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Abstract: Large-N multi-matrix loop equations are formulated as quadratic difference

equations in concatenation of gluon correlations. Though non-linear, they involve high-

est rank correlations linearly. They are underdetermined in many cases. Additional linear

equations for gluon correlations, associated to symmetries of action and measure are found.

Loop equations aren’t differential equations as they involve left annihilation, which doesn’t

satisfy the Leibnitz rule with concatenation. But left annihilation is a derivation of the

commutative shuffle product. Moreover shuffle and concatenation combine to define a bial-

gebra. Motivated by deformation quantization, we expand concatenation around shuffle

in powers of q, whose physical value is 1. At zeroth order the loop equations become

quadratic PDEs in the shuffle algebra. If the variation of the action is linear in iterated

commutators of left annihilations, these quadratic PDEs linearize by passage to shuffle re-

ciprocal of correlations. Remarkably, this is true for regularized versions of the Yang-Mills,

Chern-Simons and Gaussian actions. But the linear equations are underdetermined just

as the loop equations were. For any particular solution, the shuffle reciprocal is explicitly

inverted to get the zeroth order gluon correlations. To go beyond zeroth order, we find

a Poisson bracket on the shuffle algebra and associative q-products interpolating between

shuffle and concatenation. This method, and a complementary one of deforming annihila-

tion rather than product are shown to give over and underestimates for correlations of a

gaussian matrix model.
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1. Introduction

1.1 General Remarks

Approximation methods in physics are often usefully organized as an expansion in a di-

mensionless parameter. As is well known, at first sight, quantum Yang-Mills theory does

not have any such expansion parameter since the dimensionless coupling g2 of the classical

theory is determined in terms of the ratio Q2

Λ2 where Q2 is the momentum transferred to

a hadronic system by an external (say electroweak) current. Λ (say ΛQCD) is the dimen-

sional parameter arising via dimensional transmutation and renormalization. The success

of an expansion in inverse (logarithmic) powers of Q2

Λ2 is, however, crucially dependent on

the asymptotic freedom of the theory for large values of this parameter [1]. Thus, this

expansion (perturbative QCD), which is the analogue of the Born approximation of atomic

physics, though spectacularly successful at high momentum transfers, is not particularly

useful to describe ‘intrinsic’ properties of hadrons in the absence of an external probe

transferring a large momentum [2].

What about ~ as an expansion parameter for quantum Yang-Mills theory around its

classical limit? This is a bad starting point, since all variables, not just gauge-invariant

ones, stop fluctuating in this limit. Since ~ can be absorbed into g2, the ‘loop’ expansion

in powers of ~ around the trivial solution to classical Yang-Mills theory is the same as

perturbative QCD. Thus, it is useful only at high momentum transfers.

As observed by ’t Hooft [3], 1/N of the gauge group SU(N) is an expansion parameter

for quantum Yang-Mills theory, holding λ = g2N fixed. There are many indications [4]

that N → ∞ is a good approximation to the quantum theory. Moreover, it is a classical

limit where fluctuations in gauge-invariant variables alone vanish. Despite effort, the 1/N

expansion has not been as quantitatively successful as perturbative QCD was in the high

energy regime. The success of the loop expansion lay in the availability of explicit solutions

to classical Yang-Mills theory around which to expand (eg. flat connections, Euclidean

instantons). By contrast, we don’t know the zeroth order solution of large N Yang-Mills

theory around which to perform a 1/N expansion. Difficulties are encountered in each of

the many ways of formulating the large N limit of Yang-Mills theory: summing an infinite

class of planar diagrams [3], solving the Makeenko-Migdal equations for Wilson loops [5 – 7]

or solving the factorized Schwinger-Dyson equations for gluon correlations. It would really

help to have yet another dimensionless expansion parameter, to organize an approximate

solution of N = ∞ Yang-Mills theory.

The strategy of looking for an expansion parameter over and above 1/N has found

success in maximally super-symmetric Yang-Mills theory. In some sectors of the N = 4

theory, an expansion around small values of the ratio of ’t Hooft coupling to square of R-

charge ( λ
J2 ) has been developed [8]. An analog of this for the non-supersymmetric theory
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would be useful. But since there is no such obvious expansion parameter, we will invent

one based on deeper mathematical structures of the theory.

Inspiration for a possible approximation comes from atomic physics, as emphasized by

Rajeev [9]. The Hartree-Fock approximation for many-electron atoms is analogous to the

N → ∞ limit of Yang-Mills theory, since it can be formulated as the limit in which the

number of replicas of each electron (N) tends to infinity [10]. In general, the Hartree-Fock

equations are difficult to solve since they involve the electron density matrix, which is a

projection operator. However, after N → ∞ it is possible to take a semiclassical limit

based on deformation quantization. These limits do not commute. At zeroth order this

leads to the Thomas-Fermi non-linear ODE whose solution gives a good first approximation

to the charge density of a many-electron atom [9]. Can something similar work for large

N Yang-Mills theory?

The approximation method studied in this paper is based on the observation that even

in the ‘classical’ large-N limit, the equations of matrix models and Yang-Mills theory still

involve non-commutative concatenation products. It should be possible to take a further

‘classical’ limit, where they are approximated by commutative products by analogy with

deformation quantization. In our case, the parameter controlling this further classical limit

is a deformation parameter whose physical value is q = 1.

Another lesson from the formulation of Hartree-Fock theory as the limit of a large

number of electron replicas, is that the physical value of an expansion parameter need not

be small for the expansion to be practically successful. Indeed, the physical number of

replicas of the electron is N = 1 and yet, Hartree-Fock, which corresponds to N = ∞,

provides a good first approximation as part of a 1/N expansion! A more famous example

of an expansion in a parameter whose physical value is 1 is the ε-expansion applied to

3− d statistical models in the vicinity of a 2nd order phase transition. Another instance is

the δ expansion of Bender and collaborators [11]. Applied to QED, it can be regarded as

an expansion in the number of identically charged electron species whose physical value is

δ = 1. Yet an expansion in powers of δ is accurate. It has also been successfully applied

to a variety of other non-linear equations.

Another possible expansion parameter is the inverse number of space-time dimensions

1/d. However, we do not yet know of any useful formulation of the d → ∞ limit of large N

Yang-Mills theory that is a simplification. This is again motivated by atomic physics, where

the d → ∞ limit in the zero angular momentum sector is a non-relativistic O(d) vector

model for position vectors of electrons. This provides a spectacularly good approximation

to the binding energies of many-electron atoms in a 1/d expansion, as shown by Herschbach

and collaborators [12].

1.2 Loop Equations of Large-N Matrix Models

A primary aim in the study of a Euclidean large-N multi-matrix model is to determine its

factorized correlations. They satisfy quantum corrected equations of motion, which are fac-

torized Schwinger-Dyson or loop equations (LE). We formulate these in a way that makes

manifest some algebraic and differential structures they share with the Makeenko-Migdal

equations of N = ∞ Yang-Mills theory [5 – 7]. In particular, they are not differential equa-
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tions, due to a mismatch between the differential and product structures. Though infinite

in number and quadratically non-linear, we show that they have a hierarchical structure

whereby the highest rank correlations in any equation only appear linearly. However, we

show they are underdetermined in many interesting cases. We identify additional equa-

tions which a naive passage to the large N limit misses. They are conditions implied by

invariance of matrix integrals for correlations, under transformations leaving both action

and measure invariant, possibly up to 1/N2 corrections (eg. BRST transformations). How-

ever, the additional equations are not implemented, so the underdeterminacy of the loop

equations is not satisfactorily resolved. On the other hand, we exploit the algebraic and

differential structures to propose an approximation scheme for a class of Λ-(multi)-matrix

models motivated by the Lagrangian of Yang-Mills theory,

L = tr

{

1

2
∂µAν(∂

µAν − ∂νAµ) − ig∂µAν [Aµ, Aν ] − g2

4
[Aµ, Aν ][A

µ, Aν ]

+
1

2ξ
(∂µAµ)2 + ∂µc̄ ∂µc − ig∂µc̄ [Aµ, c]

}

. (1.1)

The primary virtue of the scheme is that at zeroth order, it turns the non-linear loop

equations into linear PDEs. Prominent in this class of models are those whose action is a

linear sum of

SG =
1

2
tr CijAiAj ,

SCS =
2iκ

3
tr CijkAi[Aj , Ak] & SY M = − 1

4α
tr [Ai, Aj ][Ak, Al]g

ikgjl. (1.2)

In the first two cases, we allow Ai to denote either gluon (hermitian complex) or ghost

(grassmann) matrices1. Though they arise from terms with 2, 1 and 0 derivatives in the

Yang-Mills action, these matrix models may be called Gaussian, Chern-Simons and Yang-

Mills models since they also include the zero momentum limits of the corresponding field

theories. The indices i, j, k, l are short for position and polarization quantum numbers,

while color indices are suppressed. It may be possible to fruitfully think of Yang-Mills

theory as a grand limiting case of such matrix models for appropriate integral kernels

Cij , Cijk and gij when the indices become continuous. Matrix models and field theories of

this type also arise in dimensional reductions of Yang-Mills theory to 2 or fewer space-time

dimensions. Here we consider bosonic matrix models, the extension of our results to models

with ghost matrices will be treated in [13].

Summary of results and organization: In section 2.1 we obtain the large-N loop

equations2 |iJ |SJiGJI = δI1iI2
I GI1GI2 for gluon correlations GI = 〈 1

N
tr AI〉 of a hermitian

multi-matrix model with action tr S(A) = tr SIAI . In section 2.2 we show that the loop

1We assume there are an equal number of ghost and anti-ghost matrices in each term, as in Yang-Mills

theory.
2Small letters i denote single indices, capitals denote multi-indices I = i1i2 · · · in and |I | denotes the

number of indices in a multi-index. Repeated upper and lower indices are summed. δI
J is 1 if I = J and

zero otherwise.

– 4 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
5

equations are underdetermined in some interesting cases, though they determine infinitely

many higher rank correlations in terms of lower rank correlations. In section 2.3 we obtain

additional equations associated with symmetries of both measure and action, which are

easily overlooked in passing to the large-N limit. In section 2.4 the loop equations are

reformulated in terms of the series G(ξ) = GIξ
I , where ξi are non-commuting sources:

∑

n≥0

(n + 1)Sj1···jniDjn · · ·Dj1G(ξ) = G(ξ)ξiG(ξ) or SiG(ξ) = G(ξ)ξiG(ξ). (1.3)

The linear term (variation of action) is written in terms of left annihilation operators

Di. The quadratic term in gluon correlations involves the concatenation product. It is

the variation of the matrix model measure and is universal, independent of the action.

However, left annihilation does not satisfy the Leibnitz rule with respect to concatenation,

and to make things worse, concatenation is non-commutative. Due to this mismatch,

the loop equations are not differential equations in the ordinary sense. On the other

hand, there is another natural product between gluon correlations, the shuffle product

(section 2.5), which arises from the expectation value of point-wise products of Wilson

loops. It turns out that left annihilation is a derivation of the shuffle product. Moreover,

there is a democratic version of left annihilation, full annihilation, that is a derivation of

concatenation (section 2.6). Furthermore, concatenation and shuffle combine to form a

bialgebra (appendices B and C).

These algebraic and differential structures along with ideas from deformation quan-

tization suggest a possible approximation scheme for the loop equations. The idea is to

remedy the above mismatch by expanding the non-commutative concatenation product in

a series around the commutative shuffle product so that at zeroth order, concatenation is

replaced by shuffle and the loop equations become quadratically non-linear inhomogeneous

PDEs in an infinite dimensional space spanned by words in Λ letters. Thus, the approxima-

tion scheme involves the introduction of a deformation parameter controlling the amount

by which the loop equations for gluon and ghost correlations fail to be partial differential

equations. The physical value of our dimensionless expansion parameter q is 1.

A further remarkable simplification occurs in models whose action is such that Si is a

derivation of the shuffle product. These are models in which Si is a linear combination of

iterated commutators of Di and include the zero-momentum Gaussian, Chern-Simons and

Yang-Mills models as well as their field theoretic counterparts as examples (section 2.7).

In these cases, the passage from G(ξ) to its shuffle-reciprocal F (ξ) = FIξ
I turns the

non-linear PDEs into a system of linear equations for the FI (section 4.1). We obtain an

explicit formula for GI in terms of FJ so that once the linear equations are solved, the O(q0)

gluon correlations can be obtained. This is illustrated for the zero-momentum Gaussian

(section 4.1.1), Chern-Simons (section 4.1.2) and Yang-Mills (section 4.1.3) multi-matrix

models. For the Gaussian, the linear equations have a unique solution which provides a

first approximation to the exact large N correlations. But for the other examples, the

equations are underdetermined just as the original loop equations were and we exhibit

infinite classes of solutions. It remains to find and implemented the additional constraints

on correlations, such as those associated to symmetries of action and measure.
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In section 4.3 we take the first steps to extend the approximation scheme beyond zeroth

order. This requires us to find an expansion for concatenation around the shuffle product.

Such a formula would be loosely analogous to the associative ∗-product expressions of

deformation quantization. We obtain two partial results in this direction. First, we find

a one parameter family of associative q-products that interpolates between commutative

shuffle (q = 0) and non-commutative concatenation (q = 1). Moreover, by taking q to be

infinitesimal, we obtain a Poisson bracket on the shuffle algebra.

In sections 4.2 and 4.3.2 we briefly investigate another approximation scheme for the

loop equations that involves expanding the left annihilation around full annihilation, hold-

ing the concatenation product fixed. Though similar in spirit to the main approximation

scheme of the paper, it has the potential to give a complementary estimate for correlations

as shown by its application to 1-matrix models.

Section 3, is devoted to 1-matrix models. In this case, both concatenation and shuffle

are commutative, and an explicit ‘star product’ formula is obtained for the expansion of the

former around the latter (section 3.2). In section 3.3 an expansion for the left annihilation as

a series in powers of full annihilation is obtained. These lead to two different approximation

methods for the 1-matrix loop equations, involving either a deformation of the product or

the annihilation operator. Both schemes are applied to the Gaussian (section 3.4), which

is the only 1-matrix model for which Si has the derivation property. While deforming the

product overestimates correlations, deforming the annihilation operator underestimates

them.

Background on Literature: There are several complementary approaches to the loop

equations of matrix models. First, they are formulated in different ways: resolvents of

matrices, gluon correlations, planar diagrams, Wilson loops etc. Different approaches to

multi-matrix models can be broadly categorized by the mathematical structures that play a

significant role. A major portion of the literature (eg. [14 – 17]) is devoted to exact solutions

for certain observables of specific (e.g. 1-, 2- and chain-type) matrix models, their multi-

cut solutions and summing their 1/N expansion. This involves connections to integrable

systems, algebraic geometry and conformal field theory. Another approach exploits the

connections to non-commutative probability theory (eg. [18 – 21]). Yet another point of

view seeks to exploit a hidden BRST symmetry [22]. A cohomological interpretation of the

loop equations and a variational principle for them was presented in [20]. The viewpoint in

this paper is distinguished by its use of algebraic and differential structures and connections

to deformation quantization. Its physics roots lie in the early work of Makeenko and

Migdal [5, 6], Cvitanovic et. al. [23, 24], loop space formalism for gauge theories [25 –

28], and the more recent investigations of Rajeev and coworkers [29 – 31, 20, 21, 9]. Some

structures used in our constructions (eg. shuffle products and their deformations) appear

in the mathematics literature on calculus of loop space due to Chen [32], the theory of free

Lie algebras [33] and the deformation theory of (Hopf) algebras [34, 35]. A feature of the

present work is that we do not make any a priori restriction to a subclass of correlations

(eg. ‘mixed’ or ‘unmixed’) as is often assumed in the literature.
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2. Algebraic structure of loop equations of multi-matrix models

2.1 Factorized loop equations for gluon correlation tensors

We begin by obtaining the loop equations of a bosonic multi-matrix model in terms of

gluon correlation tensors. This is convenient to study their algebraic structures and permits

treatment of all factorized N = ∞ correlations without restriction. Consider a Euclidean

Λ-matrix model with polynomial action tr S(A) = tr SJAJ . Let ΦI = 1
N

tr AI denote

the ‘loop’ variable. The partition function and gluon correlations are

Z =

∫

ΠjdAje
−N tr S(A) and 〈ΦK1 · · ·ΦKn〉 =

1

Z

∫

ΠjdAje
−N tr S(A)ΦK1 · · ·ΦKn . (2.1)

GK = limN→∞〈ΦK〉 are the gluon correlations of interest in the large-N limit. Here

Ai = A†
i , 1 ≤ i ≤ Λ are N × N hermitian matrices. The tensors SI are the ‘coupling

tensors’ defining the theory. Due to the trace, the only part of SI that contributes is

its cyclic projection, so assume that SI are cyclically symmetric, SIi = SiI for all i, I.

Gluon correlation tensors GI are also cyclically symmetric. Additionally, assume SI are

chosen such that (SI)∗ = S Ī where Ī is the word with indices reversed3. This, along with

hermiticity of Ai ensures that tr S(A) is real. In turn, this implies that G∗
I = GĪ . To see

this, recall that for any complex matrix M , ( tr M)∗ = tr M † and apply this to M = AI

and use hermiticity of Ai. For the Gaussian, all SI = 0 except Sij which may be taken as

a (positive) real-symmetric matrix.

The Schwinger-Dyson equations(SDE) are constraints on 〈ΦK1 · · ·ΦKn〉 implied by in-

variance of the matrix integral under an infinitesimal (but non-linear) change of integration

variable

[Ai]
b
a 7→ [A′

i]
b
a = [Ai]

b
a + vI

i [AI ]
b
a, where vI

i are infinitesimal real parameters. (2.2)

Under this change of variable, the infinitesimal changes in ΦK , the action and the measure

are

ΦK 7→ ΦK + δLiM
K vI

i ΦLIM ,

e−N tr SJAJ 7→ e−N tr SJAJ (1 − N2vI
i SJ1iJ2ΦJ1IJ2),

det

(

∂[A′
i]

a
b

∂[Aj ]
c
d

)

= 1 + N2vI
i δI1iI2

I ΦI1ΦI2. (2.3)

Invariance of 〈ΦK1 · · ·ΦKn〉 to linear order in vI
i implies the SDE4

vI
i S

J1iJ2〈ΦJ1IJ2〉 = vI
i δ

I1iI2
I 〈ΦI1ΦI2〉 +

vI
i

N2

n
∑

p=1

δ
LpiMp

Kp
〈ΦLpIMp〉,

∀ Kp and n = 0, 1, 2, . . . (2.4)

3This is satisfied by examples such as the Gaussian, Yang-Mills and Chern-Simons theories, see Sec 2.7.
4Sometimes called Virasoro constraints in string models or Ward identities. Ward identities seems more

appropriate to the special case where the change of integration variable was a gauge or BRST transformation.
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So far we have not made any approximation. In the large N limit, expectation values

of U(N) invariants factorize 〈ΦI1ΦI2〉 = 〈ΦI1〉〈ΦI2〉 [7]. Naively, the leading factorized

Schwinger-Dyson or loop equations (LE), which are a closed system for GI , are

vI
i S

J1iJ2GJ1IJ2 = vI
i δ

I1iI2
I GI1GI2 ∀ v (2.5)

These infinitesimal changes of variable are associated to vector fields Lv = vI
i L

i
I whose

action on GJ is given by Li
IGJ = δJ1iJ2

J GJ1IJ2. In particular, choosing the components of

the vector fields vI
i to be non-vanishing only for a single (i, I), we get the loop equations

SJ1iJ2GJ1IJ2 = δI1iI2
I GI1GI2 ∀ I, i. (2.6)

Using cyclicity of SI and GI we get

|iJ | SJiGJI = δI1iI2
I GI1GI2 ∀ I, i. (2.7)

LE (2.7) relate changes in (expectation values of) action and measure under the action of

Li
I . However, there may be vector fields Lv (i.e. choices of vI

i ) for which both sides of (2.5)

vanish5. In that case, the leading equation in the large N limit is different from (2.7) (see

section 2.3).

We seek solutions to (2.7) among cyclic symmetric tensors GI satisfying G∗
I = GĪ and

G∅ ≡ G0 = 1, where ∅ is the empty string. Note that the LE may make sense even when

the matrix integrals don’t seem to converge, as for a cubic action. When analogues of (2.7)

are formulated for Wilson loops in a gauge theory [5], they are called Makeenko-Migdal

equations (notice the resemblance between (2.7) and (2.8))

δx
µ

δ

δσµν(x)
W (C) = λ

∮

C

dyνδ
(4)(x − y)W (Cyx)W (Cxy). (2.8)

2.2 Underdetermined nature of loop equations and examples

Given an action S(A), GI are uniquely defined by (2.1) provided the integrals converge.

As examples below show, the large-N LE (2.7) do not determine GI uniquely in general.

In section 2.3 we obtain additional large-N SDE involving GI that were not accounted for

in the passage from (2.4) to (2.7). But even these may not be sufficient to fix the GI .

Consider first Λ = 1 matrix models whose LE are got by restricting (2.7) to a single

matrix. Suppose tr S(A) = tr
∑m

l=1 SlA
l is an mth order polynomial, then if Gk = 〈 tr

N
Ak〉

m
∑

l=1

lSlGk+l =
∑

r,s≥0, r+s=k

GrGs, for k = −1, 0, 1, . . . . (2.9)

The LE listed sequentially are

k = −1 : S1 + 2S2G1 + · · · + mSmGm−1 = 0,

k = 0 : S1G1 + 2S2G2 + · · · + mSmGm = 1,

5Note that this may happen even if there is no (i, I) for which both sides of (2.7) vanish.
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k = 1 : S1G2 + 2S2G3 + · · · + mSmGm+1 = 2G1,

k = 2 : S1G3 + 2S2G4 + · · · + mSmGm+2 = 2G2 + G2
1, . . . (2.10)

We see that in the kth equation, the highest rank correlation Gm+k appears linearly

(Sm 6= 0) and may be determined in terms of lower rank correlations. For a Gaussian

(m = 2) (2.9) determine all moments. More generally, the LE determine higher moments

Gm−1, Gm, Gm+1, . . . in terms of m − 2 undetermined lower moments G1, . . . Gm−2. How-

ever, among G1, . . . Gm−2, the odd ones must vanish if the action is even. Observe that

this is associated with the [A]ab 7→ −[A]ab symmetry of an even action and of the measure

if N → ∞ through even values. Such transformations provide additional equations missed

out by the LE.

For multi-matrix models, suppose S(A) is an mth order polynomial, i.e SJ = 0 if

|J | > m and ∃ J with |J | = m such that SJ 6= 0. Then the loop equation |iJ |SJiGJI =

δI1iI2
I GI1GI2 for any fixed I and i involves correlations with highest rank (|I|+m− 1) only

linearly. Of course, there are several correlations with a given rank and several equations

for fixed |I|. If all GK up to |K| ≤ r are known, we have a system of inhomogeneous

linear equations for correlations of rank r + 1. For the Gaussian tr S(A) = 1
2 tr CijAiAj ,

these are just recursion relations GiI = Cijδ
I1jI2
I GI1GI2 where CijC

jk = δk
i . Their unique

solution for all correlations is given by the planar version of Wick’s theorem, which is a sum

over all non-crossing partitions of iI into pairs. But for many interesting cubic and higher

order actions, the LE are underdetermined even by comparison with 1-matrix models. Not

only are GK for |K| ≤ m−2 left undetermined, many higher rank correlations are also not

determined in terms of them. Consider two examples: a quartic 2-matrix model and the

Chern-Simons 3-matrix model.

2.2.1 Quartic 2-Matrix Model

Suppose tr S(A) = tr [cA1A2 + g
4 (A4

1 +A4
2)]. The matrix integrals converge and the cyclic

coupling tensors are S1111 = S2222 = g
4 and S12 = S21 = c

2 . The LE for each I are

cG2I + gG111I = δI11I2
I GI1GI2 and cG1I + gG222I = δI12I2

I GI1GI2 . (2.11)

Since the action is an m = 4th order polynomial, the LE do not fix Gi, Gij . They determine

an infinite number of higher rank correlations in terms of these, but also leave an infinite

number undetermined. For I = ∅ the two LE give G111 = − c
g
G2 and G222 = − c

g
G1. The

other rank-3 correlations G112, G122 are left undetermined. For I = i1, the LE determine

4 of 6 correlations leaving G1122 and G1212 undetermined:

G1111 = G2222 =
1

g
(1 − cG12), G1112 = − c

g
G22, G1222 = − c

g
G11. (2.12)

For I = i1i2, the LE are

cG2i1i2 + gG111i1i2 = δ1
i2

Gi1 + δ1
i1

Gi2 and cG1i1i2 + gG222i1i2 = δ2
i2

Gi1 + δ2
i1

Gi2 .(2.13)

They determine 6 of the 8 rank-5 correlations in terms of lower rank ones

G11111 =
1

g
(2G1 − cG112), G11112 = 1

g
(G2 − cG122), G11122 =

c2

g2
G1,
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G22222 =
1

g
(2G2 − cG122) G12222 = 1

g
(G1 − cG112), G11222 =

c2

g2
G2, (2.14)

while leaving G12121 and G21212 undetermined. In this manner, by choosing longer words

I, we can fix an infinite number of higher rank correlations in terms of lower rank ones,

but at each step a few correlations remain undetermined. The number of undetermined

correlators may be significantly reduced by the A1 ↔ A2 symmetry of S(A) which implies

GI = GJ if I can be obtained from J by 1 ↔ 2 and a cyclic permutation. Notice that this

is also a symmetry of the integration measure. The same applies to the change of variables

A1 7→ −A1, A2 7→ −A2.

2.2.2 Chern-Simons Model

The LE of the CS model tr S(A) = 2iκ
3 εijk tr AiAjAk are

2iκεijkGIjk = δI1iI2
I GI1GI2 . (2.15)

They leave rank-1 correlations Gi undetermined (m = 3). For |I| = 0 and arbitrary i,

the LE are εijkGjk = 0 which do not give any constraints not already implied by cyclic

symmetry of Gjk. Thus G12, G13, G23, G11, G22, G33 are all left undetermined. For |I| = 1

with arbitrary I = i1 and i, the LE are 2iκεjkiGjki1 = δi
i1

. From 9 possible (complex)

equations we get only 1 independent condition after accounting for cyclicity and hermiticity:

the imaginary part of

G123 − G132 =
1

2iκ
. (2.16)

This allows us to fix only one parameter in the c(3,Λ = 3) = 11 dimensional space of 3rd

rank cyclic hermitian tensors (see appendix A). For I = i1i2 and i arbitrary, the LE are

2iκεijkGi1i2jk = δi
i2

Gi1 + δi
i1

Gi2 . (2.17)

Of the 27 possible equations, there are actually only 9 independent ones that do not follow

from cyclicity6 . Three ‘homogeneous’ ones G1212 = G1122, G1313 = G1133, G2323 = G2233

and six ‘inhomogeneous’ ones

2iκ(G1123 − G1213) = G1, 2iκ(G1213 − G1132) = G1

2iκ(G1223 − G1232) = G2, 2iκ(G1232 − G1322) = G2

2iκ(G1323 − G1332) = G3, 2iκ(G1233 − G1323) = G3. (2.18)

Nevertheless, these conditions are not enough to fix the c(4,Λ = 3) = 24 independent cyclic

and hermitian 4th-rank tensors (see appendix A). This underdetermined nature of the LE

persists for correlations of higher rank. Notice also that by A1 → A2 → A3 → A1 symmetry

of the action and measure, we have G1 = G2 = G3 etc, but this is not a consequence of

the LE and still leaves the common value of these undetermined.

6The fact that many of the loop equations are not independent of each other indicates there are vector

fields vI
i for which both sides of (2.5) vanish identically.
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2.3 Additional equations for gluon correlations

Are there more equations satisfied by GI that will lessen the underdeterminacy of the LE?

In going from finite-N SDE (2.4) to large-N LE (2.7), we overlooked the possibility that

both l.h.s. and r.h.s. of (2.5) may vanish for some v. In other words, Ai → Ai + vI
i AI may

leave the (factorized expectation value of) action and measure simultaneously invariant at

leading order as N → ∞. For such vI
i the O(N0) terms in (2.4) identically vanish and the

O(1/N2) terms constitute the leading large-N SDE. Denote

〈ΦI〉 = GI +
G

(2)
I

N2
+

G
(4)
I

N4
+ · · · ; 〈ΦI1ΦI2〉 = GI1GI2 +

G
(2)
I1;I2

N2
+

G
(4)
I1;I2

N4
+ · · · (2.19)

Then the O(1/N2) terms in (2.4) become

vI
i SJ1iJ2G

(2)
J1IJ2

= vI
i δ

I1iI2
I G

(2)
I1;I2

+ vI
i

n
∑

p=1

δ
LpiMp

Kp
GLpIMp ∀ v, Kp and n = 1, 2, . . . (2.20)

Unfortunately, (2.20) involve not just the GI but also 1/N2 corrections to single and double-

trace correlations. Thus, an attempt to ameliorate the underdetermined nature of the LE

seems to open a new can of worms. However, in keeping with the spirit of the large-N

limit as an approximation where we retain only the leading large-N contribution to all

quantities, it seems reasonable to ignore the G
(2)
··· terms and consider

n
∑

p=1

vI
i δ

LpiMp

Kp
GLpIMp = 0 ⇔

n
∑

p=1

vI
i L

i
IGKp = 0 ⇔

n
∑

p=1

LvGKp = 0 (2.21)

At first, these equations seem universal, they do not involve the coupling tensors SI at all!

However, for generic v, these are 1/N2 contributions to the SDE and should be ignored in

the large-N limit. But if vI
i are such that both r.h.s. and l.h.s. of (2.5) vanish identically,

then these become the leading large-N SDE. Thus, these equations are not universal, since

they must be enforced only for those vI
i for which the leading change in action and measure

vanish identically. To summarize, the additional equations are

n
∑

p=1

LvGKp = 0 ∀ K1, . . . ,Kn and n = 1, 2, 3 . . .

and all vI
i such that vI

i S
J1iJ2GJ1IJ2 = vI

i δ
I1iI2
I GI1GI2 = 0. (2.22)

Are there any such additional equations? This is related to whether there are any trans-

formations that leave both action and measure invariant at leading order as N → ∞.

We exhibited several such discrete transformations in sections 2.2, 2.2.1 and 2.2.2. BRST

transformations of gauge fixed Yang-Mills theory are also of this sort and lead to Ward or

Slavnov-Taylor identities. Are the LE (2.7) consistent with the additional equations (2.22)?

This would vindicate our throwing away the subleading G
(2)
··· terms in (2.20). If so, do the

LE (2.7) together with (2.22) determine the GI , or do we need yet more conditions? We

postpone investigation of these very interesting issues and focus on the LE in the rest of

this paper.
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2.4 Loop equation in terms of left annihilation and concatenation

Define the generating series of gluon correlations by the formal sum G(ξ) = GIξ
I . Here,

ξi, 1 ≤ i ≤ Λ are non-commuting variables that can be thought of as sources, and ξi1···in =

ξi1 · · · ξin . If they did commute, the generating series would only contain information about

the symmetric correlations. But since Gi1···in are not symmetric in general (only cyclically

symmetric), there is no relation between ξiξj and ξjξi. Define the concatenation product

conc by

ξIξJ = ξIJ or F (ξ)G(ξ) = FIGJξIJ ⇒ (FG)K = δIJ
K FIGJ . (2.23)

For example7,

(FG)0 = F0G0; (FG)i = FiG0 + F0Gi; (FG)ij = F0Gij + FiGj + FijG0; etc. (2.24)

In terms of conc, the r.h.s. of (2.7) becomes δI1iI2
I GI1GI2 = [G(ξ)ξiG(ξ)]I . Also define left

annihilation8

Djξ
i1···in = δi1

j ξi2···in . (2.25)

Dj eliminates the left most source if i1 = j and returns zero otherwise. In terms of

coefficients,

[DjG]I = GjI , [Djn · · ·Dj1G]I = Gj1···jnI , (2.26)

so that GJI = [DJ̄G]I . The LE (2.7), one for each i, can be written as

∑

n≥0

(n + 1)Sj1···jniDjn · · ·Dj1G(ξ) = G(ξ)ξiG(ξ) or SiG(ξ) = G(ξ)ξiG(ξ). (2.27)

We used cyclicity of SI , GI in deriving this. Thus, the LE involve left annihilation and

conc product. The l.h.s. of (2.27) defines the action dependent operator

Si =
∑

n≥0

(n + 1)Sj1···jniDjn · · ·Dj1. (2.28)

At first glance, the LE (2.27) look like quadratically non-linear PDEs whose order is one

less than that of the action polynomial. However, concatenation in the universal term on

the r.h.s. is non-commutative since sources ξi do not commute. Further, left annihilation

does not satisfy the Leibnitz rule with respect to concatenation, i.e. Dj are not derivations

of conc. This ‘mismatch’ between product and annihilation make the LE difficult to solve.

It turns out there is another natural product between gluon correlation tensors, the shuffle

product, with respect to which left annihilation satisfies the Leibnitz rule. We try to exploit

the interplay between conc, shuffle and their derivations to find an approximation method

to solve the LE.

7Note that concatenation of cyclically symmetric tensors is not cyclically symmetric in general.
8Left annihilation does not preserve cyclic symmetry of tensors in general.
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2.5 Shuffle multiplication from products of Wilson loop expectation values

Here we obtain the shuffle product of gluon correlations induced by expectation values of

products of Wilson loops. The expectation value of the Wilson loop F (γ) is a complex-

valued gauge-invariant function on the space of loops γ : S1 → M , where M is space-time.

If Aν(x) denotes the components of a gauge field 1-form valued in the Lie algebra of

hermitian matrices, we define the path ordered exponent

F (γ) =
1

N
tr P exp

[

i

∫ 1

0
Aν(x)

dxν

ds
ds

]

. (2.29)

Parameterized loops on M are denoted xν(s). Wilson loops are typical functions on loop-

space and their expectation values can be expanded in iterated integrals of gluon correla-

tions

〈F (γ)〉 =

∞
∑

m=0

im
∫

0≤s1≤···≤sm≤1
〈 1

N
tr Aν1(x(s1)) · · ·Aνm(x(sm))〉dxν1

ds1
· · · dxνm

dsm
ds1 · · · dsm

=
∞
∑

m=0

im
∫

0≤s1≤···≤sm≤1
Fν1···νm(x(s1), . . . , x(sm))

dxν1

ds1
· · · dxνm

dsm
ds1 · · · dsm (2.30)

where the gluon correlation tensors associated to F (γ) are

Fν1···νm(x(s1), . . . , x(sm)) = 〈 1

N
tr Aν1(x(s1)) · · ·Aνm(x(sm))〉. (2.31)

The point-wise commutative product of functions on loop-space is defined as (FG)(γ) =

F (γ)G(γ). Taking expectation-values and working in the large-N limit, where correlations

factorize, we get

〈(FG)(γ)〉 = 〈F (γ)G(γ)〉 = 〈F (γ)〉〈G(γ)〉 + O(
1

N2
). (2.32)

We may expand the l.h.s. in correlation functions associated to the Wilson loop (FG)(γ).

We call these (F ◦ G)ρ1···ρp(x(u1) · · · x(up)). They are defined as

〈(FG)(γ)〉=
∞

∑

p=0

ip
∫

0≤u1≤···≤up≤1
(F ◦ G)ρ1···ρp(x(u1) · · · x(up))

dxρ1

du1
· · · dxρp

dup
du1 · · · dup.(2.33)

Meanwhile, the expansion of the r.h.s. reads

〈F (γ)〉〈G(γ)〉 =

∞
∑

m,n=0

im+n

∫

0≤s1≤···sm≤1

0≤t1≤···tn≤1
Fν1···νm(x(s1), . . . , x(sm))Gµ1···µn(x(t1), . . . , x(tn))

×dxν1

ds1
· · · dxνm

dsm

dxµ1

dt1
· · · dxµn

dtn
ds1 · · · dsmdt1 · · · dtn. (2.34)

To make this look like the expansion of the l.h.s. , we collect terms with a common sum

n + m = p and then sum from p = 0 to ∞. Moreover, we must relabel the ν’s and µ’s as

ρ’s and the s’s and t’s as u’s. We must allow every possible relabeling that preserves the

– 13 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
5

order among the s’s and t’s. When this is done, we read off the relation between the gluon

correlations associated to the Wilson loop (FG)(γ) and those associated to F (γ) and G(γ)

(F ◦ G)ρ1···ρp(x(u1) · · · x(up)) =
∑

m+n=p

∑

σ an (m,n)

shuffle

Fρ
σ−1(1)···ρσ−1(m)

(x(uσ−1(1)), . . . , x(uσ−1(m)))

×Gρ
σ−1(m+1)···ρσ−1(m+n)

(x(uσ−1(m+1)), . . . , x(uσ−1(m+n))). (2.35)

An (m,n) shuffle is a permutation of m + n letters (1, 2, . . . ,m + n) such that

σ−1(1) < · · · < σ−1(m) and σ−1(m + 1) < · · · < σ−1(m + n). (2.36)

For brevity, we combine the Lorentz µ and space-time xµ indices into a single index i, then

(F ◦ G)i1···ip =
∑

m+n=p

∑

σ an (m,n) shuffle

Fi
σ−1(1),...iσ−1(m)

Gi
σ−1(m+1),...iσ−1(m+n)

. (2.37)

The r.h.s. is called the shuffle product (sh). It is commutative. A compact notation for sh

is

(F ◦ G)I =
∑

I=JtK

FJGK . (2.38)

The condition I = J t K means that J and K are complementary order-preserving sub-

words of I. The operation J t K is a riffle-shuffle of two card packs J and K. Some

examples are

[F ◦ G]i = FiG0 + F0Gi; [F ◦ G]ij = FijG0 + FiGj + FjGi + F0Gij ;

[F ◦ G]ijk = FijkG0 + FijGk + FikGj + FjkGi

+FiGjk + FjGik + FkGij + F0Gijk;

[F ◦ G]ijkl = FijklG0 + FijkGl + FijlGk + FiklGj + FjklGi

+FijGkl + FikGjl + FilGjk + FjkGil + FjlGik + FklGij

+FiGjkl + FjGikl + FkGijl + FlGijk + F0Gijkl. (2.39)

We notice two properties of sh. If FI and GJ are cyclically symmetric for all I and J , then

so is (F ◦ G)K for all K. To see why this is true in general, observe that (F ◦ G)K is the

expectation value of the trace of a product of gluon fields, and the trace makes it cyclically

symmetric. Thus sh preserves cyclicity of tensors. Moreover, we notice that if FI and GJ

satisfy the hermiticity properties F ∗
I = FĪ , G

∗
J = GJ̄ for all I, J , then so does their shuffle

product

(F ◦ G)∗I = (F ◦ G)Ī ∀ I. (2.40)

This is a reflection of the relations9 F (γ)∗ = F (γ̄) and (FG)∗(γ) = F ∗(γ)G∗(γ) = (FG)(γ̄)

when the path-ordered exponential is expanded out in iterated integrals.

9γ̄ is the loop γ with opposite orientation.
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The shuffle product allows us to reduce manipulations in the commutative algebra of

functions on the infinite dimensional space Loop(M) to operations on tensors on the finite

dimensional space M . More precisely, start with a manifold M , and denote the space of

1-forms on M by Λ1(M). Then consider the tensor algebra T on Λ1(M). The shuffle

algebra is

Sh(M) = T (Λ1(M)). (2.41)

The shuffle algebra is a replacement for the algebra of functions on Loop(M). Let ξi1 , ξi2 , . . .

be a basis for Λ1(M) (think of these as dxi1 , . . .), then an element of the shuffle algebra is

G =
∑

n

Gi1···inξi1 ⊗ · · · ⊗ ξin ≡
∑

n

Gi1···inξi1···in , (2.42)

and is to be regarded as a function on Loop(M). A specific collection of gluon correlations

{Gi1···in}∞n=0 can encode the information contained in the expectation value of a specific

function G(γ) on Loop(M)10. The shuffle product of basis elements is

ξi ◦ ξj = ξij + ξji; ξij ◦ ξk = ξijk + ξikj + ξkij (2.43)

and in general

ξi1···ip ◦ ξip+1···ip+q =
∑

σ a (p,q) shuffle

ξiσ(1)···iσ(p+q) or ξJ ◦ ξK = δJtK
I ξI . (2.44)

To summarize, we have shown that the commutative point-wise product of Wilson loops

induces the commutative, cyclicity and hermiticity preserving shuffle product of gluon

correlations11.

2.6 Derivations of shuffle and concatenation products

Concatenation and shuffle combine to define a pair of dual bialgebras on the vector space

span(ξI) (see appendices B and C). Derivations of concatenation and shuffle play a central

role in this paper. Recall that the LE (2.27) involved left annihilation Di defined in (2.25).

We show that Di is a derivation of sh i.e. it satisfies the Leibnitz rule

Di(F ◦ G) = (DiF ) ◦ G + F ◦ (DiG). (2.45)

The proof is by explicit calculation [Di(F ◦ G)]I = [F ◦ G]iI =
∑

I1tI2=iI FI1GI2 . Now

either i ∈ I1 or i ∈ I2, so

[Di(F ◦ G)]I =
∑

I1tI2=I

FiI1GI2 +
∑

I1tI2=I

FI1GiI2 =
∑

I1tI2=I

[DiF ]I1GI2 +
∑

I1tI2=I

FI1 [DiG]I2

10The map is not 1-1 since gluon correlations are not gauge invariant in general, unlike Wilson loops.

A way to deal with this is to introduce ghosts. When LE are formulated in terms of Wilson loops, gauge

fixing and ghost contributions cancel out [7]. But this is not the case if we work with correlation tensors.

Extension of this formalism to include ghosts in matrix models will be treated in [13].
11This construction generalizes to differential forms on Loop(M), but we do not use it in this paper.
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= [(DiF ) ◦ G]I + [F ◦ (DiG)]I . (2.46)

Full annihilation12 Dj is a democratic version of left annihilation. It is defined as

Djξ
I = δI

I1jI2
ξI1I2 and [DjF ]I = δI1I2

I FI1jI2. (2.47)

Dj does not preserve cyclic symmetry of tensors. However, Dj is a derivation of conc,

Dj(FG) = (DjF )G + F (DjG). (2.48)

To see this, begin with the l.h.s. [Dj(FG)]I = δI1I2
I (FG)I1jI2,

[Dj(FG)]I = δI1I2
I δK1K2

I1jI2
FK1GK2 = δL1L2L3

I FL1jL2GL3 + δL1L2L3
I FL1GL2jL3. (2.49)

On the other hand,

[(DjF )G]I = δI1I2
I (DjF )I1GI2 = δI1I2

I δJ1J2
I1

FJ1jJ2GI2 = δL1L2L3
I FL1jL2GL3 . (2.50)

Thus

[(DjF )G]I + [F (DjG)]I = δL1L2L3
I FL1jL2GL3 + δL1L2L3

I FL1GL2jL3 = [Dj(FG)]I . (2.51)

The commutator of derivations is a derivation irrespective of whether the product is com-

mutative or not. This is analogous to the Lie bracket of vector fields being a vector field

on a manifold. For example, merely using the fact that Di is a derivation of sh = ◦, it is

easy to show that

[Di,Dj ](F ◦ G) = ([Di,Dj ]F ) ◦ G + F ◦ ([Di,Dj ]G). (2.52)

It follows that iterated commutators of derivations (e.g. [Di, [Dj ,Dk]]) are also derivations.

On the other hand, products of left annihilation operators are not derivations of the shuffle

algebra. For e.g. DiDj = Dij is not a derivation of sh. This is analogous to the product of

vector fields not being a vector field. Furthermore, left annihilation operators with a single

index Di do not form a Lie algebra by themselves. The commutator [Di,Dj ] = Dij −Dji is

not a linear combination of Dk’s. However, by construction, the vector space spanned by the

set of all iterated commutators of left annihilation operators Di, [Di,Dj ], [Di, [Dj ,Dk]], . . .

forms a Lie algebra, the Lie algebra of derivations of the shuffle product. This is the free

Lie algebra. It is analogous to the Lie algebra of left invariant vector fields on a Lie group.

Here, the role of the Lie group is played by the free group on Λ generators.

2.7 Derivation property of terms in Yang-Mills action

The action-dependent linear term SiG(ξ) in the LE (2.27) is a sum of products of left

annihilation operators Si =
∑

n≥0(n + 1)Sj1···jniDjn · · ·Dj1 . Suppose coupling tensors SI

are such that Si is a linear sum of iterated commutators of left annihilation operators,

Si = CijDj + Cijk[Dj ,Dk] + Cijkl[[Dj ,Dk],Dl] + · · · (2.53)

12Not the cyclic gradient. The cyclic gradient is δiξ
I = δI

I1iI2
ξI2I1 and is not a derivation of concatenation.
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Then Si is a derivation of shuffle. Of what practical use is this property? The LE (2.27)

are quadratically non-linear in conc, but involve left annihilation, which is a derivation of

sh. In section 4 we introduce an approximation scheme where conc is expanded around sh.

The main simplification for matrix models having the derivation property is that their LE

can be turned into (an infinite system of) linear PDEs at 0th order in this approximation.

This is not the case for matrix models without the derivation property.

Among 1-matrix models, the only one with this property is the Gaussian tr S(A) =
1
2α

tr A2 for which S = 1
α
D. For Λ = 1, there is only one left annihilation operator,

and all its iterated commutators vanish. Multi-matrix models provide non-trivial exam-

ples. It is remarkable that the gluonic terms in the Yang-Mills action (1.1) quadratic in

momentum, linear in momentum and independent of momentum each separately has this

derivation property13. These terms can be written as tr CijAiAj , tr CijkAi[Aj , Ak] and

tr [Ai, Aj ][Ak, Al]g
ikgjl for appropriate tensors Cij, Cijk, gij . Moreover, the zero momen-

tum limits of the Gaussian, Chern-Simons and Yang-Mills matrix field theories all have

this derivation property. They correspond to the simplest non-vanishing choices for the

tensors Cij, Cijk, Cijkl in (2.53). In fact, this property also extends to the corresponding

matrix field theories but we do not address that here.

Gaussian: The Gaussian multi-matrix model tr S(A) = 1
2 tr CijAiAj has real-symmetric

covariance Cij = Cji. Sij = 1
2Cij is cyclically symmetric and also satisfies (Sij)∗ = Sji

so that all correlations satisfy G∗
I = GĪ . We get Si = 2SijDj = CijDj , which is a linear

combination of left annihilation operators and therefore a derivation of sh. The LE are

CijDjG(ξ) = G(ξ)ξiG(ξ). (2.54)

Chern-Simons: For at least three matrices (Λ ≥ 3), the CS type of matrix model has

action 2iκ
3 tr CijkAi[Aj , Ak] where Cijk is any tensor which is anti-symmetric under inter-

change of any pair of indices. The part of Cijk that is symmetric under interchange of a pair

of indices does not contribute on account of antisymmetry of the commutator. The action

can also be written as tr S(A) = 2iκ
3 tr C̃ijkAiAjAk where C̃ijk = Cijk −Cikj. The partic-

ular case of zero momentum 3d CS gauge theory results from the choice Λ = 3, C̃ijk = εijk

(the Levi-Civita symbol), and integer-valued coupling constant 4πκ. More importantly,

terms in the Yang-Mills action (1.1) linear in momentum are of this form. Irrespective of

its field theoretic origin, Sijk = (2iκ/3)C̃ijk is cyclically symmetric since C̃kij = (−1)2C̃ijk.

Moreover, (Sijk)∗ = Skji so that G∗
I = GĪ . Now Si is a linear combination of commutators

of left annihilation operators:

Si = 2iκC̃ijkDkDj = iκ{C̃ijkDkDj − C̃ikjDkDj} = iκC̃ijk[Dk,Dj ] (2.55)

and therefore a derivation of sh. The ‘Chern-Simons’ loop equations are

iκC̃ijk[Dk,Dj ]G(ξ) = G(ξ)ξiG(ξ). (2.56)

13See [13] for the corresponding property after inclusion of ghosts.
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Yang-Mills: For Λ ≥ 2, the zero momentum limit of Yang-Mills theory has action (α = g2)

tr S(A) = − 1

4α
tr [Ai, Aj ][Ak, Al]g

ikgjl, (2.57)

where gij = gji is the inverse metric, it is a real symmetric matrix. The action is rewritten

as

tr S(A) =
−1

2α
tr (gikgjl − gilgjk)Aijkl =

−1

4α
tr [(2gikgjl − gilgjk − gijgkl)Aijkl] (2.58)

so that Sijkl = − 1
4α

(2gikgjl − gilgjk − gijgkl) is cyclically symmetric. Moreover, Sijkl =

(Slkji)∗ = Slkji follows since gij is real symmetric. Then the differential operator Si =

(3 + 1)SijklDlDkDj

Si = − 1

α
gikgjl(DlDkDj − DkDlDj + DlDkDj − DlDjDk) = − 1

α
gikgjl[Dj , [Dk,Dl]] (2.59)

is a linear combination of iterated commutators of derivations and hence a derivation of

the shuffle product. The Yang-Mills LE are thus

− 1

α
gikgjl[Dj , [Dk,Dl]]G(ξ) = G(ξ)ξiG(ξ). (2.60)

On the other hand, most matrix models do not have this derivation property. For example,

consider the popular [15] two matrix model tr S(A1, A2) = tr [A4
1 + A4

2 + 2A1A2]. Here,

S1 = 2D2 +4D3
1 and S2 = 2D1 +4D3

2 are not linear combinations of iterated commutators

of Di and do not define derivations of the shuffle algebra.

3. Approximation method for one-matrix models

The LE of a 1-matrix model (2.9) with mth order polynomial action

m
∑

l=1

l SlD
l−1G(ξ) = G(ξ)ξG(ξ). (3.1)

can be written in terms of left annihilation14 D. Concatenation, which appears on the r.h.s.

is the usual product of calculus. But D satisfies the Leibnitz rule with respect to sh, not

conc. So this is not a differential equation. We develop approximation methods to solve

these LE either by expanding conc around sh or by expanding D around full annihilation

D (2.47), which is a derivation of conc. Both these turn the LE into linear ODEs at each

order of the expansion.

3.1 Shuffle, concatenation and their derivations

We give the 1-matrix versions of conc, sh and their derivations by specialization from

sections 2.4 and 2.5. Then we define q-deformed products and derivations that we use to

14The 1-matrix left annihilation operator, Dξn = ξn−1 is not the same as the usual derivative of calculus.
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solve the LE approximately. Suppose F (ξ) =
∑

n≥0 Fnξn etc. Conc = ∗1 is the usual

product of calculus15,

ξp ∗1 ξq = ξp+q or (F ∗1 G)n =

n
∑

r=0

FrGn−r (3.2)

while shuffle = ∗0 (previously denoted ◦) is,

ξp ∗0 ξq =

(

p + q

p

)

ξp+q, or (F ∗0 G)n =

n
∑

r=0

(

n

r

)

FrGn−r (3.3)

For example ξ ∗0 ξ = 2ξ2. Both are commutative. The notation anticipates ∗q that

interpolates between sh (q = 0) and conc (q = 1). We also define 1-matrix analogs of left

and full annihilation and name them in anticipation of q-annihilation Dq. Left annihilation

D0ξ
n = ξn−1 is the 1-matrix version of Di defined in (2.25). D0 is a derivation of shuffle

(D0F )n = Fn+1, (D0(F ∗0 G))n = ((D0F ) ∗0 G)n + (F ∗0 (D0G))n. (3.4)

Full annihilation D1ξ
n = nξn−1 is the same as the usual derivative of calculus. It is the

1-matrix version of Di defined in (2.47). D1 is a derivation of conc,

[D1F ]n = (n + 1)Fn+1, (D1(F ∗1 G))n = ((D1F ) ∗1 G)n + (F ∗1 (D1G))n. (3.5)

This follows from the easily verified formula

(n + 1)
n+1
∑

r=0

FrGn+1−r =
n

∑

r=0

(r + 1)Fr+1Gn−r +
n

∑

r=0

(n − r + 1)FrGn−r+1. (3.6)

3.2 q-Deformed product

The q-product interpolates between conc (q = 1) and sh (q = 0)16

(F ∗q G)n =
n

∑

r=0

(

n

r

)

1−q

FrGn−r. (3.7)

It is associative and commutative for 0 ≤ q ≤ 1. The q-binomial coefficients or Gauss

binomials
(

n
r

)

q
are polynomials in q with non-negative coefficients. They reduce to unity

for q = 0 and to the usual binomial coefficients when q = 1. To obtain their properties let

yx = qxy. Then

(x + y)n =

n
∑

r=0

(

n

r

)

q

xn−ryr. (3.8)

The first three Gauss binomials are
(

n

0

)

q

= 1,

(

n

1

)

q

= 1 + q + q2 + · · · + qn−1,

15We also denote conc = ∗1 by juxtaposition.
16The quantity 1 − q often occurs in formulae, so we call it p = 1 − q.
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(

n

2

)

q

=

{

(1 + q2 + q4 + · · · + qn−2)(1 + q + q2 + · · · qn−2), if n is even;

(1 + q2 + q4 + · · · + qn−3)(1 + q + q2 + · · · + qn−1), if n is odd.
(3.9)

The q-Pascal relation is got by multiplying (x + y)n−1 by (x + y) either from the right or

left:
(

n

r

)

q

= qr

(

n − 1

r

)

q

+

(

n − 1

r − 1

)

q
(

n

r

)

q

=

(

n − 1

r

)

q

+ qn−r

(

n − 1

r − 1

)

q

. (3.10)

Substituting the first in the second gives
(

n

r

)

q

=
1 − qn

1 − qn−r

(

n − 1

r

)

q

for 0 ≤ r < n. (3.11)

Iterating, we get
(

n

r

)

q

=
(1 − qn)(1 − qn−1) · · · (1 − qn−r+1)

(1 − q)(1 − q2) · · · (1 − qr)
. (3.12)

This can also be written as
(

n

r

)

q

=
[n]q!

[r]q![n − r]q!
where [n]q! = [1]q[2]q · · · [n]q and [n]q =

1 − qn

1 − q
. (3.13)

The symmetry
(

n
r

)

q
=

(

n
n−r

)

q
is now manifest, which guarantees commutativity of the

q-product (3.7). Some examples of the q-product are

(F ∗q G)0 = F0G0; (F ∗q G)1 = F1G0 + F0G1;

(F ∗q G)2 = F0G2 + (1 + p)F1G1 + F2G0;

(F ∗q G)3 = F0G3 + (1 + p + p2)(F1G2 + F2G1) + F3G0;

(F ∗q G)4 = F0G4 + (1 + p + p2 + p3)(F1G3 + F3G1)

+(1 + p + 2p2 + p3 + p4)F2G2 + F4G0. (3.14)

We expand the q-binomials around the ordinary binomial coefficients (q = 1) in a Taylor

series
(

n

r

)

q

=

(

n

r

)

1

{

1 − r(n − r)

2
p + O(p2)

}

. (3.15)

Thus ∗q may be expanded around shuffle ∗0

(F ∗q G)n = (F ∗0 G)n − q

2

n
∑

r=0

(

n

r

)

1

rFr(n − r)Gn−r + · · ·

= (F ∗0 G)n − q

2

n
∑

r=0

(

n

r

)

1

[ξ ∗0 D0F (ξ)]r[ξ ∗0 D0G(ξ)]n−r + · · ·

(F ∗q G)(ξ) = (F ∗0 G)(ξ) − q

2
ξ ∗0 (D0F )(ξ) ∗0 ξ ∗0 (D0G)(ξ) + · · · . (3.16)

Taking q = 1, and using commutativity of ∗0, we get an expansion for conc in terms of sh

(F ∗1 G)(ξ) = (F ∗0 G)(ξ) − 1

2
ξ ∗0 ξ ∗0 (D0F )(ξ) ∗0 (D0G)(ξ) + · · · . (3.17)
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3.3 q-Deformed annihilation operator

Recall from section 3.1 that left annihilation [D0F ]n = Fn+1 and full annihilation [D1F ]n =

Fn+1. More generally, let

(DqF )n = [n + 1]qFn+1 =

[

qn+1 − 1

q − 1

]

Fn+1 =

[

1 + q + q2 + · · · + qn

]

Fn+1. (3.18)

Dq reduces to left and full annihilation for q = 0 and q = 1. However, Dq is not a derivation

of ∗q for 0 < q < 1. Fortunately, we don’t seem to need that. More importantly, we expand

Dq around D1 in powers of p = 1−q. Denoting conc reciprocal by usual division of calculus,

DqF (ξ) =
F (qξ) − F (ξ)

(q − 1)ξ
=

∞
∑

k=1

(−pξ)k−1 1

k!
Dk

1F (ξ) (3.19)

3.4 Gaussian one matrix model

Now we apply this formalism to the simplest of matrix models, the Gaussian 1-matrix

model. We pick it as it is the only 1-matrix model with the derivation property. We

show how expanding conc around sh and expanding D0 around D1, are used along with

the derivation property to turn the non-linear LE into linear ODEs at each order in our

approximation schemes. The resulting gluon correlations are compared with the exact

solution.

From (2.9), the LE for the Gaussian 1 matrix model with action S = 1
2α

tr A2 are

D0Z(ξ) = αξZ(ξ) ∗1 ξ ∗1 Z(ξ) or Gn+1 = α
∑

r+1+s=n, r,s≥0

GrGs, n = 0, 1, 2, . . . (3.20)

with the boundary condition G0 = 1. When the product is not specified, it is taken to be

the concatenation product ∗1. In this section, we call the generating function of moments

Z(ξ) =
∑

n Gnξn. This is because we will expand Z(ξ) in powers of q, and the coefficients

Zk(ξ) are not to be confused with the moments Gn, which are coefficients in an expansion

in powers of ξ. Of course, q is a bookkeeping device which is eventually set to 1.

3.4.1 Exact solution

The loop equation for the Gaussian (3.20) may be solved since it is a quadratic equation

Z(ξ) − Z(0)

ξ
= α Z2(ξ)ξ ⇒ αξ2Z2 − Z + 1 = 0. (3.21)

The solution is

Z(ξ) =
1 −

√

1 − 4αξ2

2αξ2
=

∑

Γ2nξ2n (3.22)

where Γn are the moments. Define Catalan numbers Cn by

∞
∑

n=0

Cnxn =
1 −

√
1 − 4x

2x
with Cn =

(2n)!

n!(n + 1)!
∼ 4n

√
n3π

as n → ∞. (3.23)

Then the non-vanishing moments of the Gaussian 1-matrix model are

Γ2n = Cnαn ∼ (4α)n√
n3π

as n → ∞. (3.24)
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3.4.2 Approximate solution by deforming the product

In (3.20), D0 is a derivation of sh = ∗0, not of conc = ∗1. So it is not a differential equation.

But we can expand ∗1 in a series in powers of q(= 1) around ∗0. Expanding Z(ξ) also in

a power series in q, turns the loop equation into a sequence of differential equations in the

shuffle algebra. At order q0, we get a nonlinear ODE for Z0(ξ). Beyond that, we get a

linear inhomogeneous ODE for Zk(ξ) in terms of Zk−1(ξ). In the end, q is set to 1. Let us

illustrate this at O(q0) and O(q1). From section 3.2, the expansion of ∗q around ∗0 = sh is

(F ∗q G)(ξ) = (F ∗0 G)(ξ) − q

2
ξ ∗0 ξ ∗0 (D0F )(ξ) ∗0 (D0G)(ξ) + · · · . (3.25)

Moreover D0ξ = 1, so keeping only terms to O(q),

(Z ∗q ξ) ∗q Z = (Z ∗0 ξ − q

2
ξ ∗0 D0Z ∗0 ξ ∗0 D0ξ) ∗q Z (3.26)

= Z ∗0 ξ ∗0 Z − q

2
ξ ∗0 ξ ∗0 D0(Z ∗0 ξ) ∗0 D0Z − q

2
ξ ∗0 ξ ∗0 D0Z ∗0 Z

= ξ ∗0 Z ∗0 Z − q

2

[

2ξ ∗0 ξ ∗0 Z ∗0 D0Z + ξ ∗0 ξ ∗0 ξ ∗0 D0Z ∗0 D0Z

]

.

So the LE are

D0Z = α

[

ξ ∗0 Z ∗0 Z− q

2

{

2ξ ∗0 ξ ∗0 Z ∗0 D0Z + ξ ∗0 ξ ∗0 ξ ∗0 D0Z ∗0 D0Z

}

+O(q2)

]

. (3.27)

Suppose Z(ξ) = Z0(ξ)+ qZ1(ξ)+ q2Z2(ξ)+ · · ·. Comparing coefficients of q0 and q1 we get

1

α
D0Z0 = ξ ∗0 Z0 ∗0 Z0 (3.28)

1

α
D0Z1 = 2ξ ∗0 Z0 ∗0 Z1 −

1

2

(

2ξ ∗0 ξ ∗0 Z0 ∗0 D0Z0 + ξ ∗0 ξ ∗0 ξ ∗0 D0Z0 ∗0 D0Z0

)

.

So we have a non-linear ODE for Z0(ξ), and linear in-homogeneous ODEs for Zk, k ≥ 1.

The boundary condition Z(0) = 1 becomes Z0(0) = 1, Zk(0) = 0, k ≥ 1.

Zeroth order O(q0). Replace concatenation by shuffle product: The ODE for Z0

can be linearized by passing to the shuffle reciprocal of Z0(ξ)

Y (ξ) ∗0 Z0(ξ) = 1 ⇒ D0Z0 = −Z0 ∗0 Z0 ∗0 D0Y. (3.29)

Y satisfies the inhomogeneous linear ODE D0Y = −αξ with boundary condition Y (0) = 1.

So

Y (ξ) = 1 − α

2
ξ ∗1 ξ = 1 − αξ2. (3.30)

Taking the shuffle reciprocal, we get (using ξ∗0n = n! ξ∗1n = n! ξn)

Z0(ξ) = (1 − α

2
ξ ∗0 ξ)−1 = 1 +

α

2
ξ ∗0 ξ + (

α

2
)2ξ ∗0 ξ ∗0 ξ ∗0 ξ + · · ·

=

∞
∑

n=0

αn

2n
(2n)! ξ2n. (3.31)
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So the generating function at order q0 is

Z(ξ) =
∞

∑

n=0

(

α

2

)n

(2n)! ξ2n + O(q). (3.32)

And the non-vanishing moments in this approximation are G2n =

(

α
2

)n

(2n)!+O(q). These

are compared with the exact moments in the table below.

Moments exact O(q0)

G2 α α

G4 2α2 6α2

G6 5α3 90α3

G8 14α4 2520α4

G2n, n → ∞ (4α)n

√
πn3

(α
2 )n(2n)!

(3.33)

Due to the (2n)!, the O(q0) moments numerically exceed the exact moments. We have a

crude zeroth order answer with the potential for calculating corrections. Of course, the

gaussian is a trivial model to solve. The value of our method lies in its applicability to

multi-matrix models for which no method of solution exists.

3.4.3 Approximate solution by deforming the left annihilation operator

Next, we expand D0 around D1 so that the loop equation (3.20) becomes a sequence

of differential equations with respect to conc. This leads to a different approximation

compared to section 3.4.2, where we used the deformed product. Here, the expansion

parameter is p = 1−q, which is eventually set to 1. Recall that the q-deformed annihilation

operator is

DqF (x) =

∞
∑

k=1

(−pξ)k−1

k!
Dk

1F (ξ) = D1F (ξ) − p

2
ξD2

1F (ξ) +
p2

6
ξ2D3

1F (ξ) + O(p3). (3.34)

If we expand Z(ξ) in powers of p, Z(ξ) =
∑

n Zn(ξ)pn, then

DqZ(ξ) =

∞
∑

s=0

ps
s

∑

n=0

(−1)n

(n + 1)!
Dn+1

1 Zs−n(ξ)ξn (3.35)

and

Z(ξ) ∗1 ξ ∗1 Z(ξ) =

∞
∑

s=0

ps
s

∑

n=0

Zn(ξ) ∗1 ξ ∗1 Zs−n(ξ). (3.36)

Comparing coefficients of p, we get a nonlinear ODE for Z0(ξ) and a sequence of 1st-order

linear ODEs for Zs(ξ) in terms of the lower order ones Zs−1(ξ), . . .:

s
∑

n=0

(−1)n

(n + 1)!
Dn+1

1 Zs−n(ξ)ξn = α

s
∑

n=0

Zn(ξ) ∗1 ξ ∗1 Zs−n(ξ). (3.37)
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The first couple of orders are (all products are concatenation products)

D1Z0(ξ) = αZ0(ξ)ξZ0(ξ)

D1Z1(ξ) −
1

2
D2

1Z0(ξ)ξ = 2αZ0(ξ)ξZ1(ξ)

... . (3.38)

Zeroth order: At O(p0) we have to solve the ODE D1Z0(ξ) = α Z0(ξ) ∗1 ξ ∗1 Z0(ξ) with

Z0(0) = 1. The solution is the conc reciprocal

Z0(ξ) =
1

1 − 1
2αξ ∗1 ξ

= 1 +
α ξ2

2
+

α2 ξ4

4
+

α3 ξ6

8
+

α4 ξ8

16
+

α5 ξ10

32
+ · · ·

=
∞
∑

n=0

(

α

2

)n

ξ2n. (3.39)

The non-vanishing moments are thus

G2n =

(

α

2

)n

+ O(p). (3.40)

These are compared with exact moments Γ2n = Cnαn ∼ (4α)n

√
n3π

, in table 3.47. We see that

at leading order, deforming the annihilation operator underestimates the moments.

Next to lowest order O(p1): At the next order in p = 1− q we have an inhomogeneous

linear first order ODE for Z1(ξ)

D1Z1(ξ) −
1

2
D2

1Z0(ξ)ξ = 2αZ0(ξ)ξZ1(ξ) (3.41)

with boundary condition Z1(0) = 0. Now Y ′ + PY + Q = 0 has solution

Y (ξ) = −I−1(ξ)

∫ ξ

0
Q(η)I(η)dη where I(ξ) = exp

∫ ξ

0
P (η). (3.42)

Y = Z1(ξ); P = −2αξZ0(ξ); Q = −1
2ξZ ′′

0 (ξ); Z0(η) = 1
1− 1

2
αη2 ; I(ξ) = (1 − 1

2αξ2)2.

Thus,

Z1(ξ) = −3αξ2 + 8 log (1 − 1
2αξ2)

4(1 − 1
2αξ2)2

=
α ξ2

4
+

α2 ξ4

2
+

25α3 ξ6

48
+

41α4 ξ8

96
+

99α5 ξ10

320
+ · · ·

=
1

4
αξ2 +

∑

n≥2

(

αξ2

2

)n[

n

2
+ 2

n−2
∑

r=0

(
r + 1

n − r
)

]

. (3.43)

To get the asymptotic behavior of moments for large n, let Z1(ξ) =
∑

G̃2nξ2n

G̃2 =
α

4
, G̃2n =

(

α

2

)n[

n

2
+ 2

n−2
∑

r=0

(
r + 1

n − r
)

]

, n ≥ 2

⇒ G̃2n ∼
(

α

2

)n[

2n log n − (
7

2
− 2γ)n + 2 log n + O(n0)

]

, n → ∞. (3.44)
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Recall that Z(ξ) = Z0(ξ) + pZ1(ξ) + · · · and Z0(ξ) =
∑

n(α
2 )nξ2n. Combining, at O(p) we

have (after setting p = 1)

G2 =
3α

4
+ O(p2); G2n =

(

α

2

)n[

1 +
n

2
+ 2

n−2
∑

r=0

(
r + 1

n − r
)

]

+ O(p2), n ≥ 2

G2n ∼
(

α

2

)n[

2n log n − (
7

2
− 2γ)n + 2 log n + O(n0)

]

+ O(p2), n → ∞. (3.45)

This is to be compared with the exact moments

Γ2n =
(2n)!

n!(n + 1)!
αn ∼ (4α)n√

πn3
, n → ∞. (3.46)

Going to the next to leading order in p has improved the agreement with the exact corre-

lations. For large n, the next to leading corrections to G2n are bigger in magnitude than

the 0th order G2n. The accompanying table summarizes the approximate correlations ob-

tained by expanding the left annihilation around the full annihilation operator in powers

of p = 1 − q.

Moments exact O(p0) O(p)

G2 α 0.5α 0.75α

G4 2α2 0.25α2 0.75α2

G6 5α3 0.125α3 0.646α3

G8 14α4 0.0625α4 0.490α4

G2n, n → ∞ (4α)n

√
πn3

(α
2 )n (α

2 )n(2n log n)

(3.47)

3.5 Non-Gaussian 1-matrix models

Recall that the 1-matrix loop equation (2.9) for a polynomial action tr S(A) = tr ×
∑m

l=1 SlA
l with Sm 6= 0 determines higher rank correlations Gm−1, Gm, Gm+1, . . . in terms

of the lower rank ones G0 = 1, G1, G2, . . . Gm−2. Suppose we apply our approximation

method here. At 0th order we replace conc by sh. Since left annihilation Dξn = ξn−1

is a derivation of sh, the loop equation becomes a quadratically non-linear ODE in the

commutative shuffle algebra

m
∑

l=1

lSlD
l−1G(ξ) = G(ξ) ◦ ξ ◦ G(ξ). (3.48)

However, for m > 2 (i.e. non-Gaussian models), the differential operator
∑m

l=1 lSlD
l−1 is

not a derivation of sh and our trick of passing to the shuffle reciprocal does not linearize

this ODE. It can still be thought of as a set of recursion relations (use ξs ∗0 ξt =
(

s+t
s

)

ξs+t)

m
∑

l=1

l Sl Gr+l−1 =
∑

s+t+1=r

s,t≥0

r!

s! t!
Gs Gt, for r = 0, 1, 2, . . . (3.49)

which determine Gm−1, Gm, Gm+1, . . . in terms of G1, G2, . . . Gm−2:

r = 0 : S1G0 + 2S2G1 + · · · + mSmGm−1 = 0

– 25 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
5

r = 1 : S1G1 + S2G2 + · · · + SmGm = 1, e.t.c. (3.50)

Our approach does not lead to a significant simplification for non-Gaussian 1-matrix mod-

els. However, we observe that the passage to the limit q = 0 (replacement of conc by sh)

did not change the dimension of the space of solutions to the original loop equations.

4. Approximation method for multi-matrix models

Recall the multi-matrix LE (2.27) for the generating series of gluon correlations SiG(ξ) =

G(ξ)ξiG(ξ) where Si =
∑

n≥0(n + 1)Sj1···jniDjn · · ·Dj1. Products on the r.h.s. are conc

products, but Dj are not derivations of conc. So the LE are not differential equations.

By analogy with 1-matrix models, two ways around this mismatch come to mind. We

could p-expand Di around full annihilation Di, which is a derivation of conc. Or, we could

q-expand conc around sh, with respect to which Di is a derivation. Both these turn LE

into quadratically non-linear PDEs at 0th order in p or q. In the former approach these

are PDEs on the non-commutative concatenation algebra, while in the latter case, they are

PDEs on the commutative shuffle algebra. We focus on the second approach in section 4.1

due to its similarity with deformation quantization, and briefly consider the first approach

in section 4.2. Beginnings of a formalism to go beyond zeroth order are in section 4.3.

4.1 Multi-matrix LE at O(q0) and the shuffle reciprocal

At 0th order in q, we replace conc by sh. Then the factorized LE (2.27) become17

SiG(ξ) = G(ξ) ◦ ξi ◦ G(ξ) (4.1)

with the boundary condition G(0) = 1. (4.1) is a quadratically non-linear PDE on the

shuffle algebra. In general, the order of the PDE is one less than the degree of S(A). If Si

is a derivation of sh, we can change variables so that (4.1) becomes a linear PDE for the

shuffle reciprocal of G(ξ) denoted F (ξ), F (ξ) ◦G(ξ) = 1. The shuffle reciprocal exists as a

formal series since the constant term G0 = 1 does not vanish. Moreover, since GI are cyclic

and shuffle product preserves cyclicity, FI are also cyclic. Assuming Si is a derivation of

sh,

Si(F (ξ) ◦ G(ξ))) = 0 ⇒ F ◦ SiG = −SiF ◦ G ⇒ SiG = −G ◦ SiF ◦ G. (4.2)

Putting this in (4.1) we get G ◦ SiF ◦G = G ◦ ξi ◦G. Shuffle multiplying by F ◦F reduces

the LE to a system of inhomogeneous linear PDEs in the shuffle algebra

SiF (ξ) = −ξi. (4.3)

We call these shuffle reciprocal LE. We seek cyclically symmetric solutions to them. The

l.h.s. of (4.3) is the same as in the LE (2.27) with G replaced by its reciprocal F . The − sign

due to inversion has been written on the r.h.s. . The r.h.s. , however is much simpler than

17Here, we use ◦ for ∗0 = sh to avoid subscripts.
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in (2.27) since the quadratic factor in G(ξ) has been eliminated. For the zero-momentum

Gaussian, Chern-Simons and Yang-Mills matrix models we get (from section 2.7)

Gaussian Cij DjF (ξ) = − ξi

Chern − Simons iκ εijk[Dk,Dj ]F (ξ) = − ξi

Y ang − Mills − 1

α
gikgjl[Dj , [Dk,Dl]]F (ξ) = − ξi. (4.4)

Thus, we have used the derivation properties of these theories to effectively linearize the

LE at order q0. We still have to solve these linear PDEs on the ∞-dimensional vector space

spanned by ξI . First we find a formula to recover G(ξ) from its shuffle reciprocal F (ξ).

(F ◦ G)(ξ) = 1 ⇒
∑

I=JtK

FJGK = δI
∅ . (4.5)

We can solve these equations starting from G0 = F0 = 1. The first few equations are

Fi + Gi = 0, Fij + FiGj + FjGi + Gij = 0,

Fijk + FijGk + FikGj + FjkGi + FiGjk + FjGik + FkGij + Gijk = 0, . . . (4.6)

Since each successive equation involves the next higher rank GI only linearly, we need only

solve a linear equation at each step. Thus for |I| > 0,

GI = −
∑

I=JtK,K 6=I

FJGK (4.7)

expresses higher rank GI in terms of lower rank ones and the reciprocal F . Iterating,

GI =

|I|
∑

n=1

(−1)n
∑

I=I1tI2t···tIn

Ik 6= ∅ ∀ k

FI1FI2 · · ·FIn for I 6= ∅. (4.8)

I = I1 t I2 t · · · t In ⇔ I1, . . . , In are complementary order-preserving subwords of I. For

example, Gi = −Fi, Gij = −Fij + 2FiFj and

Gijk = −Fijk + 2(FiFjk + FjFik + FkFij) − 6FiFjFk (4.9)

Gijkl = −Fijkl + 2(FiFjkl + FjFikl + FkFijl + FlFijk + FijFkl + FikFjl + FilFjk)

−6(FiFjkFl + FjFikFlFiFjlFk + FjFilFk + FkFijFl + FiFklFj) + 24FiFjFkFl.

This formula shows that the mapping to shuffle reciprocal (for series with non-vanishing

constant term) is one-to-one. We don’t lose any information in going from G(ξ) to F (ξ)

and back. Once we solve (4.3), for F (ξ) we may straightforwardly recover GI using (4.8).

4.1.1 Solution of Gaussian multi-matrix model at zeroth order in q

Consider the Gaussian multi-matrix model tr S(A) = 1
2 tr CijAiAj with symmetric

covariance Cij = Cji. At 0th order in q, the shuffle reciprocal LE (4.4) are

DkF (ξ) = −Ckjξ
j , (4.10)
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where Ckj = Cjk is the matrix inverse of Cij. We seek a solution of (4.10) of the general

form

F (ξ) = 1 + Fi1ξ
i1 + Fi1i2ξ

i1i2 + · · · + Fi1···inξi1···in + · · · , (4.11)

where FI are cyclically symmetric. G0 = 1 fixes F0 = 1. Substituting in (4.10) using

Diξ
ii···in = δi1

i ξi2···in we get

Fi + Fii2ξ
i2 + Fii2i3ξ

i2i3 + · · · + Fii2···inξi2···in + · · · = Cijξ
j. (4.12)

Comparing coefficients of words ξI we read off the solution

Fi = 0, Fij = −Cij, Fi1···in = 0 for n ≥ 3. (4.13)

The solution is a quadratic polynomial F (ξ) = 1 − Cijξ
ij . Using (4.8) we get

G0 = 1, Gi = 0, Gij = −Fij = Cij , Gijk = 0, Gijkl = 2{CijCkl + CikCjl + CilCjk}, . . .(4.14)

Thus, for the Gaussian multi-matrix model, the linear equations (4.10) for shuffle reciprocal,

along with the boundary condition F0 = 1 have a unique solution. Comparing with exact

moments from the planar Wick theorem, Γ0 = 1, Γij = Cij, Γijkl = CijCkl + CilCjk, . . .,

we see that the approximation is an over estimate (as we found in the 1-matrix example in

section 3.4.2).

4.1.2 Chern-Simons matrix model at zeroth order in q

Consider the zero-momentum limit of 3d Chern-Simons(CS) gauge theory. This corre-

sponds to the 3-matrix model with action tr S(A) = 2iκ tr A1[A2, A3]. Such an action

also results from considering terms in (1.1) that are linear in momentum. The 0th order

CS loop equation (4.4) for the shuffle reciprocal F (ξ) is

iκ εijk[Dk,Dj ]F (ξ) = −ξi or 2iκ εijkDkDjF (ξ) = −ξi. (4.15)

We seek a solution to (4.15) among formal series F (ξ) = FIξ
I with cyclic coefficients FI

satisfying F ∗
I = FĪ . eq. (4.15) is an inhomogeneous 2nd order linear PDE in an infinite

dimensional space spanned by the words ξI . F0 = 1 does not suffice to fix a solution.

For example, Fi are undetermined, since ξi is annihilated by the l.h.s. . Inserting FIξ
I

into (4.15) gives

2iκ εii1i2Fi1···inξi3···in = −ξi. (4.16)

The PDEs become linear equations for the coefficients FI with |I| ≥ 2,

n = 2 : εijkFjk = 0; n = 3 : 2iκ εijkFjkl = −δi
l ; and

n > 3 : εii1i2Fi1···in = 0. (4.17)

Being a system of inhomogeneous linear equations, the general solution is the sum of a

particular solution and the general solution of the corresponding homogeneous system. A

particular solution with minimal number of non-vanishing FI is

F0 = 1, F123 = F231 = F312 = F ∗
321 = F ∗

213 = F ∗
132 =

i

4κ
and
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FI = 0 ∀ other I. (4.18)

To see this we need only consider n = 3, where despite appearances, after accounting for

cyclic symmetry, there are only a pair of independent equations, the real and imaginary

parts of

F321 − F123 =
1

2iκ
. (4.19)

By hermiticity, F ∗
321 = F123 or <F321 = <F123 and =F321 = −=F123. Since κ is real,

the real part of the above equation is an identity, so the real part <F123 = <F321 is left

undetermined, and we can set it to zero. Its imaginary part gives =F123 = 1
4κ

, which is

the advertised particular solution. For this particular solution the gluon green functions

at order q0 can be non-trivial only if their rank is divisible by 3. For example, G0 = 1,

Gi = −Fi = 0, Gij = 0, G123 = G231 = G312 = G∗
321 = G∗

132 = G∗
213 =

1

4iκ
,

Gijk = 0 otherwise , G113322 = −8G132F132 = − 1

2κ2
, G112233 = 0, etc. (4.20)

Let us now consider the general solution to the inhomogeneous linear equations (4.17). It

is straightforward to see that they have infinitely many solutions, since the corresponding

homogeneous equations εii1i2Fi1i2···in = 0, n ≥ 2 do. Indeed, any tensor Fi1i2i3···in that is

symmetric under interchange of a pair of adjacent indices is a solution to the homogeneous

equations. By cyclic symmetry, the two indices can be chosen as i1 and i2. Then such an

Fi1i2i3···in is annihilated due to antisymmetry of εii1i2 . Even after imposing hermiticity and

cyclic symmetry, this will leave an infinite number of homogeneous solutions, for example

any totally symmetric real tensor FI is automatically cyclically symmetric and satisfies

F ∗
I = FĪ . To get an idea of how many solutions there are among tensors of a fixed

rank, consider each rank individually since the equations do not mix tensors of different

rank. For n = 1, we do not have any LE, but hermiticity implies that F1, F2, F3 are

three arbitrary real quantities. For n = 2, εijkFjk = 0 does not impose any condition on

F11, F22, F33, which are real by hermiticity, and says that F12, F23 and F31 are symmetric

tensors, which must again be real. For n = 3, as we saw earlier, 2iκ εijkFjkl = −δi
l is just

the single condition =F123 = 1
4κ

. After accounting for cyclicity and hermiticity, there are

11 independent components of Fijk. The 10 undetermined components can be taken as the

real numbers

F111, F222, F333,<F123, F122, F233, F311, F133, F211, F322. (4.21)

For n = 4, accounting for cyclic FI , there are only 9 conditions

F1123 = F1132 = F1213, F2231 = F2213 = F2321, F3312 = F3321 = F3132,

F1212 = F1122, F2323 = F2233, F3131 = F3311. (4.22)

But there are c(n = 4,Λ = 3) = 24 independent cyclic symmetric fourth rank tensors (see

appendix A). Thus we have a large space of homogeneous solutions among fourth rank
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tensors. A similar situation continues for n > 4. The LE at order q0 (4.15), though linear

and easy to solve, have infinitely many solutions. As explained in section 2.2, this is true

of the original LE and is not an artifact of our approximation scheme. It remains to see if

the additional equations obtained in 2.3 fix this shortcoming.

4.1.3 Yang-Mills multi-matrix model at zeroth order in q

Consider the Yang-Mills matrix model with action tr S(A) = − 1
4α

tr [Ai, Aj ][Ak, Al]g
ikgjl.

The LE for the shuffle reciprocal F (ξ) of the moment generating series G(ξ) at zeroth order

in q are

gikgjl[Dj , [Dk,Dl]]F (ξ) = α ξi for 1 ≤ i ≤ Λ. (4.23)

Interesting special cases are Λ = 4, 2 which correspond to the zero momentum limit of

4 and 2 dimensional large-N Yang-Mills theory. For Λ = 2 and a flat Euclidean metric

gij = δij , the matrix model action is tr S(A) = − 1
2α

tr [A1, A2]
2. (4.23) are a system of

Λ inhomogeneous 3rd order linear PDEs for F (ξ) = F IξI which is normalized to F0 = 1.

FI must be cyclically symmetric. We need additional conditions to fix a solution since any

quadratic polynomial is annihilated by the l.h.s. , so Fi and Fij are not fixed by (4.23).

Let us assume the metric gij = δij and not make a distinction between lower and upper

indices, with repeated indices being summed. Then (4.23) becomes (using the short-hand

Dijk = DiDjDk)

(2Djij −Djji−Dijj)F (ξ) = α ξi ⇒ (2Fjiji4···in −Fijji4···in −Fjjii4···in)ξi4···in = α ξi. (4.24)

Comparing coefficients we get these conditions

n = 3 ⇒ 2Fjij − Fijj − Fjji = 0 ∀ i

n = 4 ⇒ 2Fjijk − Fijjk − Fjjik = α δik ∀ i, k

n ≥ 5 ⇒ 2Fjiji4···in − Fijji4···in − Fjjii4···in = 0 ∀ i, i4 · · · in. (4.25)

The condition for n = 3 is an identity for cyclically symmetric tensors, so we drop it. These

are infinitely many linear equations for the tensors FI . A major simplification is that the

equations do not mix tensors of different ranks, i.e. the matrix defining the system is block

diagonal with all blocks finite dimensional. Let us specialize to the simplest non-trivial

case of the Λ = 2 matrix model. We will show that a particular (cyclically symmetric)

solution is

F0 = 1, F1122 = F2112 = F2211 = F1221 = −α

2
and the remaining FI = 0. (4.26)

The only non-trivial part of this particular solution involves the rank n = 4 tensors. The

equations for the rest are homogeneous and they can be set to zero. For n = 4 we need to

find a solution to 2Fjijk − Fijjk − Fjjik = α δik. These look like four equations,

2F2121 − F1221 − F2211 = α, 2F2122 − F1222 − F2212 = 0,

2F1212 − F2112 − F1122 = α, 2F1211 − F2111 − F1121 = 0. (4.27)
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But there is only one independent non-trivial condition after accounting for cyclic symmetry

F1122 − F1212 = −α

2
. (4.28)

Thus we see that F0 = 1, F1122 and cyclic permutations = −α/2 and all other FI = 0 is

a particular solution. The gluon green functions at order q0 are obtained via the shuffle

reciprocal (4.8) which imply that non-vanishing correlations have rank divisible by 4, for

example,

G0 = 1, Gi = Gij = Gijk = 0, G1122 and cyclic =
α

2
, and other Gijkl = 0, etc. (4.29)

Now comes the harder question of the general solution of the homogeneous linear system
18

n = 4 ⇒ 2Fjijk − Fijjk − Fjjik = 0 ∀ i, k

n ≥ 5 ⇒ 2Fjiji4···in − Fijji4···in − Fjjii4···in = 0 ∀ i, i4 · · · in (4.30)

For n = 4, as we saw before, there is only one non-trivial equation F1122 = F1212. But there

are c(n = 4,Λ = 2) = 6 independent cyclically symmetric rank 4 tensors (see appendix A)

which can be taken as F2222, F1222, F1122, F1212, F1112, F1111. Hermiticity FI = F ∗
Ī

implies that all of them are real since reversal of order of indices can be achieved by

cyclic permutations in each case. Thus the general solution for rank four tensors assigns 5

arbitrary real parameters to F2222, F1222, F1122 = F1212, F1112 and F1111.

For n = 5, once the dust settles, there are only two non-trivial equations

F11122 = F11212 and F11222 = F12122 (4.31)

Taking account of cyclic symmetry, there are c(5, 2) = 8 independent rank 5 tensors, which

can be taken as F22222, F12222, F11222, F12122, F11122, F11212, F11112 and F11111. In general

these are complex, but hermiticity and cyclicity imply they are all real. Thus we have

two linear constraints on 8 real parameters and therefore a six real-dimensional space of

solutions to the shuffle reciprocal LE for rank 5 tensors:

F22222, F12222, F11222 = F12122, F11122 = F11212, F11112, F11111 (4.32)

are freely specifiable real quantities.

This abundance of solutions continues to hold for n ≥ 6. It is easy to see that the

homogeneous linear equations 2FjijI−FijjI−FjjiI = 0 have an infinite number of solutions.

Observe that any tensor that is totally symmetric in any three adjacent indices19 satisfies

this equation. In particular, totally symmetric tensors are an infinite class of solutions.

The underdetermined nature of the linear equations for F (ξ) is not an artifact of our

approximation scheme. It is already true of the full LE as shown in section 2.2. It remains

to implement the additional conditions (2.22) to see if they select a solution.

18Recall that n = 3 was identically satisfied by cyclically symmetric tensors.
19By cyclic symmetry, those three indices can be taken as the first three.
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4.2 LE with deformed left annihilator and the concatenation reciprocal

We also have the option of approximating the LE (2.27) by replacing left annihilation Di

by full annihilation Di at zeroth order in an expansion in powers of p = 1 − q. Since Di

is a derivation of conc, this again turns the LE into non-linear PDEs, but this time on

the non-commutative free algebra. As before, it is possible to convert the non-linear PDEs

into linear PDEs by passage to the concatenation reciprocal. Recall that Si =
∑

n(n +

1)Sj1···jniDjn · · ·Dj1 . When Dj is replaced by Dj , we denote the resulting differential

operator

Si =
∑

n

(n + 1)Sj1···jniDjn · · ·Dj1. (4.33)

Moreover, assume couplings SI are such that Si is a linear combination of iterated com-

mutators of Dj and therefore a derivation of conc. This is the case for the Gaussian, CS

and YM matrix models or any linear combination thereof. At zeroth order in p, the LE

become

SiG(ξ) = G(ξ)ξiG(ξ). (4.34)

Now we’d like to use the same trick as before and turn this into a linear equation for the

conc reciprocal of G(ξ). Though conc is non-commutative, left and right concatenation

reciprocals of G(ξ) are both equal. Let GR = 1 and LG = 1. Multiplying the first

equation by L from the left and using the second, we get R = L. So let F (ξ) be the

unique two-sided conc reciprocal20 of G(ξ). Assuming Si is a derivation of conc, Si(FG) =

(SiF )G + F (SiG) = 0. This turns (4.34) into a linear equation for the conc reciprocal

SiF (ξ) = −ξi. (4.35)

Inserting F (ξ) = FIξ
I into (4.35) gives linear equations for coefficients FI . Once FI

are determined, we recover GI at zeroth order in p using the following formula for conc

reciprocal.

(FG)I = δI,∅ ⇒ G0 = 1 and δI1I2
I FI1GI2 = 0 ⇒ GI = −

∑

I=I1I2,

I1 6=∅

FI1GI2 for |I| > 0.

(4.36)

Iterating this, we solve for GI

GI =

|I|
∑

n=1

(−1)n
∑

I=I1I2···In

Ik 6= ∅ ∀k

FI1FI2 · · ·FIn for I 6= ∅. (4.37)

For example, the first few gluon correlations are

G0 = 1; Gi = −Fi; Gij = −Fij + FiFj ; Gijk = −Fijk + FijFk + FiFjk − FiFjFk; . . .(4.38)

20F0 = G0 = 1
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Thus conc reciprocal is a 1−1 map. However, unlike shuffle reciprocal, it does not preserve

cyclicity. Though we do not lose any information in the passage from G to F , the cyclic

property of GI gets slightly garbled when expressed in terms of FI . For example, cyclic

symmetry of Gijk implies the relation FijFk−Fijk = FjFki−Fjki. Thus, we should look for

solutions to (4.35) among FI that lead to cyclically symmetric GJ ’s. This makes identifying

the appropriate solutions of (4.35) potentially harder than for the corresponding shuffle

reciprocal LE (4.3). There is another reason why the concatenation reciprocal LE (4.35)

are a potentially harder infinite linear system to solve than their shuffle reciprocal counter

part (4.1). Left annihilation acting on a monomial produces a monomial [DjF ]I = FjI . But

due to its democratic nature, full annihilation produces a linear combination of monomials

[DjF ]I = δI1I2
I FI1jI2. Thus the matrix defining the system of linear equations for FI would

be less sparse than before. Nevertheless, the moral is that replacing Dj by Dj at 0th order

in an expansion in p allows for an effective linearization of the LE provided the action has

the derivation property.

4.3 Formalism for multi-matrix models beyond zeroth order

At O(q0) our approximation amounted to replacement of non-commutative conc by com-

mutative sh in the LE. This is like approximating the associative product of operators in

quantum mechanics by a commutative product of functions on phase space. To go beyond

this, we need a formula expressing conc as a series around sh, by analogy with the Moyal

∗-product formula

(F̃ ∗~ G̃)(x, p) =

∞
∑

n=0

(−i~

2

)n 1

n
{F̃ , G̃}(n) = F̃ G̃ − i~

2
{F̃ , G̃} + · · · , where

{F̃ , G̃}(n) =

n
∑

r=0

(−1)rF̃ j1···jr

i1···in−r
G̃

i1···in−r

j1···jr
with F̃ i =

∂F̃

∂pi
, F̃i =

∂Ã

∂xi
, etc (4.39)

for the symbols of operators (here Weyl ordered) in quantum mechanics. The first non-

trivial term in such a formula involves the classical Poisson bracket. So one strategy is to

look for a natural Poisson bracket on the shuffle algebra. However, there are differences

from the usual situation where Heisenberg equations are approximated by Hamilton’s equa-

tions. While the Heisenberg equations of quantum mechanics involve commutators of the

associative product, the LE directly involve the associative concatenation product and

not its commutator. Another difference from the usual situation in deformation quan-

tization is that we know the product at both q = 0 and q = 1 whereas one usually

knows the product only at ~ = 0. Once we have such a formula, then as we did for 1-

matrix models (section 3.4.2), we would expand the generating series of gluon correlations

G(ξ) =
∑∞

k=0 G(k)(ξ)qk in a power series in q and find equations for the G(k)(ξ) order by

order in q, starting from the 0th order equations for G(0)(ξ) of section 4.1. However, the

situation for multi-matrix models is substantially more complicated than for the 1-matrix

models of section 3. This is because conc is non-commutative while it was commutative in

the single-matrix case.
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4.3.1 q-Deformed product and Poisson bracket on shuffle algebra

We exhibit a 1-parameter family of associative products ∗q that interpolate between com-

mutative shuffle ∗0 and concatenation ∗1. It reduces to the q-product for a single generator

introduced in (3.7) and is defined as (F ∗q G)(ξ) = [F ∗q G]Iξ
I where21

[F ∗q G]I ≡
∑

JtK=I

pχ(I,J,K)FJGK and p = 1 − q. (4.40)

The (two-word) crossing number χ(I;J,K) of the ordered triple {I;J,K} is the minimum

number of transpositions of elements of J and K in order to transform JK into I when J

and K are order-preserving sub-words of I. For example,

χ(ijk; i, jk) = 0, χ(ijk; ik, j) = 1, χ(ijk; jk, i) = 2. (4.41)

For q = 1 (p = 0), this formula reduces to conc. For, the only term that contributes is the

one with χ(I;J,K) = 0 i.e. no crossings, so I = JK. Then

(F ∗1 G)I = δJK
I FJGK . (4.42)

If q = 0 (p = 1), then pχ(I;J,K) = 1 independent of the crossing number and all terms

contribute equally giving back shuffle

(F ∗0 G)I =
∑

I=JtK

FJGK . (4.43)

Examples: For q 6= 1, ∗q is non-commutative in general. The first few terms in the

q-product of a pair of tensors are (F ∗q G)0 = F0G0,

(F ∗q G)i = FiG0 + F0Gi, (F ∗q G)ij = F0Gij + FiGj + pFjGi + FijG0,

(F ∗q G)ijk = F0Gijk + FiGjk + pFjGik + p2FkGij + FijGk + pFikGj + p2FjkGi + FijkG0

(F ∗q G)ijkl = F0Gijkl + (FiGjkl + pFjGikl + p2FkGijl + p3FlGijk)

+(FijGkl + pFikGjl + p2FilGjk + p2FjkGil + p3FjlGik + p4FklGij)

+(FijkGl + pFijlGk + p2FiklGj + p3FjklGi) + FijklG0. (4.44)

Associativity: We show that the q-product is associative

((F ∗q G) ∗q H)I = (F ∗q (G ∗q H))I =
∑

I=JtKtL

pχ(I;J,K,L)FJGKHL. (4.45)

We first checked explicitly that associativity holds for |I| ≤ 3 by writing out all the terms,

but it was very tedious to go further. Instead, we write

((F ∗ G) ∗ H)I =
∑

I=JtK

pχ(I;J,K)(F ∗ G)JGK

=
∑

I=LtMtK

pχ(I;LtM,K)pχ(LtM ;L,M)FLGMHK

21To avoid too much clutter we will occasionally drop the subscript in ∗q and indicate it by ∗.
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=
∑

I=JtKtL

pχ(I;JtK,L)+χ(JtK;J,K)FJGKHL

(F ∗ (G ∗ H))I =
∑

I=JtKtL

pχ(I;J,KtL)+χ(KtL;K,L)FJGKHL (4.46)

where I = J t K t L is the condition that J,K,L are complementary order-preserving

sub-words of I. Since F,G,H are arbitrary and so is p, associativity requires the equality

of the sums of crossing numbers

χ(I;J t K,L) + χ(J t K;J,K) and χ(I;J,K t L) + χ(K t L;K,L) (4.47)

for each I and any (fixed) choices of J,K,L, J tK and K tL satisfying I = J tK tL. In

fact, these two sums of (two-word) crossing numbers are equal to the (three-word) crossing

number χ(I;J,K,L) that has a simple meaning. χ(I;J,K,L) is the smallest number of

transpositions needed to transform JKL into I where J,K,L are order-preserving sub-

words of I. For example suppose I = abcd, J = d,K = c, L = ab, J tK = cd and K tL =

abc. Then χ(abcd; cd, ab) + χ(cd; d, c) = 4 + 1 = 5 while χ(abcd; d, abc) + χ(abc; c, ab) =

3+2 = 5. Similarly, if I = abcd, J = b,K = ad,L = c, J tK = abd and KtL = acd. Then

χ(abcd; abd, c) + χ(abd; b, ad) = 1 + 1 = 2 while χ(abcd; b, acd) + χ(acd; ad, c) = 1 + 1 = 2.

Thus, associativity just says that there are two different ways of calculating the three-word

crossing number χ(I;J,K,L) when I = J t K t L. This gives the simple formula (4.45)

for the ∗q product of three series, which makes associativity manifest.

Reduction to one generator: When we reduce to a single generator in the above exam-

ples (4.44), the formulae agree with those obtained earlier (3.14) using the Gauss binomials.

More generally, we can see from the definition of the Gauss binomials (3.8) that

(|I|
r

)

q

=
∑

I=JtK

|J |=r

qχ(I;J,K). (4.48)

Thus, the above formula for the q-product reduces to the one for a single generator.

Poisson Bracket: It may help to find a Poisson bracket on the shuffle algebra that serves

as a first approximation to the q-commutator. The q-commutator is

([F,G]q)I ≡ (F ∗q G − G ∗q F )I =
∑

I=JtK

(1 − q)χ(I;J,K)(FJGK − GJFK). (4.49)

For small q, −1
q
([F,G]q)I =

∑

I=JtK χ(I;J,K)(FJGK − GJFK) + O(q). So let us define

the bracket {F,G} = {F,G}Iξ
I by

{F,G}I = − lim
q→0

1

q
([F,G]q)I =

∑

I=JtK

χ(I;J,K)(FJGK − GJFK). (4.50)

It is clearly bilinear and anti-symmetric. The first few examples with lowest |I| are

{F,G}0 = 0; {F,G}i = 0; {F,G}ij = FjGi − GjFi;
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{F,G}ijk = FjGik + 2FkGij + FikGj + 2FjkGi − (F ↔ G);

{F,G}ijkl = FjGikl + 2FkGijl + 3FlGijk + FikGjl + 2FilGjk + 2FjkGil

+3FjlGik + 4FklGij + FijlGk + 2FiklGj + 3FjklGi − (F ↔ G). (4.51)

It satisfies the Jacobi identity since the q-product was associative.

{{F,G},H} + {{H,F}, G} + {{G,H}, F} = 0. (4.52)

This can also be checked explicitly. For example, the first non-trivial case is

{{F,G},H}ijk = 2(FiGjHk + FkGjHi − FjGkHi − FjGiHk). (4.53)

Upon adding its cyclic permutations, the Jacobi identity is satisfied. Moreover, the Leibnitz

rule (with respect to sh = ◦ = ∗0)

{F ◦ G,H} = F ◦ {G,H} + {F,H} ◦ G (4.54)

is also satisfied due to the corresponding identity for the q-commutator. Thus {. . .} is a

Poisson bracket on the commutative shuffle algebra.

In order to be practically useful in going beyond the 0th order solution of the LE, we

need a q-expansion for ∗q around ∗0 = sh involving left annihilation D0
j . For small q,

(F ∗q G)I =
∑

I=JtK

(1 − q)χ(I;J,K)FJGK

=
∑

I=JtK

FJGK − q
∑

I=JtK

χ(I;J,K)FJGK + O(q2)

= (F ∗0 G)I − q
∑

I=JtK

χ(I;J,K)FJGK + O(q2)

⇒ lim
q→0

(F ∗q G − F ∗0 G)I
−q

=
∑

I=JtK

χ(I;J,K)FJGK . (4.55)

For example,

lim
q→0

(F ∗q G − F ∗0 G)ij
−q

= FjGi

lim
q→0

(F ∗q G − F ∗0 G)ijk
−q

= FjGik + 2FkGij + FikGj + 2FjkGi. (4.56)

Our aim is to express this O(q) contribution to F ∗q G in terms of D0
i and ∗0. But we are

yet to find such a formula that generalizes (3.16) and hope further investigation will reveal

it.

4.3.2 q-Deformed annihilation

There is one parameter family of annihilation operators Dq
j that interpolates between left

annihilation D0
j and full annihilation D1

j . For a single generator, it was defined in (3.18)

as (DqG)n = (1 + q + q2 + · · · + qn)Gn+1. By analogy we define [Dq
jG]I = δI1I2

I q|I1|GI1jI2,

i.e.

[Dq
jG]i1···in = Gji1···in + qGi1ji2···in + q2Gi1i2ji3···in + · · · + qnGi1···inj. (4.57)
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We pick up one more power of q as the annihilation operator travels through each index of

the tensor from left to right. It is easily seen that

lim
q→0

[Dq
jG]I = GjI and lim

q→1
[Dq

jG]I = δI1I2
I GIijI2 (4.58)

reproduce left and full annihilation which are derivations of sh and conc. To make the

LE (2.27) differential equations with respect to conc, we want to expand D0
j around D1

j in

powers of p = 1 − q and finally set p = 1. Recall that for 1-generator (3.19),

DqG(ξ) =

∞
∑

k=1

1

k!
(−pξ)k−1Dk

0G(ξ) = D1G(ξ) − p

2
ξD2

1G(ξ) +
p2

6
ξ2D3

1G(ξ) + O(p3).(4.59)

For several generators,

[Dq
jG]i1···in =

=

[

Gji1···in + · · · + Gi1···inj

]

− p

[

Gi1ji2···in + 2Gi1i2ji3···in + · · · + nGi1···inj

]

+p2

[

Gi1i2ji3···in + 3Gi1i2i3ji4···in + · · · + n(n − 1)

2
Gi1···inj

]

+ · · · + (−p)nGi1···inj.(4.60)

Drawing inspiration from (3.19) we would like to recognize the coefficients of powers of p as

combinations of full annihilation and some multiplication operator acting on G. However,

we have not yet succeeded in this.

5. Discussion

Despite their formidable reputation, the loop equations(LE) of a large-N multi-matrix

model show much simplicity and structure when expressed in terms of gluon correlations

GI . Non-linearities are mild in the sense that in any equation, highest rank correlations

appear linearly. So the LE are systems of inhomogeneous linear difference equations for

correlations of a given rank with lower rank correlations appearing non-linearly as ‘sources’.

Solving these equations in the absence of additional structure would be tedious at best.

But this is not possible because the LE are underdetermined in most interesting cases. We

observed that there are additional equations involving the GI that a naive passage from

finite N Schwinger-Dyson equations to large-N LE misses. These equations have to do

with changes of variables in matrix integrals that leave both action and measure invariant.

However, we are yet to implement these additional constraints in detail to see whether

they suffice to fix a unique solution to the LE. On the other hand, we saw that part of the

difficulty in understanding the LE lies in the fact that they are not differential equations.

Left annihilation does not satisfy the Leibnitz rule with respect to the concatenation prod-

uct appearing in these equations. We proposed two schemes to remedy this situation by

expanding either annihilation or product around one that is a derivation of the other. For

the Gaussian, Chern-Simons and Yang-Mills models, it was possible to altogether eliminate

the non-linearities of the LE and arrive at inhomogeneous linear PDEs at the zeroth order

of these expansions. But the under-determinacy of the loop equations prevented us from
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picking a unique solution except in the case of the gaussian, where the two approximations

were shown to give over and underestimates for correlations. This underscores the impor-

tance of better understanding the remaining constraints on GI (section 2.3) as well as any

other conditions that would ameliorate the under-determinacy of the LE. In [13] we hope

to extend these algebraic and differential properties to matrix models with both gluon and

ghost matrices, of the sort appearing in the gauge-fixed action of Yang-Mills theory.
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A. Cyclically symmetric tensors of rank n

What is the dimension c(n,Λ) of the space of cyclically symmetric real tensors Gi1···in of

rank (=number of indices) n if the indices can take the values 1 ≤ ik ≤ Λ? The dimension

of the space of all tensors of rank n is Λn. On the other hand, the space of symmetric

rank n tensors, which is a subspace of cyclically symmetric tensors, is
(Λ+n−1

n

)

dimensional.

Thus
(

Λ + n − 1

n

)

≤ c(n,Λ) ≤ Λn (A.1)

For a Λ = 3 matrix model, 1
2(n2 + 3n + 2) ≤ c(n, 3) ≤ 3n. For a 2-matrix model,

n + 1 ≤ c(n, 2) ≤ 2n. The cyclic group of order n acts on rank n tensors Gi1···in by

cyclically permuting indices. c(n,Λ) is the number of orbits. For example, if Λ = 2 and

n = 4, the orbits are

(G2222); (G1222 =G2122 =G2212 =G2221); (G1122 =G2112 =G2211 =G1221);

(G1212 =G2121); (G1112 =G2111 =G1211 =G1121); (G1111) (A.2)

So c(n = 4,Λ = 2) = 6, significantly less than 24. The cardinality of different orbits are

not necessarily equal. Some other examples are

c(n, 1) = 1; c(1,Λ) = Λ; c(2,Λ) =
1

2
Λ(Λ + 1); c(3, 2) = 4;

c(3, 3) = 11; c(4, 2) = 6; c(4, 3) = 24; c(5, 2) = 8. (A.3)

It would be nice to have formula for c(n,Λ), at least for the Λ = 2 matrix model.

Note on hermiticity condition: Actually, the tensors GI are complex numbers, so the

real-dimension of the space of cyclically symmetric tensors of rank n is 2 c(n,Λ). However,

the hermiticity condition Gi1i2···in = G∗
in···i2i1

halves this real-dimension to c(n,Λ). If
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reversal of indices can be achieved by a cyclic permutation (e.g. G1122 = G∗
2211 = G2211)

then the correlation is real. If Ī cannot be obtained from I via cyclic permutations, then

hermiticity means that <GI = <GĪ and =GI = −=GĪ . For example <G1123 = <G3211

and =G1123 = −=G3211. In either case, hermiticity halves the number of independent

parameters in cyclically symmetric correlations of a given rank.

B. Concatenation, shuffle and their co-products

By V , let us denote the infinite-dimensional complex vector space spanned by the monomial

words ξi1···in in the Λ non-commuting sources ξi. A typical element is the formal series

G(ξ) = GIξ
I . V is the basic arena for our algebraic study of the loop equations22.

The concatenation product conc : V ⊗ V → V denoted by juxtaposition, was defined

in (2.23) ξIξJ = δIJ
K ξK = ξIJ . It has the structure constants cI,J

K = δIJ
K . For Λ > 1, conc

is non-commutative. The vector space V , along with the concatenation product is the free

associative algebra T on the generators ξ1, . . . , ξΛ. It is the universal envelope of the free

Lie algebra. The commutative shuffle product sh : V ⊗ V → V was defined in (2.38). V ,

equipped with sh is the shuffle algebra. The shuffle product of monomials

ξI ◦ ξJ = sI,J
K ξK =

∑

ItJ=K

ξK . (B.1)

leads to the shuffle structure constants sI,J
K = |{I t J = K}|.

There is a natural inner product (., .) on V , for which ξI form an orthonormal basis

(ξI , ξJ ) = δI,J or (FIξ
I , GJξJ) = FIGJδI,J =

∑

I

FIGI . (B.2)

The Kronecker symbol δI,J = 1 if I = J and 0 otherwise. We can use the ‘metric’ δI,J and

its inverse δI,J to raise and lower indices. The inner product allows us to define co-products

V → V ⊗ V . We call them co-concatenation ∆ = sh† and co-shuffle ∆′ = conc†. They are

adjoints of sh and conc respectively. For three formal series F,G,H, we define ∆ and ∆′

by

(F ⊗ G,∆(H)) = (F ◦ G,H) and (F ⊗ G,∆′(H)) = (FG,H). (B.3)

We define the structure constants of co-concatenation and co-shuffle as

∆(ξK) = sK
L,MξL ⊗ ξM and ∆′(ξK) = cK

L,MξL ⊗ ξM . (B.4)

We use the same letter c to denote the structure constants of conc and ∆′ = conc† because

they are related by raising and lowering indices using the metric δI,J . The same goes for

the letter s for the structure constants of sh and ∆ = sh†. The expressions for these are

cI
J,K = cL,M

N δI,NδJ,LδK,M = δI
JK and

22A superior approach that makes cyclic symmetry of GI manifest might be to consider the quotient by

the relation ξI ∼ ξJ if I is a cyclic permutation of J . Then a basis for V would consist of words ξI where I

labels orbits of the cyclic group action. In this paper we just allow all words ξI and impose the condition

that GI be cyclically symmetric, by hand, so to speak.

– 39 –



J
H
E
P
0
8
(
2
0
0
6
)
0
3
5

sI
J,K = sL,M

N δI,NδJ,LδK,M = sJ,K
I = |{I = J t K}|. (B.5)

To obtain the co-shuffle structure constants cI
J,K , we use the definition of adjoint to get

〈ξIξJ , ξK〉 = 〈ξI ⊗ ξJ ,∆′(ξK)〉 ⇒ δIJ,K = cK
L,M 〈ξI ⊗ ξJ , ξL ⊗ ξM 〉 = cK

L,MδI,LδJ,M

⇒ cK
N,P = δIJ,KδI,NδJ,P = δK

NP . (B.6)

We use a similar procedure for the co-concatenation structure constants sI
J,K

〈ξI ◦ ξJ , ξK〉 = 〈ξI ⊗ ξJ ,∆(ξK)〉 ⇒ sI,J
L 〈ξL, ξK〉 = sK

L,M〈ξI ⊗ ξJ , ξL ⊗ ξM 〉
⇒ sI,J

L δL,K = sK
L,MδI,LδJ,M ⇒ sK

P,Q = sI,J
L δL,KδI,P δJ,Q = sP,Q

K . (B.7)

On formal series, co-shuffle ∆′ = conc† acts as

∆′F = [∆′F ]I,J ξI ⊗ ξJ = FIJξI ⊗ ξJ . (B.8)

In particular, ∆′(ξI) = δI
JKξJ ⊗ ξK and ∆′(ξi) = (ξi ⊗ 1 + 1 ⊗ ξi). On formal series,

co-concatenation ∆ = sh† acts according to

∆F = [∆F ]J,KξJ ⊗ ξK where [∆F ]J,K =
∑

I=JtK

FI . (B.9)

In particular, ∆(ξI) =
∑

I=JtK ξJ ⊗ ξK and ∆(ξi) = ξi ⊗ 1 + 1 ⊗ ξi.

C. Bialgebra structures on V = Span(ξI)

V has two bialgebra (algebra + compatible coalgebra) structures. In one, the product (sh)

is commutative while the co-product (adjoint of conc) is non-co-commutative. In the dual

bialgebra, the product (conc) is non-commutative while the co-product (adjoint of sh) is

co-commutative.

To establish that shuffle and co-shuffle23 combine to define a bialgebra on V , we show

that co-shuffle ∆′ = conc† is a homomorphism of the shuffle product

∆′(F ◦ G) = ∆′(F ) ◦ ∆′(G). (C.1)

Note that the l.h.s. is

∆′(F ◦ G) =
∑

LtM=K

FLGM∆′(ξK) =
∑

LtM=IJ

FLGMξI ⊗ ξJ . (C.2)

While the r.h.s. is

∆′(F ) ◦ ∆′(G) = FIGJ∆′(ξI) ◦ ∆′(ξJ) = FIGJδI
KLδJ

MN (ξK ⊗ ξL) ◦ (ξM ⊗ ξN ) (C.3)

= FKLGMN (ξK ◦ ξM ) ⊗ (ξL ◦ ξN ) =
∑

KtM=I,LtN=J

FKLGMNξI ⊗ ξJ .

23This justifies the name co-shuffle for the adjoint of conc.
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Comparing coefficients, ∆′ = conc† is a homomorphism of the shuffle product if

∑

J1tJ2=I1I2

FJ1GJ2 =
∑

L1tM1=I1,L2tM2=I2

FL1L2GM1M2 ∀ I1, I2. (C.4)

To prove this, observe that J1 may be uniquely decomposed as J1 = L1L2 with L1 ⊂ I1

and L2 ⊂ I2 and similarly for J2, J2 = M1M2 with M1 ⊂ I1 and M2 ⊂ I2. Then we

observe that every riffle-shuffle J1 t J2 = I1I2 arises from a unique pair of riffle-shuffles

L1 t M1 = I1 and L2 t M2 = I2. This establishes that co-shuffle ∆ is a homomorphism of

sh.

A similar argument shows that ∆ = sh† is a homomorphism of conc: ∆(FG) =

∆(F )∆(G).

∆(F )∆(G) =
∑

J=I1I3,K=I2I4

(∆F )I1,I2(∆G)I3,I4 =
∑

J=I1I3,K=I2I4

FI1tI2GI3tI4 . (C.5)

On the other hand, the l.h.s. gives

[∆(FG)]J,K =
∑

L=JtK

(FG)L =
∑

L1L2=JtK

FL1GL2 =
∑

J=I1I3,K=I2I4

FI1tI2GI3tI4 . (C.6)

In the last equality, we used the unique decomposition J = I1I3,K = I2I4 where I1, I2 ⊂ L1

and I3, I4 ⊂ L2 as before. Thus we have shown that ∆ = sh† is a homomorphism of conc.

The unit element for conc is 1, F1 = 1F = F . The co-unit for co-concatenation is

ε : V → C. It picks out the constant term in a formal series ε(FIξ
I) = F∅ ≡ F0. Just like

co-concatenation, the co-unit is a homomorphism of conc

ε(FG) = (FG)0 = F0G0 = ε(F )ε(G). (C.7)

The unit element for shuffle too is 1, (F ◦ 1)I =
∑

I=JtK FJδ0
K = FI . The co-unit for

co-shuffle is again ε : V → C. The co-unit ε is a homomorphism of the shuffle product

ε(F ◦ G) = (F ◦ G)0 =
∑

JtK=∅
FJGK = F0G0 = ε(F ) ◦ ε(G). (C.8)

To summarize, (conc, sh† = ∆ = co−conc, 1, ε) defines a non-commutative but co-com-

mutative bialgebra (algebra plus compatible co-algebra) structure on V = span(ξI). Sim-

ilarly, (sh, conc† = ∆′ = co−sh, 1, ε) defines a commutative but non-co-commutative bial-

gebra structure on V . These two bialgebras are not independent. Structure constants of

the product and co-product of one can be obtained from those of the other using the inner

product δI,J on V .

Remark: In addition to being a bialgebra T = (conc,∆, 1, ε), is the universal envelope

of the free Lie algebra. So it is a Lie algebra with the Lie product [ξI , ξJ ] = ξIJ − ξJI .

Does ∆ define a Lie bialgebra [36] with respect to the commutator? No! On the one hand,

∆ : V → V ⊗ V is not skew-symmetric. Rather, its image lies within Sym(V ⊗ V ).

∆(ξI) =
∑

I=JtK

ξJ ⊗ ξK =
∑

I=JtK

ξK ⊗ ξJ = (τ∆)(ξI), (C.9)
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where τ(a ⊗ b) = b ⊗ a. Here we used the fact that if J and K are order preserving

complementary subwords of I, then so are K and J . Furthermore, ∆ is not a 1-cocycle for

the free associative algebra. In order to be a 1-cocycle, it must satisfy

∆[F,G] = (adF ⊗ 1 + 1 ⊗ adF )∆(G) − F ↔ G (C.10)

for any F,G ∈ T . However, taking F = ξi and G = ξj gives

l.h.s. = ∆[ξi, ξj ] = ξij ⊗ 1 + 1 ⊗ ξij − ξji ⊗ 1 − 1 ⊗ ξji (C.11)

and r.h.s. = 2 × l.h.s. 6= l.h.s. . There may be some other skew-symmetric 1-cocycle

∆̃ : T → T ⊗ T which defines a Lie bialgebra structure on the universal envelope of the

free Lie algebra.
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