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Abstract: We study the competing effects of gluon self-coupling and their interactions

with quarks in a baryon, using the very simple setting of a hermitian 1-matrix model with

action trA4 − log det(ν + A2). The logarithmic term comes from integrating out N quarks.

The model is a caricature of 2d QCD coupled to adjoint scalars, which are the transversely

polarized gluons in a dimensional reduction. ν is a dimensionless ratio of quark mass to

coupling constant. The model interpolates between gluons in the vacuum (ν = ∞), gluons

weakly coupled to heavy quarks (large ν) and strongly coupled to light quarks in a baryon

(ν → 0). It’s solution in the large-N limit exhibits a phase transition from a weakly coupled

1-cut phase to a strongly coupled 2-cut phase as ν is decreased below νc = 0.27. Free energy

and correlation functions are discontinuous in their third and second derivatives at νc. The

transition to a two-cut phase forces eigenvalues of A away from zero, making glue-ring

correlations grow as ν is decreased. In particular, they are enhanced in a baryon compared

to the vacuum. This investigation is motivated by a desire to understand why half the

proton’s momentum is contributed by gluons.
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1. Introduction

Photons carry a negligible amount of momentum in a moving atom. By contrast, it is

experimentally found [1] that gluons carry about half the momentum of a nucleon when

observed at momentum transfers of order Q2 ∼ 1 (GeV )2. The growth of the gluon momen-

tum contribution as Q2 is increased is correctly predicted by perturbative QCD. However,

the momentum fraction (xBj) dependence of gluons in a nucleon at any fixed value of Q2

appears to be essentially non-perturbative. More generally, determining the ‘emergent’

bound-state structure of gluons in baryons from QCD remains an interesting and challeng-

ing open problem of theoretical physics. This problem in 3 or 4 dimensional QCD is still

very hard to address analytically. However, there is a context where it can at least be

finitely formulated. This is in the class of theories where 2d QCD is coupled to adjoint

scalar fields. The principal examples are the reduction of QCD from 3 or 4 to 2 dimensions,
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where we assume that fields are independent of transverse coordinates.1 In this case, the

longitudinal component of the gauge field contributes a linear potential between dynamical

quarks qa(x) and the transverse components transform as adjoint scalar fields Aa
b (x), for

instance in the light-cone gauge. Thus, for N colors a, b, we have a two-dimensional field

theory of N×N hermitian matrix-valued and N -component vector-valued fields with only a

‘global’ U(N) invariance. The gauge-invariant observables include glue-ring (closed-string)

variables

tr[A(x1)A(x2) · · ·A(xn)] (1.1)

and meson (open-string) variables

q†a1
(x0) Aa1

a2
(x1) Aa2

a3
(x2) · · ·Aan

an+1
(xn) qan+1(xn+1) (1.2)

where the points xi are null separated.2 In ’t Hooft’s large-N limit, the expectation values

of products of these variables factorize. So we may restrict attention to the single trace

observables. Quarks are suppressed by one power of N in calculating vacuum expectation

values of glue-ring observables in the large-N limit [2]. However, when the vacuum is

replaced by a baryon state, interactions with quarks are just as important as gauge field

self-interactions [3]. For definiteness, let us consider 2d QCD coupled to a single adjoint

scalar field via the action (non-dynamical fields have been eliminated)

S =

∫

dt dx tr

[

q†i∂tq +
1

2
m2q†

1

i∂x
q + ∂xA∂tA

]

− g2

2

∫

dtdxdy Ja
b (x)

|x − y|
2

Jb
a(y) (1.3)

where the current

Ja
b (x) = i[A(x), ∂xA(x)]ab − q†b(x)qa(x). (1.4)

m is the ‘current’ quark mass and g is a coupling constant with the dimensions of mass.

There is no term of the form q†Aq when non-dynamical fields are eliminated. This is

essentially the dimensional reduction from 3 dimensions, except for the absence of terms

of the form q†A 1
∂x

Aq and q†A 1
∂x

q. These theories have no ultraviolet divergences, though

m undergoes a finite renormalization (m2 → m2 − g2N/π). Heuristically, g2 is related to

the dimensionless 4d coupling constant g2
4 via a factor of the transverse area of hadrons,

g2 ∼ Λ2
QCDg2

4 .

Before proceeding further, let us mention some literature on these theories. The adjoint

scalar glueball spectrum was studied by numerical diagonalization of the hamiltonian by

Klebanov and Dalley [4]. There is a large literature on discretized light-cone and transverse

lattice approaches for which we refer to the review by Burkardt and Dalley [5]. Among

the more analytical approaches, Rajeev, Turgut and Lee [6] studied the Poisson and Lie

algebras of Wilson loops, open and closed string observables in the large-N limit of the

1This dimensional reduction may well provide a first approximation to the gluon distribution of the

proton measured in the Bjorken limit of deep inelastic scattering.
2The parallel transport operators between these points are trivial in a gauge where the null component

of the the gauge field is set to zero.
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hamiltonian framework. On the other hand, Rajeev formulated 2 dimensional QCD in the

large-N limit (without the adjoint scalars) as a non-linear classical theory of gauge-invariant

quark bilinears [7]. By developing approximation methods to solve this non-linear classical

theory it was possible to analytically determine the quark structure of the baryon predicted

by 2d QCD. This was shown to provide a first approximation to the non-perturbative quark

structure functions of baryons measured in deep inelastic scattering [8, 9].

Despite these developments, determining the expectation values of glue-ring and meson

observables analytically remains quite hard for two reasons. On the one hand, there are

an infinite number of observables with ever increasing string length. Their dynamics is

inter-linked via the factorized Schwinger-Dyson or loop equations. On the other hand, we

are interested not just in the vacuum correlations but those in the ground state of the

baryon, which has itself to be determined dynamically.

We propose to use the approximate ground-state of the baryon |Ψ〉 determined in the

large-N limit of 2d QCD as a starting point for the harder problem of determining the

gluon correlations in the baryon. We have shown [8, 9] that

|Ψ〉 =

∫

dx1 · · · dxNεa1···aN ψ(x1, . . . xN )q∗a1
· · · q∗aN

(xN ) (1.5)

for a factorized wave function (see section 2) provides a good approximation to the ground

state of the baryon in the chiral and large-N limits. In a sense, the state |Ψ〉 contains no

gluons. Nevertheless, the presence of a baryon |Ψ〉 made of N quarks may be expected to

deform the vacuum of the gluon field. The idea is to approximately determine the large-N

expectation values of glue-ring observables (1.1) in the background of this N quark baryon.

Though |Ψ〉 is not the true baryon ground state of the action (1.3), it is still an approximate

ground state of the baryon number one sector of 2d QCD in the large-N limit. As such,

it furnishes a variational approximation to the ground state of (1.3). In this manner, we

hope to isolate a portion of this difficult problem that we have some chance of addressing

analytically.

In this paper we will take a very modest step towards the above-mentioned goal by

studying a much simplified version via the path integral approach in the large-N limit.

To focus on the interesting baryon-part of the problem, we study a caricature of the ac-

tion (1.3) without derivatives or non-local interactions and where fields are assumed time

independent:

S(A, q, q∗) = tr

∫

dx
[

αA4(x) − iq∗(x)(m + αA2(x))q(x)
]

. (1.6)

Here α is the ’t Hooft coupling with dimensions of mass, held fixed as N → ∞. Though an

oversimplification, it allows us to isolate the dynamics associated to the degrees of freedom

at the locations of the N quarks making up the baryon. After integrating out the quarks

we get an N matrix model with an action involving not just traces of powers of the adjoint

scalar, but also its inverse and determinant. To get a computable toy-model that preserves

the essential picture of gluon correlations in a baryon background, we assume that the

adjoint scalar field is equal at the positions of the different quarks. This leads us to a
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1-matrix model whose action is a quartic polynomial with a logarithmic modification.

S(A) = tr
[

A4 − log [ν + A2]
]

(1.7)

where the dimensionless parameter ν is a ratio of quark mass to coupling constant. The

logarithmic term encapsulates the effect of the N -quark baryon. Due to the significant

truncations we make, this matrix model is not an approximation to the 1 + 1 dimensional

field theory. It is the simplest toy-model where we may study the competing effects of gluon

self-interactions and their interaction with quarks in a baryon. Finite-dimensional matrix

models are often of independent interest. For instance, a slightly different logarithmic

action log(1 − A) + A appears in the Penner matrix model, which found applications to

c = 1 string theory [10].

Summary of Results: We solve our 1-matrix model in the large-N limit by an extension

of the methods used by Brezin et. al. [11] for polynomial potentials. This is possible

because the derivative of the action is a rational function. We determine the free energy

and glue-ring expectation values (moments of the adjoint scalar) in this caricature of a

baryon. As ν decreases below νc = 0.27, the 1-cut solution3 of the matrix model makes a

transition to a 2-cut solution. The reason is that the logarithmic term in the action (due

to the presence of the baryon) makes small eigenvalues for the adjoint scalar energetically

costly. The 1-cut solution could have been obtained by summing planar diagrams, but

the 2-cut solution is analytically unrelated and could not be obtained that way. At the

critical point νc, the leading discontinuity in free energy is in its 3rd derivative, while the

2nd derivatives of the two- and four-point correlations are discontinuous. This large-N

phase transition bears some resemblance to the Gross-Witten transition in the unitary

one-plaquette model [12] or that in the hermitian m2A2 + gA4 matrix model as m2/
√

g

is made sufficiently negative [13]. All these phase transitions involve a jump discontinuity

in the third derivative of free energy. One consequence is that analytic continuation from

a weak-coupling treatment of gluons, starting from the vacuum (ν = ∞) would not be

successful in predicting their behavior when strongly coupled to light quarks in a baryon

(ν → 0+). Moreover, moments of the adjoint scalar are enhanced in the baryon compared

to the vacuum, since, in the two-cut phase, the support of the eigenvalue distribution

excludes the origin.

Organization of article. We begin with our ansatz for the baryon state in section 2

and give a path integral formulation of the problem of finding glue-ring correlations in

section 3. Section 4 describes the truncations and approximations that lead us to a matrix

model for gluon correlations in a baryon. Sections 5 and 6 give the solution of the matrix

model in the weak-coupling (ν ≥ νc) and strong-coupling (ν ≤ νc) phases respectively. The

heavy quark limit, neighborhood of the critical point, and the chiral limit are treated in

section 7. Section 8 presents a discussion of our results and open questions.

3One and two ‘cuts’ refer to the number of disjoint intervals of the real line on which the distribution of

eigenvalues of A is supported.
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2. Ansatz for baryon state

A lesson from our study of 2d QCD in the large-N limit is that the ground state of the

baryon is well approximated by a state containing N ‘valence’ quarks. Such a state may

be built out of

| x1
a1; · · · ;

xN

aN 〉 = q̂†a1
(x1)q̂

†
a2

(x2) · · · q̂†aN
(xN ) |0〉 (2.1)

where q̂, q̂† satisfy canonical anti-commutation relations with respect to the Dirac vac-

uum |0〉. Ignoring flavor and spin quantum numbers, a general N -quark state is a linear

combination

|Ψ〉 = Ψ̂|0〉 =

∫

dx1 · · · dxNΨ(
x1
a1; · · · ;

xN

aN )q̂†a1
(x1)q̂

†
a2

(x2) · · · q̂†aN
(xN ) |0〉. (2.2)

To represent a baryon, Ψ must be totally anti-symmetric in color

Ψ(
x1
a1; · · · ;

xN

aN ) = εa1···aN ψ(x1, . . . , xN ), (2.3)

and therefore represents a fermion if ψ(x1, . . . , xN ) is a symmetric function. For a path

integral formulation, associate the grassmann-valued field qa(x) and its complex conjugate

q∗a(x) to the operators q̂a(x) and q̂†a(x). Then the baryon state |Ψ〉 becomes

|Ψ〉 7→
∫

dx1 · · · dxN εa1···aN ψ(x1 · · · xN ) q∗a1
(x1)q

∗
a2

(x2) · · · q∗aN
(xN ). (2.4)

By solving 2d QCD in the large-N limit we determined that ψ(x1 · · · xN ) is well-approxi-

mated by an N -fold product of single particle wave-functions ψ(x). A way to understand

this is that once the antisymmetry in color is accounted for, quarks behave like N bosons

which condense to the same one-particle ground-state. A good variational estimate turns

out to be ψ(x) = 1√
π

1
(1−ix) which is the Fourier transform of the ‘valence quark wave-

function’ ψ̃(p) = 2
√

πe−p θ(p ≥ 0). Though presented in the language of quantum many-

body theory, the above ansatz may be obtained as the first term in a systematic field

theoretic approximation method for the ground state of 2d QCD (see [9] for details). One

goal is to have a similar understanding of the gluon content of the baryon from the adjoint

scalar field theory (1.3), which may then also be interpreted in terms of a relativistic

many-body problem.

3. Gluon correlations in the baryon state

For any U(N)-invariant operator O, such as the glue-ring (1.1), the relation between ex-

pectation values of Heisenberg field operators and functional integrals in Euclidean space-

time is

〈ξ|O(A, q, q∗)|ξ〉 = 〈0|ξ̂Oξ̂†|0〉 =
1

Z

∫

DADqDq∗e−NS(A,q,q∗)ξO(A, q, q∗)ξ∗

where Z =

∫

DADqDq∗e−S(A,q,q∗)ξξ∗ (3.1)
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Here ξ† creates a baryon in the infinite past −T → −∞ while ξ annihilates it in the infinite

future T . Using periodic boundary conditions in time we can assume that these operators

are adjoints of each other and evaluated at a common time T . Specializing to our baryon

state |ξ〉 = |Ψ〉 given in (2.4),

〈Ψ|O(A, q, q∗)|Ψ〉 =
1

Z

∫

DADqDq∗e−NS(A,q,q∗)

∫

dx1 · · · dxNεa1···aN
ψ(x1, . . . , xN )

×qa1(x1, T ) · · · qaN (xN , T ) O(A, q, q∗)

∫

dy1 · · · dyN εb1···bN

×ψ∗(y1, . . . , yN )q∗b1(y1, T ) · · · q∗bN
(yN , T ) (3.2)

The functional integrals over Grassmann variables would vanish if xi 6= yi, so we take them

to be equal and get

〈Ψ|O(A, q, q∗)|Ψ〉 =
1

Z

∫

dx1 · · · dxN |ψ(x1, . . . xN )|2
∫

DADqDq∗e−NS(A,q,q∗)εa1···aN
εb1···bN

× qa1(x1, T ) · · · qaN (xN , T ) O(A, q, q∗) q∗b1(x1, T ) · · · q∗bN
(xN , T ) (3.3)

where

Z =

∫

dx1 · · · dxN |ψ(x1, . . . xN )|2
∫

DADqDq∗e−NS(A,q,q∗) εa1···aN
εb1···bN

× qa1(x1, T ) · · · qaN (xN , T ) q∗b1(x1, T ) · · · q∗bN
(xN , T )

=

∫

dx1 · · · dxN |ψ(x1, . . . xN )|2 Z(x1, . . . , xN ) (3.4)

Now, we set aside the integral over x1, . . . , xN and focus on the functional integral4

Z(x1, . . . xN ) =

∫

D[Aqq∗]e−NS(A,q,q∗)εa1···aN
εb1···bN

qa1(x1, T ) · · · qaN (xN , T )q∗b1(x1, T ) · · · q∗bN
(xN , T ) (3.5)

4. Matrix model caricature of baryon

Physically, we are primarily interested in the shape and energy of the proton in its station-

ary ground state, which is probably best addressed in a hamiltonian framework. To mimic

this in our path-integral approach, we will simply assume that fields are independent of

time and ignore the ∂t terms in (1.3), which contain the symplectic structure in a hamilto-

nian approach. This can be regarded either as a crude passage to a kind of hamiltonian or

as a further dimensional reduction. Moreover, it is clear that the locations of the quarks

x1, . . . , xN play a special role in the path integral (3.5). We would like to isolate the con-

tribution of those points. Of course, this is not possible with the Lagrangian (1.3), since it

involves spatial derivatives as well as non-local interactions. However, in keeping with the

modest goals of this paper, we work with an ‘action’ that is motivated by (1.3), but does

not involve any derivatives or non-local interactions

S(A, q, q∗) = tr

∫

dx

{

V (A) − iq∗(m + αA2)q

}

(4.1)

4One complication that we do not address in this paper is that in calculating expectation values, the

functional integral is not separately normalized, but only after integration over the points x1, . . . , xN .
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In this caricature, V (A) = αA4 stands in place of the current-current self-interaction of the

adjoint scalars in (1.3). q∗A2q models the quark-gluon cross term in the current-current

interaction. We ignore the quartic term in quarks, which does not involve gluons. The

primary effect of this term has already been taken into account in determining the baryon

state |Ψ〉 (2.4) by solving 2d QCD in the large-N limit [7]. Thus (3.5) becomes

Z(x1, . . . , xN ) =

∫

DADq∗Dq e−N
R

dx[tr V (A)−iq∗(m+αA2)q]

×εa1···aN εb1···bN
qbN (xN ) · · · qb1(x1)q

∗
a1

(x1) · · · q∗aN
(xN ) (4.2)

The partition function can be written as:

Z(x1, . . . , xN ) =

∫

DAe−N tr
R

dxV (A)Zq (4.3)

where Zq is the ‘quark part’ of the partition function

Zq =

∫

Dq∗DqeiN
R

dxq∗(m+αA2)qεa1···aN εb1···bN
qbN (xN ) · · · qb1(x1)q

∗
a1

(x1) · · · q∗aN
(xN )

=
∏

x

∫

dq∗(x)dq(x)eiN∆q∗(m+αA2)qεa1···aN εb1···bN

qbN (xN ) · · · qb1(x1)q
∗
a1

(x1) · · · q∗aN
(xN ). (4.4)

In the second line we have discretized
∫

dx to a sum
∑

x ∆, where ∆ ∼ dx. Moreover, Zq

may be factored into a ‘vacuum part’ and a ‘baryon part’ Zq = ZqvZqb.

Zqv =
∏

x 6=xi

∫

dq∗(x)dq(x)eiN∆q∗(m+αA2)q =
∏

x 6=xi

det [N∆(m + αA2(x))]

Zqb = εa1···aN εb1···bN

N
∏

l=1

∫

dq∗(xl)dq(xl)e
iN∆q∗(m+αA2)qqbl(xl)q

∗
al

(xl). (4.5)

Now we use the result
∫

dq∗dqeiq∗Bqqbq∗a = [B−1]
b
a det [B] to get

Zqb

(N∆)N2−N
= εa1···aN εb1···bN

detB(x1)[B
−1(x1)]

b1
a1

· · · detB(xN )[B−1(xN )]
b1
a1

(4.6)

where B(xi) = m + αA2(xi) is an N × N matrix for each i = 1, . . . N . We can ignore the

constant overall factor involving ∆. Thus Zqb depends on the gluon field at the location

of the quarks. We factor the integral over A into a baryon contribution and vacuum

contribution.
∫

DAe−N tr
R

dxV (A) =
∏

x 6=xi

∫

dA(x)e−N∆ tr V (A)

×
∫ N

∏

i=1

dA(xi)e
−N∆ tr

P

N

i=1
V (A(xi)). (4.7)

Combining the quark and gluon vacuum contributions, we define the vacuum part of the

partition function as

Zvac(x1, . . . , xN ) =
∏

x 6=xi

∫

dA(x)e−N∆ tr V (A) det [N∆(m + αA2(xi))]. (4.8)

– 7 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
7

Zvac is, for our purposes, the uninteresting part, so we consider the quotient

Z(x1 · · · xN )

Zvac(x1, . . . , xN )
=

∫ N
∏

i=1

dA(xi)e
−N tr

P

N

i=1 ∆V (A(xi))εa1···aN εb1···bN

× detB(x1)[B
−1(x1)]

b1
a1

· · · detB(xN )[B−1(xN )]
b1
a1

(4.9)

Here B(xi) = m + αA2(xi). This is an N -matrix model involving the N × N matrices

A(xi), i = 1, . . . N . We do not yet have a way of approximately solving this multi-matrix

model, so we will make some further assumptions that allow us to reduce it to a one-matrix

model.

4.1 Reduction to a 1-matrix model

Suppose we assume that the adjoint scalar gluon field is equal at the positions of the N

quarks, A(xi) = A for i = 1, . . . N . Then B(x1) = B(x2) = · · · = B(xN ) ≡ B and we can

simplify Zqb:

Zqb = (detB)Nεa1···aN
εb1···bN [B−1]a1

b1
· · · [B−1]aN

bN
= (det B)N−1. (4.10)

Then,

Z(x1 · · · xN )

Zvac(x1, . . . , xN )
=

∫

dAe−NL tr V (A)(det B)N−1

=

∫

dAe−N [L tr V (A)−log det[m+αA2]] (4.11)

where we have replaced N − 1 by N in anticipation of the large-N limit. N∆ ≡ L is a

‘length’ of the baryon, assumed to have a finite limit as N → ∞ and ∆ → 0. Recalling

that V (A) = αA4, the action becomes S(A) = tr[LαA4 − log(m + αA2)]. Re-scaling

A → A/(αL)1/4 we find there is only one dimensionless parameter ν = m
√

L/
√

α on which

the observables of this matrix model depend non-trivially. The appearance of L is an

artifact of our truncation and could probably be avoided. In the field theory (1.3), the

relevant parameter would be m/g. Thus we arrive at the one-matrix model

Z =

∫

dAe−N tr[A4−log[ν+A2]]. (4.12)

ν as a dimensionless ratio of quark mass to coupling constant. The absence of a quadratic

term in A may be traced to the absence of a gluon mass term in (1.3). Since A is hermitian,

A2 is positive. Thus, there is no difficulty in defining log[ν+A2] for ν > 0. The expectation

values of tr An in this matrix model are what remain of the glue-ring expectation values.

5. One-cut solution of quartic + log matrix model

The rest of this paper will be devoted to a study of the large-N limit of the one-matrix

model with action and free energy

S(A) = tr
[

A4 − log(ν + A2)
]

, E(ν) = − lim
N→∞

1

N2
log

∫

dAe−NS(A). (5.1)

– 8 –
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Glue-ring expectation values

Gn(ν) = lim
N→∞

(
∫

dAe−NS(A) 1

N
trAn

)

/

∫

dAe−NS(A) (5.2)

are given by moments Gn =
∫

ρ(x)xndx of the eigenvalue density. ρ(x) must minimize the

free energy

E[ρ] =

∫

S(x)ρ(x)dx −
∫

dxdyρ(x)ρ(y) log |x − y|; E(ν) = min
ρ

E[ρ] (5.3)

where S(x) = x4 − log (ν + x2). (a) For ν sufficiently large, S(x) is convex from below and

we expect ρ to be supported on a single interval. (b) For ν sufficiently small (but positive),

S(x) is shaped like a Mexican hat (see figure 6) and we expect ρ to be supported on a

pair of intervals located near the minima of S(x). These two cases are treated in section 5

and 6. For ρ supported on a single interval, the Mehta-Dyson linear integral equation for

an extremum of E[ρ] is

S′(x) = 4x3 − 2x

ν + x2
= 2P

∫ 2a

−2a

ρ(y)

x − y
dy − 2a ≤ x ≤ 2a, a > 0. (5.4)

ρ is subject to positivity ρ(x) ≥ 0 and normalization
∫ 2a
−2a ρ(y)dy = 1 conditions. Since

S(x) is even, ρ must be even. It is convenient to introduce the generating function of

moments

F (z) =

∫ 2a

−2a

ρ(y)

z − y
dy =

∞
∑

n=0

Gn

zn+1
. (5.5)

(a) F (z) is analytic on C \ [−2a, 2a]. (b) F (z) ∼ 1
z as |z| → ∞ which follows from

normalization. (c) F (z) is real for real z outside [−2a, 2a]. (d) When z approaches [−2a, 2a],

using (5.4),

F (x ± iε) =
1

2
(4x3 − 2x

ν + x2
) ∓ iπρ(x) ⇒ ρ(x) =

1

2πi
(F (x − iε) − F (x + iε)) (5.6)

(e) F (z) is an odd function of z since ρ is even. By analogy with the case of polynomial

S(x) we expect that if there is an F (z) satisfying these conditions, it is unique. Existence,

however, is not guaranteed. Indeed, we do not expect a 1-cut solution for sufficiently small

ν > 0. In a region of validity which is to be determined, the following ansatz for F (z) is

consistent with the above requirements

F (z) = 2z3 − z

ν + z2
+ R(z)

√

z2 − 4a2. (5.7)

R(z) is a rational function to be chosen so that these conditions are satisfied. In particular,

we must pick R(z) to cancel the poles at z = ±i
√

ν coming from 2z
ν+z2 . So R(z) = P (z)

(ν+z2)
,

where the polynomial P (z) does not have zeros at z = ±i
√

ν. Moreover, to cancel the

linear and cubic terms in S′(z) as |z| → ∞, we need to pick P (z) to be a quartic even

polynomial. Thus

F (z) = 2z3 − z

ν + z2
+

α + γz2 + εz4

(ν + z2)

√

z2 − 4a2. (5.8)
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We need to determine the parameters a, α, γ, ε. Though it may appear that the third term

is even in z, it is actually odd due to the square root. As z → ∞,

F (z) → (2 + ε)z3 +

[

γ − ε(2a2 + ν)

]

z

+

[

− 1 + α − 2a4ε − γν + εν2 − 2a2(γ − εν)

]

1

z
+ O

(

1

z3

)

. (5.9)

Requiring F (z) ∼ 1
z , fixes α, γ and ε

ε = −2; γ = −(2ν + 4a2); α = 2 − 12a4 − 4νa2. (5.10)

To fix a we must require analyticity of F (z) as z2 → −ν. This is ensured if

−z + (α + γz2 + εz4)
√

z2 − 4a2 (5.11)

vanishes as z → ±i
√

ν. In other words,

±i
√

ν + (α − γν + εν2)
√

−ν − 4a2 = 0 (5.12)

or −ν + (−2 + 12a4)
2
(4a2 + ν) = 0, which is a quintic equation for s = a2,

576s5 + 144νs4 − 192s3 − 48νs2 + 16s + 3ν = 0. (5.13)

We are guaranteed at least one real solution for a2. The physically allowed solutions are

those with a2 > 0. For ν > 0, we find that there are two solutions a2 > 0 only the smaller

of which leads to ρ(x) normalized to 1 (the other has ρ normalized to 3). For this value of

a, the density of eigenvalues is

ρ(x) = −
(

1

π

)

R(x)
√

4a2 − x2 = −
(

1

π

)

(α + γx2 + εx4)

(ν + x2)

√

4a2 − x2 (5.14)

with α, γ, ε given in (5.10).

5.1 Moments

The analogue of glue-ring expectation values (5.2) can be obtained from the Laurent series

for the moment generating function F (z)

F (z) = 2z3 − z

ν + z2
+

α + γz2 + εz4

(ν + z2)

√

z2 − 4a2 =

∞
∑

n=0

Gn

zn+1
(5.15)

The odd moments vanish G2n+1 = 0 and the even ones are

G2 = 40a6 + 12νa4 − 4a2 − ν,

G4 = 60a8 − 24νa6 − 4(1 + 3ν2)a4 + 4νa2 + ν2, etc. (5.16)

where a(ν) =
√

s is the physical solution of (5.13). G2(ν) and G4(ν) are plotted in figure 1

and 3.
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Figure 1: Two-point glue-ring expectation value G2(ν) plotted against log ν. The asymptotic

behavior for heavy quarks or weak-coupling (ν → ∞, 1-cut phase) is separated from the behavior

for gluons strongly coupled to light quarks (ν → 0, 2-cut phase) by a third-order phase transition

at νc. G2 grows as we go from gluons in the vacuum (ν = ∞) to those in a baryon strongly coupled

to light quarks (small ν) since ρ(x) transforms from uni-modal to bi-modal.

5.2 Free energy

Let us define the entropy [14] as

χ = P
∫ ∫

ρ(x)ρ(y) log |x − y|dxdy. (5.17)

The large-N free energy is the Legendre transform of entropy, E =
∫

dxρ(x)S(x) − χ. An

expression for E involving only single integrals can be obtained using the Mehta-Dyson

equation

1

2
S′(z) = P

∫

ρ(y)

z − y
dy; z ∈ supp(ρ). (5.18)

Integrating with respect to z from x0 to x, both of which lie in the support of ρ,

1

2

[

S(x) − S(x0)

]

= P
∫

dy ρ(y)

[

log |x − y| − log |x0 − y|
]

. (5.19)

Now multiply by ρ(x) and integrate with respect to x,

1

2

∫

dx ρ(x)

[

S(x) − S(x0)

]

= P
∫ ∫

dxdyρ(x)ρ(y)

[

log |x − y| − log |x0 − y|
]

.(5.20)

Thus

E =
1

2
S(x0) + P

∫

dx ρ(x)

[

1

2
S(x) − log |x − x0|

]

E(ν) =
1

2
S(x0) +

1

2
G4 − P

∫ 2a

0
dxρ(x) log |(ν + x2)(x2 − x2

0)|. (5.21)

x0 is arbitrary provided it lies in the support of ρ. The x0 independence of E follows from

the Mehta-Dyson equation and was also verified numerically. x0 = 0 is most convenient
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Figure 2: Free energy E(ν) versus log ν. The 2-cut phase lies to the left while the 1-cut phase

lies to the right of the critical point at νc. For heavy quarks or weak-coupling (ν → ∞), E(ν) →
− log ν − .996 as shown in section 7.1 and illustrated by the linear asymptotic behavior to the right

in the plot. In the chiral limit (section 7.3), free energy approaches a constant E(0) ≈ 1.751.

for us, so

E(ν) = −1

2
log ν +

1

2
G4(ν) − P

∫ 2a

0
ρ(x) log (νx2 + x4)dx. (5.22)

The new ingredient in free energy not determined by polynomial moments Gn is a sort of

logarithmic moment. We could not evaluate it in terms of known functions for the 1-cut

ρ(x) (5.14), but the integration is easily performed numerically and plotted in figure 2.

5.3 Domain of validity of one-cut solution

For which ν ≥ 0 is the 1-cut solution valid? So far we have not imposed the ρ ≥ 0 condition.

The 1-cut solution

ρ(x) = −(1/π)
P (x)

(ν + x2)

√

4a2 − x2; P (x) = α + γx2 + εx4 (5.23)

will break down if ρ < 0. The boundary of the region of validity is given by ν for which

ρ(x) = 0 for some |x| ≤ 2a. The most obvious way in which the 1-cut solution breaks down

is when ρ(0) = 0 and we transit to a 2-cut solution without any support in an interval

containing x = 0. ρ(0) = −2aα
πν = 0 implies α = 0, since a > 0. α = 0 ⇒ 6a4 +2νa2−1 =

0. Regarded as a quadratic in a2, the unique positive solution is

a2
c = −ν

6
+

√
ν2 + 6

6
≥ 0 for ν > 0. (5.24)

This is the critical value of a(ν) at which the 1-cut solution vanishes at the origin. Substi-

tuting a2
c into the quintic (5.13) we find a condition on the transition point ν = νc

ν

[

− 27 − 8ν4 + 48ν
√

(6 + ν2) + 8ν2(−9 + ν
√

(6 + ν2))

]

= 0. (5.25)
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Assuming ν > 0, the only possibility is for the factor in parentheses to vanish. Upon sim-

plification it becomes a quadratic equation 48ν4 + 368ν2 − 27 = 0. The positive solution is

νc =

√

13
√

13 − 46

12
≈ 0.27. (5.26)

Are there any other transition points, i.e. does ρ(x) become negative for any 0 < |x| ≤
2a? For example we find that there is no value of ν > 0 for which P (2a) = 0. Indeed, the

condition P (2a) = 0 implies that 30a4 + 6νa2 − 1 = 0 or

a2 = − ν

10
+

√
9ν2 + 30

30
. (5.27)

However, when this is substituted into the quintic (5.13), the condition

4875ν − 600ν3 + 72ν5 =

(

24ν4 − 3200

3
− 240ν2

)

√

30 + 9ν2 (5.28)

has no solution for ν > 0. Based on the shape of S(x) we expect the 1-cut solution to be

valid for all ν > νc, and we have checked that this is indeed the case.

6. Two-cut solution of quartic + log matrix model

For small ν, S(x) = x4 − log[ν + x2] develops a repulsive core near x = 0. For ν < νc, we

expect the 1-cut solution of the Mehta-Dyson equation

S′(x) = 4x3 − 2x

ν + x2
= 2P

∫

ρ(y)

x − y
dy, x ∈ supp(ρ) (6.1)

to make a transition to a 2-cut solution supported on [−2a,−2b]∪ [2b, 2a]. The generating

function of moments F (z) =
∫ ρ(y)

z−ydy enjoys the same properties (a)-(e) as before with

[−2a, 2a] replaced with [−2a,−2b] ∪ [2b, 2a] where a > b ≥ 0. An appropriate ansatz for

F (z) is

F (z) =
1

2
S′(z) + R(z)

√

(z2 − 4a2)
√

(z2 − 4b2)

= 2z3 − z

(ν + z2)
+

(βz + δz3)

(ν + z2)

√

(z2 − 4a2)
√

(z2 − 4b2) (6.2)

β, δ, a, b have to be fixed using analyticity and asymptotic behavior of F (z). As |z| → ∞,

F (z) →
(

2 + δ

)

z3 +

(

β − δ(2a2 + 2b2 + ν)

)

z (6.3)

+

(

− 1 − 2β(a2 + b2) − 2δ(a2 − b2)2 − ν(β − 2δ(a2 + b2)) + δν2

)

1

z
+ O

(

1

z3

)

The requirement F (z) ∼ 1
z + O(1/z3) implies

δ = −2; β = −2(2a2 + 2b2 + ν) and 6(a4 + b4) + 4a2b2 + 2ν(a2 + b2) − 1 = 0.(6.4)
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The condition that F (z) be analytic at z = ±i
√

ν implies (β−νδ)
√

(ν + 4a2)(ν + 4b2)+1 =

0. Substituting for β and δ, we are left with a pair of algebraic equations for a and b.

6(a2 + b2)2 − 8a2b2 + 2ν(a2 + b2) − 1 = 0

4(a2 + b2)
√

16a2b2 + 4ν(a2 + b2) + ν2 − 1 = 0. (6.5)

Let s = a2 + b2 and p = a2b2 be the sum and product, then

6s2 − 8p + 2νs − 1 = 0 and 4s
√

16p + 4νs + ν2 − 1 = 0. (6.6)

We can eliminate

p =
1

4

[

3s2 + νs − 1

2

]

(6.7)

and get an algebraic equation for s, 4s
√

12s2 + 8νs + (ν2 − 2) = 1, which has at most one

positive solution s for ν > 0. Squaring it we get a quartic equation

12s4 + 8νs3 + (ν2 − 2)s2 − 1

16
= 0. (6.8)

This can be solved in lengthy but closed form and the unique positive s selected. From s,

we get p as well and

2a =

√

2s + 2
√

s2 − 4p, 2b =

√

2s − 2
√

s2 − 4p. (6.9)

The eigenvalue density, supported on 2b ≤ |x| ≤ 2a is

ρ(x) = −R(x)

π

√

(4a2 − x2)(x2 − 4b2)

=
(2x3 + (4a2 + 4b2 + 2ν)x)

π(ν + x2)

√

(4a2 − x2)(x2 − 4b2). (6.10)

Using the Laurent expansion of F (z), we get the moments G2n+1 = 0,

G2 = 16s3 − 64ps − 8νs2 − 4ν2s + ν,

G4 = 64p2 + 36s4 − 32ps(5s − ν) − 8s3ν − ν2 + 8s2ν2 + 4sν3, . . . (6.11)

s and p can be eliminated using the solution of the quartic equation (6.8). The results are

plotted in figure 1 and 3.

6.1 Free Energy

The free energy may be expressed in terms of single integrals

E(ν) =
1

2
S(x0) +

1

2
G4 −

1

2
P

∫

dxρ(x) log |(ν + x2)(x2 − x2
0)| (6.12)

where x0 is any point in the support of ρ. To obtain (6.12) we need to pay attention to

the fact that the Mehta-Dyson equation (6.1) is valid in two disjoint intervals. Begin by
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Figure 3: Four-point glue-ring expectation value G4(ν) versus log ν. The 1-cut solution for ν ≥ νc

and 2-cut solution for ν ≤ νc are not analytic continuations of each other despite appearances. The

asymptotic values at ν = 0,∞ and at νc shown on the vertical axis are obtained analytically in

section 7.

integrating the Mehta-Dyson equation with respect to z from x+ to x where x+, x ∈ [2b, 2a]

to get5

1

2
[S(x) − S(x+)] =

∫

dyρ(y)[log |x − y| − log |x+ − y|] for x, x+ ∈ [2b, 2a] (6.13)

Multiplying by ρ(x) and integrating with respect to x from 2b to 2a and simplifying gives

∫ 2a

2b
dx

∫

dyρ(x)ρ(y) log |x − y| =
1

2

∫ 2a

2b
dxρ(x)S(x) − S(x+)

4
+

1

2

∫

dyρ(y) log |x+ − y|
(6.14)

for x+ ∈ [2b, 2a]. When the limits of integration are not specified, the integral is over

supp(ρ). Similarly, for x− ∈ [−2a,−2b] we get

∫ −2b

−2a
dx

∫

dyρ(x)ρ(y) log |x− y| =
1

2

∫ −2b

−2a
dxρ(x)S(x)− S(x−)

4
+

1

2

∫

dyρ(y) log |x− − y|.
(6.15)

Adding these two, we get for the entropy (5.17),

χ =
1

2

∫

dxρ(x)S(x) − S(x+)

4
− S(x−)

4
+

1

2

∫

dyρ(y) log |(x+ − y)(x− − y)| (6.16)

where x± are in the positive and negative part of supp(ρ). By choosing x− = −x+ we

simplify matters using the fact that S(x) is an even function

χ =
1

2

∫

ρ(x)S(x)dx − 1

2
S(x+) +

1

2

∫

dx ρ(x) log |x2 − x2
+|. (6.17)

5The principle value prescription is implied where necessary and for brevity will not be explicitly indi-

cated.
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Now observe that in this expression, the sign of x+ does not matter, so we can call x0 = x+

and pick it anywhere in supp(ρ). Recalling that E =
∫

ρ(x)S(x)dx−χ we get the advertised

expression (6.12) for the 2-cut free energy. Though the complexity in evaluating E(ν) has

been reduced, we have not been able to find the above logarithmic moment in terms of

known functions. The numerically evaluated free energy E(ν) is plotted in figure 2.

6.2 Phase transition to one-cut solution

We expect the 2-cut solution to make a transition to the 1-cut solution when the intervals

[−2a,−2b], [2b, 2a] merge, i.e. b = 0, which implies p = 0 and s = a2. Inserting in (6.7) gives

a quadratic equation 3s2
c +νsc− 1

2 = 0 whose positive solution sc = a2
c = −ν

6 +
√

ν2+6
6 is the

same as the value of a2 at which the 1-cut solution breaks down. When sc is substituted

in (6.8), we get the same phase transition point ν = νc as before (5.26). The 2-cut solution

for ν < νc takes over when the 1-cut solution breaks down.

7. Special cases: weak-coupling, critical point and chiral limit

7.1 Heavy quark or weak-coupling limit ν → ∞

In our toy-model, when the quarks are very heavy or the coupling constant is small, the

self-interactions of the gluons dominates their interactions with the quarks in the baryon.

This is the limit ν → ∞ where the action S(A) → tr A4 up to an additive constant. It is

as if the gluons do not feel the presence of the baryon and we return to calculating vacuum

correlations of glue-ring observables. This limit lies in the deep end of the 1-cut phase,

where calculations simplify. The quintic equation (5.13) for the limits of supp(ρ) reduces

to a quadratic equation 48s4 − 16s2 + 1 = 0 whose physical solution is s =
√

3/6. The

limiting eigenvalue density is

ρ(x, ν → ∞) =
1

π
(4s + 2x2)

√

4s − x2, |x| ≤ 2
√

s, (7.1)

The odd moments vanish while the even moments and free energy (5.21) are

G2n =
2n+1(n + 1)Γ(n + 1

2)

3n/2
√

πΓ(n + 3)
; G2 =

2
√

3

9
≈ .385, G4 =

1

4
, . . . (7.2)

E = − log ν +
1

2
G4 −

1

2

∫

dx ρ(x) log x2 = − log ν +
1

8
(3 + log 144) ≈ − log ν + .996.

These limiting values are seen to agree with the numerically obtained behavior of E(ν),

G2(ν) and G4(ν) plotted in the figure 2, 1 and 3 for a wide range of values of ν.

7.2 Neighborhood of the phase transition

At νc, the 1-cut solution, valid for high quark mass m or weak-coupling α makes a phase

transition to a 2-cut solution, which is valid for low quark mass or strong-coupling (ν ≤ νc).

In the immediate vicinity of the phase transition, observables are more easily evaluated
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Figure 4: Derivative of the two-point correlation G2(ν) has a kink at νc = 0.27 indicating that its

second derivative is discontinuous.
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Figure 5: Jump discontinuity in the second derivative of G4(ν) at the critical point νc.

than generically. We find that the eigenvalue density is continuous across the transition,

the critical eigenvalue density is (see figure 6)

ρc(x) =
{(7

√
13 − 22)νcx

2 + (13
√

13 − 46)x4}
18πν2

c (νc + x2)

√

(8
√

13 + 20)νc − 9x2 (7.3)

and is supported on [−2ac, 2ac] where a2
c =

√

(
√

13−2
12 ), ac ≈ .605. Thus, all moments

and the free energy are also continuous. The next question is whether their derivatives

are discontinuous across the transition. We find that the second derivatives of G2 and G4

have jump discontinuities across the phase transition. We have calculated this behavior

analytically. To find the derivatives of the correlations (5.16), (6.11) at νc we need the values

and derivatives of a, s and p at νc. The critical values νc =

√
13

√
13−46

12 , sc = a2
c , pc = 0

have already been determined without much trouble. For their derivatives, it is again not

necessary to solve the quartic (6.8) and quintic (5.13) equations, but suffices to solve linear

equations obtained by differentiating these at νc. For example, suppose we want G′
2(ν

−
c ),

which corresponds to the approach from the 2-cut phase. From (6.11)

G′
2(ν) = 48s2s′ − 64ps′ − 64sp′ − 4ν2s′ − 8sν − 8s2 − 16ss′ν + 1 (7.4)

– 17 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
7

-1 -0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

ΡcHxL and ScHxL

Figure 6: Eigenvalue density at the critical point ρc(x), the continuous curve. The dashed curve

is the critical action S(x, νc) plus a constant chosen to make it vanish at its minima. While ρ is

peaked around the minima of S, the spread allows it to maximize entropy χ (5.17).

Differentiating (6.8) and solving the linear equation for s′(ν) gives

s′(ν) =
−νs − 4s2

−2 + ν2 + 12νs + 24s2
. (7.5)

p′(ν) is determined similarly using (6.7) and evaluated at νc. In this manner we get

G2(ν
±
c ) =

(13
√

13 + 19)

27
νc ≈ .66; G′

2(ν
±
c ) =

√
13 − 5

3
≈ −.46

G′′
2(ν

+
c ) =

4

9

√

(205
√

13 − 122)

39
≈ 1.77; G′′

2(ν
−
c ) =

8

51

√

(1669
√

13 − 5858)

39
≈ 0.32 (7.6)

and

G4(νc) =
(26

√
13 + 119)

27
ν2

c ≈ .57; G′
4(νc) ≈ .53

G′′
4(ν

−
c ) =

(4706 − 1150
√

13)

663
≈ 0.844; G′′

4(ν
+
c ) =

(2522 − 514
√

13)

351
≈ 1.905 (7.7)

These agree with the numerically determined correlations plotted in figure 4 and figure 5.

The free energy E(ν) and its first two derivatives are continuous at νc. E′′′(ν) has a

jump discontinuity at νc. For example, to calculate E′(ν+
c ), we differentiate the integral

representation for 1-cut free energy (5.21)

E(ν) = −1

2
log ν +

1

2
G4 −

∫ 2a

0
dx ρν(x) log (νx2 + x4)

⇒ E′(ν) = − 1

2ν
+

1

2
G′

4(ν) −
∫ 2a

0
dx

{

ρ(x)

ν + x2
+

∂ρ

∂ν
log (νx2 + x4)

}

. (7.8)

∂ρ
∂ν can be got from the explicit formula (5.14). We omitted the term involving the derivative

of the upper limit of integration because ρ(2a) = 0. Evaluating at νc, using the above result

for G′
4(ν) and doing the integral numerically gives us E′(ν+

c ). Proceeding along these lines

we get E(νc) ≈ 1.36, E′(νc) ≈ −1.32, E′′(νc) ≈ .93, E′′′(ν−
c ) ≈ −.7, E′′′(ν+

c ) ≈ 7.05 This is

illustrated in figure 7. We conclude that the phase transition is of third-order.
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Figure 7: E′′(ν) versus ν. The 3rd derivative of free energy is discontinuous at νc = 0.27.

7.3 Chiral limit or strong-coupling limit ν → 0

In the limit of massless quarks or strong-coupling, ν → 0+, which lies in the 2-cut phase.

The action becomes S(A) = tr[A4 − log(A2)] and the gluons maximally feel the presence

of quarks in the baryon. The solution again simplifies. The quartic equation for s (6.8)

becomes a quadratic with solution s = 1
2

√

2+
√

7
6 and p =

√
7−2
32 . From this we get

ρ(x) =
(2x2 + 4s)

πx

√

4sx2 − x4 − 16p (7.9)

and moments G2 = (4−
√

7)
3

√

4+2
√

7
3 ≈ .794 and G4 = 3

4 which are shown in figure 1 and 3.

The free energy (6.12) has a finite limit E(ν = 0) ≈ 1.751 as illustrated in figure 2.

8. Discussion

We have studied a very simple matrix model for glue-ring correlations in a baryon in the

limit of many colors. It was obtained as a caricature of the dimensional reduction of QCD

to 1 + 1 dimensions. Our main finding is that there is a third-order phase transition that

separates a phase where gluons are weakly coupled to heavy quarks (ν ≥ νc) from one

where the quarks are light and strongly coupled to gluons (0 ≤ ν ≤ νc). ν, a dimensionless

ratio of quark mass to coupling constant is the only parameter of the model. While for

ν ≥ νc we have a 1-cut solution of the matrix model, for ν ≤ νc we have a 2-cut solution.

The gauge-invariant observables (glue-ring expectation values) are described in these two

phases by two different analytic functions of ν that disagree beyond their first derivatives at

νc (See figure 1, 3, 4, 5). Moreover, the case of gluons in the vacuum i.e. where the baryon

is absent, corresponds to ν → ∞, which is deep inside the 1-cut phase. The physically

interesting value of ν most likely is small and lies in the 2-cut phase, since current quarks in

the proton are very light compared to ΛQCD. Thus, the vacuum correlations of gluons are

likely to be separated by a phase transition from those in a baryon state. Moreover, from

figure 1 and 3 we see that gluon correlations are enhanced inside the baryon compared to

their values in the vacuum (ν = ∞). This reflects the growth of moments of the distribution
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of eigenvalues, as they make a transition from being clustered about the origin to being

supported on a pair of intervals excluding the origin. Though this is very far from explaining

why about half the proton’s momentum is contributed by gluons, it does indicate that the

qualitative features of gluon correlations in the vacuum can be quite different from those in

a baryon state. Even if we could use a weak-coupling expansion to describe a bound-state

like a baryon, the phase transition would invalidate analytic continuation to the physically

relevant baryon containing gluons strongly coupled to light quarks.

The wider applicability of our results is called into question by our approximations

and truncations. The sharp phase transition is an artifact of N = ∞. For finite N ,

the matrix model has finitely many degrees of freedom and cannot display non-analytic

behavior. Nevertheless, this is probably the most benign of our approximations. The

finite N theory should display qualitative differences between the two regimes. Absence of

space-time derivatives and non-local interactions due to longitudinal gluons are the more

significant shortcomings of our model. This toy-model has given us a cartoon of how the

theory may behave as ν is varied. A hamiltonian approach may have a better chance at

shedding light on the matrix field theory or matrix quantum mechanics version of this

problem. We hope the proposal of treating gluons in a ‘fixed baryon background’ |Ψ〉 (2.4),

along with other new ideas will help simplify the matrix field theory in order to better

understand the emergent bound-state structure of gluons in a nucleon.

Some questions for future work are collected here. (i) Can we use a variational or

other approximation method to understand this phase transition? Such an approach has

a better chance of generalizing to multi-matrix models. (ii) Besides glue-ring correlations,

we are also interested in open string correlations in a baryon state. Can we get a zero-

dimensional toy-model for these as well? (iii) Can we shed any light on the multi-matrix

model that arises when we do not assume the transverse gluon field to be equal at the

positions of the quarks? (iv) What is the relation between the gluon distribution function

extracted from experimental data and the gauge-invariant glue-ring variables that would

come from solving the matrix field theory? One suspects that the gluon distribution is

essentially determined by a two-point glue-ring expectation value. What is the simplest

truncated form of the matrix field theory where such a gluon distribution function can be

estimated? (v) In [14], we obtained algebraic and probabilistic characterizations of the

entropy χ whose Legendre transform is the free energy of matrix models. However, the

formula for χ in generic multi-matrix models is quite complicated. Is there any multi-

matrix generalization of the trick (5.21) of using the Mehta-Dyson ‘equation of motion’ to

reduce double integrals to single integrals? (vi) Can we find a variational principle that

determines the closed and open string observables of our matrix field theory or some finite

dimensional truncation thereof? Such a variational principle for closed string observables

in multi-matrix models was found in [14].
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