χ0(x) and calculate V0(x) by solving Poisson’s equation.

Using this approximate effective potential V0(x), we solve the eigenvalue problem

−1
2µχ

′′
1(x) + g̃

2V0(x)χ1(x) = λχ1(x)

for the first iterate wave function χ1(x). χ1(x) is used to determine a new effective potential

V1(x) = g̃
∫ ∞
−∞ |χ1(x)|2 |x−y|

2 dx. (This is the solution of Poisson’s equation satisfying the boundary

conditions given in Section 3.7). The process is iterated till it converges (or until successive iterates

are the same up to numerical errors, if one is working numerically). The resulting ground state
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χ(x) may be transformed back to momentum space and re-expressed in terms of p = k + µ. We

thus obtain an approximate ground state wave function and energy for the N parton system in the

non-relativistic limit. We shall not discuss the details here.

We mention the procedure primarily because it gives us a general method of obtaining ap-

proximate solutions to certain non-linear equations. It is essentially this procedure of iteration

that will be used in the numerical solution to our non-linear integral equation for the ground state

parton wave function. It will ofcourse be more complicated since we have a non-linear integral

equation with singularities.

4.3 Finite Part Integrals

We have mentioned the need to define singular integrals where the integrand has a 1
q2

singularity.

For instance, consider the integral equation for the ground state wave function ψ̃(p):

[

1
2(p+ µ2

p
) − λ

]

ψ̃(p) + g̃2FP
∫ P

0 Ṽ (p− q)ψ̃(q) dq2π = 0,

where Ṽ (p) = − 1
p2

∫ P

0 ψ̃∗(p+ q)ψ̃(q) dq2π.

Hence the integrand in the equation for ψ̃(p) is singular. We will define it as a ‘Finite Part’

integral in the sense of Hadamard [19]. In general, all our singular integarls can be reduced to those

of the form

FP
∫ P

0
f(q)
q2
dq

where f itself is not singular at the origin. In fact, we will assume that f is C1 at the origin from

the right. This means that f possesses a continuous right-hand derivative at the origin. We shall

rewrite the above integral as

FP
∫ P

0
f(q)
q2
dq =

∫ P

0
f(q)−f(0)−qf ′(0)

q2
dq + f(0)FP

∫ P

0
dq
q2

+ f ′(0)FP
∫ P

0
dq
q

The first integral on the right is non-singular at the origin and is an ordinary Riemann

Integral, since we have subtracted out the singular parts. However, the last two integrals on the

right still need to be defined. They are of the form FP
∫ P

0
qν

q2
dq. We know that for ν > 1, this is

just a Riemann Integral and has the value P ν−1

ν−1 We shall now define it even for ν < 1 by analytically

continuing this formula.
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i.e. FP
∫ P

0
qν

q2
dq = P ν−1

ν−1 for ν 6= 1.

This clearly runs into trouble for ν = 1. In this special case, we shall define it to be the

average of the values for ν = 1 + ǫ and ν = 1 − ǫ as ǫ→ 0.

This is easily seen to imply that FP
∫ P

0
dq
q

= Log(p). Therefore we have the following

definition:

FP
∫ P

0

qν

q2
dq =

P ν−1

ν − 1
ν 6= 1.

FP
∫ P

0

qν

q2
dq = Log(P ) ν = 1.

We must mention a few cautionary remarks. The definition for ν = 1 violates the change of

variable formula for the scale transformation q → λq by the amount Logλ. We must take this into

account when making a scale transformation in the case ν = 1. For ν ≤ 1, the Finite Part integral

of a positive function may be negative. For example

FP
∫ 1
0
dq
q2

= −1. and FP
∫ ∞
−∞

dq
q2

= 0.

However, we also note that these definitions reduce to the familiar Riemann integrals when-

ever they exist in the usual sense. Furthermore, the usual Cauchy Principal value for integrals with

a simple pole that does not lie at a limit of integration continues to hold. In particular then,

FP
∫ ∞
−∞

dq
q

= 0

We emphasize that these definitions are necessary since we would like to rewrite position space

potential energy integrals in terms of momentum variables. These complications arise because the

integral kernel of the Green’s function |x|
2 expressed in momentum space takes the form −1

p2
. These

definitions ensure that the same integrals evaluated in position and momentum space give the

same results. For instance, the position space mean potential V (x) satisfies Poisson’s equation

V ′′(x) = |ψ(x)|2 along with a pair of boundary conditions. Poisson’s equation in momentum space

for the mean potential Ṽ (p) is

−p2Ṽ (p) =
∫ P

0 ψ̃∗(p+ r)ψ̃(r) dr2π
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The boundary conditions translate to rules for integrating the 1
p2

singularity appearing in Ṽ (p).

As an illustration and check, let us show that our definitions do indeed imply the equality of

the Green’s functions expressed in position and momentum space. We would like to prove that

− |x|
2 = FP

∫ ∞
−∞

1
p2
eipx dp2π

The proof will involve using our definition for Finite Part Integrals since the integrand on

the right is singular. We will use contour integration to complete the proof.

For x = 0, both sides are zero according to our definition. It suffices to prove the stated

result for x > 0 since both sides are even functions of x as is easily checked.

FP
∫ ∞
−∞

1
p2
eipx dp2π =

∫ ∞
−∞

eipx−1−ipx
p2

dp
2π + FP

∫ ∞
−∞

dp
2πp2 + ixFP

∫ ∞
−∞

dp
2πp

= I1 + I2 + I3.

I3 is just the Cauchy principal value and is zero as observed before. I2 is also zero by the

Finite Part prescription. I1 is the Riemann integral of an entire function of p along the real axis.

It may be evaluated using a semicircular contour in the upper-half plane. After making some

estimates, we have I1 = −x
2 for x > 0. Therefore, the desired result follows.

4.4 The Small p Behavior of the Valence Quark Wave Function

We shall describe a Frobenius-type analysis that gives us the behavior of the wave function ψ̃(p)

for small positive p. The integral equation for the wave function is:

[

1
2(p + µ2

p
) − λ

]

ψ̃(p) + g̃2FP
∫ P

0 Ṽ (p− q)ψ̃(q) dq2π = 0

where Ṽ (p) = − 1
p2

∫ P

0 ψ̃∗(p + q)ψ̃(q) dq2π.

Keeping only the singular terms for small p, we have:

1
2(m2 − g̃2

π
)1
p
ψ̃(p) + g̃FP

∫ p

p−P Ṽ (q)ψ̃(p− q) dq2π = 0

Ṽ (q) ∼ −1
q2

for small q. Now we assume a power law behavior ψ̃(p) ∼ pν for small p > 0 and

derive an equation for ν.

1
2(m

2

g̃2
− 1

π
) = FP

∫ 1
1− p

P

(1−y)ν

y2
dy
2π
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where y = q
p
. Since p << P , we have

πm2

g̃2
− 1 = FP

∫ 1
0

(1−y)ν+(1+y)ν

y2
dy +

∫ ∞
1

(1+y)ν

y2
dy

The first of these integrals is singular and we evaluate it according to the definition given

earlier. The result is a transcendental equation for ν:

πm2

g̃2
− 1 =

∫ 1
0

(1+y)ν+(1−y)ν−2
y2

dy − 2 +
∫ ∞
1

(1+y)ν

y2
dy

which is of the form πm2/g̃2 − 1 = h(ν). It is easily seen that for m = 0, ν = 0 is a solution. In

the limit of zero current quark mass, the critical wave function tends to a constant at the origin.

Calculating h(ν) shows that for a positive quark mass m, the wave function goes to zero at p = 0

and rises like a power law ψ̃(p) ∼ pν , ν > 0. The following plot shows h(ν). The solution ν for a

given value of m ≥ 0 is the point at which the horizontal line πm
2

g̃2
− 1 intersects the curve.

0.1 0.2 0.3 0.4 0.5

-1

-0.8

-0.6

-0.4

-0.2

Figure 5. h(ν) as a function of ν. The solution ν for a given value of m ≥ 0 is the point at which

the horizontal line πm
2

g̃2
− 1 intersects the curve. Notice that for m = 0, ν = 0 is a solution: in the

limit of Chiral Symmetry, the wave function goes to a non-zero constant at the origin.

Our conclusion that the critical momentum space wave function tends to a non-zero constant

as p → 0 implies that it is discontinuous at the origin. Therefore, the critical position space wave

function decays like 1
x

at infinity. This is very reasonable from another point of view. In the soliton

model [12] the baryon is thought of as being made up of an infinite number of pions. It has been

shown that this picture is consistent with QCD [13]. But in that case, it should be possible to
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approximate the baryon wave function with the meson wave function for large spatial x. At large

distances we are essentially far away from the proton. The meson wave function has been calculated

by ’t Hooft [10]. In the limit m → 0 the ’t Hooft meson wave function too has a discontinuity in

momentum space and consequently decays like 1
x

as x→ ∞, just as we obtain here.

This Frobenius-like analysis is very useful. It gives us a clear quantitative understanding of

the small p behavior of the wave function in the physically interesting region m → 0. We have

that as m → 0, ψ̃(p) ∼ pν with ν → 0. i.e. the wave function rises sharply near the origin. At the

critical point m = 0, the wave function goes to a non-zero constant at p = 0. We had already got a

scent of this behavior from our variational estimates! Together with the numerical solution, which

will be valid except for small p, we will have almost a complete understanding of the valence quark

wave function.

4.5 Numerical Solution

The numerical solution of this problem is not straightforward since the kernel of the integral equation

is singular. We need a reliable method of numerical quadrature for integrals such as

FP
∫ P

0 f(p, q)ρ(q)dq

when the weight function ρ(q) has a singularity at q = 0 like 1
q2.

We need to subdivide

the interval [0, P ] = ∪nr=1[br, br+1] into subintervals. Within each subinterval we choose a set of

points qjr, j = 1, · · · νr. We approximate the integral by a sum

FP
∫ P

0 f(p, q)ρ(q)dq =
∑

jr wjrf(qjr).

The weights wjr are determined by the condition that within each subinterval [br, br+1] ,

the integral of a polynomial of order νr − 1 is reproduced exactly:

FP
∫ br+1

br
qkρ(q)dq =

∑νr

j=1wjrq
k
jr.

This is the usual method of numerical quadrature [19, 20] except that the integral on the

left hand side is singular for br = 0 and k = 0, 1. In these cases we can evaluate the left hand

side analytically as the finite part in the sense of Hadamard. (The main difference from the usual
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situation is that the moments on the left hand side of the above equation are not all positive.) The

weights are then determined by solving the above system of linear equations.

Given an approximate mean potential Ṽs(p) we can convert the linear integral equation

1
2 [p+ µ2

p
− 2λs]ψ̃s+1(p) + g̃2FP

∫ ∞
0 Ṽs(p− q)ψ̃s+1(q)

dq
2π = 0

into a matrix eigenvalue problem by the above method of quadrature. We use the ground

state eigenfunction so determined to calculate numerically the next approximation Ṽs+1 for

the mean potential. This process is iterated until the solution converges. Having determined the

wavefunction, we must impose the momentum sum rule to determine g̃. We used Mathematica

to implement this numerical procedure. An approximate analytic solution was used as a starting

point for the iteration.

4.6 Comparison with Experimental Data

Now we turn to the question of the comparison of our model with data from Deep Inelastic Scatter-

ing. It is customary to describe the parton distributions as functions of the Bjorken scaling variable

0 ≤ xB ≤ 1 which is the fraction of the null component of momentum carried by each parton. This

means we must rescale momenta to the dimensionless variable xB = p
P

. The probability density of

a parton carrying a fraction xB of the momentum is then

φ(xB) = P
2π |ψ̃(xBP )|2.

(The factor of 1
2π is needed because φ(xB) is traditionally normalized to one with the measure dxB

rather than dxB

2π .)

It is important to note that the only dimensional parameter in our theory, g̃, cancels out of

the formula for φ(xB): it only serves to set the scale of momentum and when the wavefunction

is expressed in terms of the dimensionless variable xB, it cancels out. The wave function only

depends on the ratio m2

g̃2
and is independent of g̃ in the limit of zero current quark mass. We have

set µ2 to the critical value (within numerical errors), which is the value corresponding to chiral

symmetry; i.e., zero current quark mass. The number of colors we fix at N = 3. Thus the only free

parameter in our theory is the fraction f of the baryon momentum carried by the valence partons.

The parameters N and f appear in the combination Neff = N
f

.
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We have ignored the ispospin of the quarks in the above discussion. We should therefore

compare our structure functions with the isoscalar combination of the valence quark distributions

of a baryon, φ(xB). It is not difficult to take into account the effects of isospin.

The parton distributions have been extracted from scattering data by several groups of

physicists [4, 5, 6]. In the figure below we plot our wavefunctions and compare them to that

extracted from data by the MRST collaboration, at Q2 = 1 GeV2. We agree remarkably well

with data except for small values of xB. The agreement is best when the fraction of the baryon

momentum carried by the valence partons is about f ∼ 0.5.

0.2 0.4 0.6 0.8 1
xB

0.5

1

1.5

2

2.5

3

Wave Functions Versus xB

<---MRST fit to DATA

<---Numerical f~.6

<---Analytic f~.5

Figure 1. Comparison of the predicted valence parton wavefunction
√
φ(xB) with the MRST [5]

global fit to data. The wavefunction we predict goes to a non-zero constant at the origin. The

numerical solution is not reliable in this region. The ‘analytic’ wave function is the variational

estimate that minimizes the energy. The fit to data has a mild divergence at the origin.

Our model does not predict the observed behavior of the parton distributions for small xB :

our probability distribution tends to a constant for small xB (Sections 4.1, 4.4) although due to

numerical errors this is not evident in the numerical solution. The observed distributions have an

integrable singularity there: roughly speaking, φ(xB) ∼ x−0.5
B for small xB .The approximations

we made clearly break down in the small xB region: travsverse momenta and sea quarks can no

longer be ignored, indeed even gluons need to be considered. We will study these effects in future

publications.
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5 Conclusion

This thesis has been about the structure of the proton. The Deep Inelastic Scattering experiments

showed that the proton is made of point-like constituents, called quarks or partons. The structure

of the proton is described in terms of parton distribution functions. These are momentum-space

probability distributions of quarks inside the proton. Parton distribution functions are the ana-

logues of electron wave functions in an atom, and are of great importance in particle physics. They

are measured in Deep Inelastic Scattering experiments. However, we do not yet have a theoreti-

cal understanding of the xB (momentum fraction or Bjorken Scaling variable) dependence of the

parton distribution functions.

In this thesis we solve the problem of predicting valence quark distributions in the proton.

We have presented a model of interacting partons for the structure of baryons. The valence quarks

interact through a linear potential in the null coordinate. This model can be derived from QCD

in the approximation where transverse momenta are ignored. We obtain the valence quark wave

function as the solution to a non-linear integral equation. We understand the behavior of the

solution both analytically and numerically. Our prediction is compared with the baryon structure

function extracted from global fits to Deep Inelastic Scattering data. The only parameter we can

adjust is the fraction of baryon momentum carried by the valence partons. Our predictions agree

well with data except for small values of the Bjorken Scaling variable, xB , where our model is not

expected to be accurate. We cannot ignore gluons, sea quarks and transverse momenta. We shall

study these effects in future publications.
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