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We study the equal-mass classical three rotor problem, a variant of the three body problem
of celestial mechanics. The quantum N -rotor problem has been used to model chains of coupled
Josephson junctions and also arises via a partial continuum limit of the Wick-rotated XY model.
In units of the coupling, the energy serves as a control parameter. We find periodic ‘pendulum’
and ‘breather’ orbits at all energies and choreographies at relatively low energies. They furnish
analogs of the Euler-Lagrange and figure-8 solutions of the planar three body problem. Integra-
bility at very low energies gives way to a rather marked transition to chaos at Ec ≈ 4, followed
by a gradual return to regularity as E → ∞ . We find four signatures of this transition: (a)
the fraction of the area of Poincaré surfaces occupied by chaotic sections rises sharply at Ec ,
(b) discrete symmetries are spontaneously broken at Ec , (c) E = 4 is an accumulation point of
stable to unstable transitions in pendulum solutions and (d) the Jacobi-Maupertuis curvature
goes from being positive to having both signs above E = 4. Moreover, Poincaré plots also reveal
a regime of global chaos slightly above Ec .

Keywords: three-body problem, periodic orbits, stability, accumulation of phase transi-
tions, transition to chaos, global chaos, choreographies.
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1 Introduction

The classical 3 body problem arose in an attempt to understand the effect of the Sun on the
Moon’s Keplerian orbit around the Earth. It led to the discovery of chaos in the hands of Poincaré
and continues to be a fertile area of research [1, 2, 3]. We study a variant, the classical 3 rotor
problem, where 3 particles with equal masses move on a circle subject to pairwise attractive
cosine potentials. While the case of two rotors reduces to that of a pendulum, the quantum
N -rotor problem may be obtained via a Wick rotation of an anisotropic continuum limit of the
XY lattice model of statistical mechanics [4, 5] and has been used in the physics of coupled
Josephson junctions [6]. Thus, in a suitable N →∞ limit, it is related to the sine-Gordon field
[4]. On the other hand, the few rotor problems are largely unexplored, and as we will show by
studying the case N = 3, they display rich dynamics with novel signatures of chaos. Moreover,
we will argue that collisional and non-collisional singularities familiar from gravitational N -
body problems [7] are absent in the 3 rotor problem allowing us to study periodic solutions,
choreographies, instabilities and the transition to chaos in a simpler context.

2 The classical three-rotor problem

We study the problem of three coupled rotors interacting via cosine potentials defined by the
Lagrangian

Ltot =
3∑
i=1

[
mr2

2
θ̇2i − g[1− cos (θi − θi+1)]

]
= K − V (1)

where θ1,2,3 are the angular positions of the three rotors with θ4 ≡ θ1 . We assume ‘ferromag-
netic’ coupling g > 0 where rotors attract each other. The phase space M6 is the cotangent
bundle of the three-torus configuration space with momenta πi = mr2θ̇i and corresponding
Hamiltonian Htot = K + V . Physical quantities may be non-dimensionalized using the con-
stants m , r and g . We will see that the energy in units of g serves as a useful organizing
parameter in discussing the dynamics. The Hamiltonian vector field defined by

θ̇i = πi/mr
2 and π̇i = g sin(θi−1 − θi)− g sin(θi − θi+1) (2)

is smooth everywhere on M6 so that particles can pass through each other without singularities.
Since the potential V is non-negative, momenta are bounded and energy level sets are compact
5d sub-manifolds of M6 without boundaries. Consequently, there are no ‘non-collisional’ singu-
larities where πi or θi diverge in finite time. This implies existence and uniqueness of solutions
to (2) for all times.

It is convenient to define a centre of mass (CM) coordinate ϕ0 and relative coordinates ϕ1,2 :

ϕ0 = (θ1 + θ2 + θ3)/3 and ϕ1,2 = θ1,2 − θ2,3. (3)

The 2π -periodicity of the θ s implies that ϕ0 and ϕ1,2 are 2π and 6π periodic. However,
we may take the fundamental region to be [0, 2π]3 since (ϕ0, ϕ1 − 2π, ϕ2), (ϕ0, ϕ1, ϕ2 + 2π)
and (ϕ0 + 2π/3, ϕ1, ϕ2) are identical configurations. Thus, the boundary conditions on this
fundamental domain are not quite periodic. However, ϕ1 and ϕ2 evolve independently of ϕ0

so that they may be taken to be periodic coordinates on a 2-torus [0, 2π]2 . On the other hand,

2



when ϕ1 7→ ϕ1±2π or ϕ2 7→ ϕ2∓2π , the CM variable ϕ0 7→ ϕ0±2π/3. The evolution of ϕ0 is
given by ϕ0 = p0t/3mr

2+ϕ0(0)+2nπ/3 (mod 2π) where n = n2−n1 and n1,2 are the ‘greatest
integer winding numbers’ of the trajectory around the ϕ1,2 cycles. Here, p0 is the conserved
CM momentum 3mr2ϕ̇0 .

2.1 Dynamics on the ϕ1 -ϕ2 torus

Confining ourselves to the motion on the ϕ1 -ϕ2 torus we have the conserved relative energy
E = T + V in addition to the conserved energy 3mr2ϕ̇2

0/2 of CM motion:

T =
1

3
mr2

[
ϕ̇2
1 + ϕ̇2

2 + ϕ̇1ϕ̇2

]
and V = g [3− cosϕ1 − cosϕ2 − cos(ϕ1 + ϕ2)] . (4)

Hamilton’s equations (with 1↔ 2 for the other pair)

mr2ϕ̇1 = 2p1 − p2 and ṗ1 = −g [sinϕ1 + sin(ϕ1 + ϕ2)] (5)

follow from the canonical Poisson brackets and

H =
1

mr2
(p21 + p22 − p1p2) + V. (6)

Extrema of V (ϕ1, ϕ2) lead to six static solutions: (1) the ‘ferromagnetic ground state’ G
((ϕ1, ϕ2) = (0, 0)) where all three rotors coincide (θ1 = θ2 = θ3 ), (2) the three ‘first excited
states’ D ((0, π), (π, 0) and (π, π)) where two rotors coalesce while the third lies diametrically
opposite to them (θ1 = θ2 = θ3 + π , θ2 = θ3 = θ1 + π and θ3 = θ1 = θ2 + π ) and (3) the two
‘second excited states’ T (±2π/3,±2π/3) where the three bodies lie at vertices of an equilateral
triangle (θ1 = θ2 + 2π/3 = θ3 + 4π/3 and θ2 ↔ θ3 ). Upon including the CM motion, we get
uniformly rotating versions of the above static configurations. G is linearly stable and supports
small oscillations with two equal frequencies ω0 =

√
3g/mr2 . There is one unstable direction

around the Ds with growth rate ω0 and one stable eigendirection corresponding to the oscil-
lation frequency ω0/

√
3. The two triangular ‘2nd exited states’ have two unstable directions,

each with growth rate ω0/
√

2.

As in the planar restricted 3 body problem, the relative motion of the 3 rotor problem (5)
occurs on a 4d phase space but admits only one known constant of motion (6). However, at
asymptotically low and high energies, an additional constant of motion is present as in the
double pendulum. When E � g , the kinetic term far exceeds V and the rotors rotate almost
uniformly as p1,2 are nearly conserved. At very low energies (E � g ) we have small oscillations
around G.

3 Pendulum and isosceles periodic solutions

Just as the Euler-Lagrange solutions of the gravitational 3-body problem arise from Keplerian
orbits, we seek solutions of the 3 rotor problem that arise from reductions to one degree of
freedom. We find two such families: pendula and isosceles breathers.

Pendulum solutions: Here, two rotors are assumed to form a ‘bound pair’ with fixed
angular separation. Consistency requires their separation to vanish and the equations reduce
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Figure 1: Numerically obtained stability index σ = tr M − 2 of periodic pendulum solutions showing asymp-
totically periodic stable (|σ| ≤ 2) to unstable (|σ| > 2) transitions on a logarithmic energy scale accumulating at
E = 4. Eq. (7) fits the data as E → 4± .

to the two-rotor pendulum. There are three such families depending on which pair coalesce.
Suppose the first two rotors coincide (θ1 = θ2 or ϕ1 = 0) so that ϕ̇1 ≡ 0 (or p2 − 2p1 ≡ 0).
[The other two possibilities are given by ϕ2 ≡ 0 and ϕ1 + ϕ2 ≡ 0]. ϕ2 evolves like a pendulum
mr2ϕ̈2 = −3g sinϕ2 with the conserved energy E = 1

3mr
2ϕ̇2

2 + 2g(1 − cosϕ2) and admits
librational (0 ≤ E < 4g ) and rotational (E > 4g ) orbits with period diverging at E = 4g .
The pendulum orbits foliate three 2d ‘pendulum submanifolds’ of the 4d phase space defined
by relations such as ϕ1 = 0 and p2 = 2p1 . Each such periodic pendulum orbit gives rise to a
periodic solution of the 3-rotor problem after including the center of mass motion.

Isosceles breathers: Here, one rotor is always midway between the other two: θ1 − θ2 =
θ2 − θ3 etc. In this case we obtain a single evolution equation mr2ϕ̈ = −g(sinϕ + sin 2ϕ) for
ϕ = ϕ1 = ϕ2 . As with the pendula, every periodic solution of this equation leads to a periodic
solution of the 3-rotor problem. The ground state G is the breather solution with E = 0
while D is a breather solution with E = 4g . Librational breathers around G have energies
0 ≤ E ≤ 9g/2 while those around D exist for 4g ≤ E ≤ 9g/2. The time periods of both families
grow monotonically and diverge at the E = 9g/2 separatrix. Above this energy we only have
rotational breathers whose periods decrease with E .

3.1 Stability of pendula and breathers via monodromy

By considering small perturbations to a τ -periodic solution, we associate to it a 4 × 4 mon-
odromy matrix M whose eigenvalues λ govern its stability. In fact, the characteristic Lyapunov
exponents are µ = log |λ|/τ . As with any two-degrees-of-freedom Hamiltonian system, two
eigenvalues of M are unity while the other two must be reciprocals [8]. Since M is real, the
reciprocal pair must be of the form e±iφ or λ±1 for φ, λ ∈ R . Consequently, a pair of Lyapunov
exponents vanish with the other two adding up to zero. The orbit is stable if the stability index
σ = tr M − 2 satisfies |σ| ≤ 2 and unstable if |σ| = |λ+ 1/λ| > 2.

Stability of pendulum solutions: We evaluate M for the pendula numerically by regarding
it as a fundamental matrix solution to the linearized equations. In this case, the neutrally stable
2d eigenspace of M (corresponding to the eigenvalue one) admits a simple interpretation: it is
tangent to the pendulum submanifold (0, ϕ2, p1, 2p1). Moreover, we find that pendula are stable
for low energies 0 ≤ E ≤ E`1 ≈ 3.99 and high energies E ≥ Er1 ≈ 5.60 (both in units of g ) with
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M → I as E → 0,∞ . On the other hand, the pendula repeatedly alternate between stable and
unstable as the energy approaches four (see Fig. 1). This results in an accumulation of stable
↔ unstable transition energies as E → 4± . In more detail, in the librational regime, the stable
phase [0, E`1] is followed by an unstable one (E`1, E

`
2) which is then followed by another stable

phase [E`2, E
`
3] leading to an infinite sequence of successively narrower stable and unstable energy

intervals accumulating at E = 4. A similar phenomenon is found in the rotational regime when
E → 4+ . We will see in §4 that this phenomenon is associated with a rather sharp transition
to chaos at E ≈ 4. Interestingly, the lengths of the stable energy intervals are asymptotically
found to be equal on a log scale as are those of the unstable intervals. In fact, we find that the
stability index (see Fig. 1) is well approximated by the following periodic functions of log |4−E|
as E approaches 4:

σ ≈

2.22 cos
(
2 log(4−E)√

3
+ .24

)
+ .22 as E → 4− and

−2.11 cos
(
log(E−4)√

3
− .12

)
as E → 4+.

(7)

A somewhat similar singly-infinite sequence of transitions was found by Yoshida [9] in the two
dimensional anharmonic oscillator H = p21 +p22 +(q41 +q42)/2+ εq21q

2
2 when the coupling constant

ε→∞ .

Stability of Isosceles solutions: The stability of isosceles solutions qualitatively differs from
that of pendula: there is just one unstable to stable transition occurring at E ≈ 8.97. Moreover,
we find that both families of librational solutions are unstable with σ growing monotonically
and diverging as E → 4.5− . Thus, unlike low energy pendula, low energy breathers are unstable
despite being small oscillations around the stable ground state G. σ grows monotonically from
−∞ to 2 for 4.5 ≤ E < ∞ so that rotational breathers go from being unstable to stable at
E ≈ 8.97 where σ = −2. This stability of isosceles solutions is also reflected in the origin of the
Poincaré section on the ϕ1 = 0 surface being a hyperbolic fixed point at low energies and an
elliptic fixed point at high energies (see Fig. 2).

4 Transition to chaos and global chaos

Poincaré sections reveal interesting transitions from integrability at asymptotically low and high
energies to chaos at intermediate energies in the three rotor problem. We consider 2d Poincaré
surfaces such as ϕ1 = 0 parametrized by ϕ2 and p2 with p1 determined by conservation of
energy and record a scatter plot of the Poincaré return map by numerical solutions of Hamilton’s
equations. We call a Poincaré section ‘regular’ if it is supported on a finite union of points or 1d
curves: they arise from periodic and quasi-periodic trajectories. By contrast, a ‘chaotic’ section
is one that explores a two-dimensional region. We call the union of all chaotic sections on a
Poincaré surface at energy E the chaotic region of that Poincaré surface.

To obtain Poincaré sections, we use explicit and implicit Runge-Kutta schemes as well as
symplectic partitioned Runge-Kutta. When there is sensitivity to initial conditions (ICs), dif-
ferent schemes produce trajectories that deviate after some time. Nevertheless, all schemes are
found to produce nearly the same Poincaré sections for evolution over adequately long times.
Moreover, the degree of chaos on various Poincaré surfaces such as ϕ1 = 0, ϕ2 = 0, p1 = 0 and
p2 = 0 is found to be qualitatively similar for all ICs considered.
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Figure 2: Poincaré sections at various energies on the ϕ1 = 0 surface parameterized by ϕ2 and p2 . The
boundary of the energetically allowed region is a pendulum solution. Distinct sections are colored differently.
Breaking of ϕ2 → −ϕ2 and p2 → −p2 symmetries is seen at E = 4. The fixed point at the origin corresponds
to an isosceles periodic solution and goes from hyperbolic to elliptic with increasing energy.
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Figure 3: The chaotic region fills up the energetically allowed portion of several Poincaré surfaces at E ≈ 5.5
indicating global chaos.

We find that for E . 4 (in units of g ), all Poincaré sections on the surface ‘ϕ1 = 0’ are
almost regular and are symmetric under ϕ2 → −ϕ2 and p2 → −p2 (see Fig. 2). Chaotic
sections seem to first appear at E ≈ 4 accompanied by a spontaneous breaking of both these
discrete symmetries. While the ϕ2 → −ϕ2 symmetry is restored for E & 4.4, the p2 → −p2
symmetry remains broken. At very high energies, the latter is expected since particles either
rotate clockwise or counter-clockwise.

At intermediate energies E & 4, we find that chaotic sections from distinct ICs are practically
the same while for higher energies, we need to form unions of chaotic sections to find the chaotic
region when trajectories are evolved up to t = 105 in units of

√
mr2/g . Furthermore, the

area of the chaotic region as a fraction of the energetically allowed area of the Poincaré surface
roughly increases with energy until it saturates (see Fig. 2). For 5.33 . E . 5.6, the chaotic
region fills up all of the energetically allowed part of the Poincaré surface. This corresponds to
a band of global chaos that is seen on other Poincaré surfaces as well (see Fig. 3). As the energy
is increased further, chaotic sections are supported on progressively thinner bands indicative of
the emergence of an additional conserved quantity as E →∞ .

To quantify the foregoing qualitative observations, we exploit the near constancy of the
density of points in chaotic sections on the ‘ϕ1 = 0’ surface to calculate the ‘fraction of chaos’
f(E) defined as the fraction of the energetically allowed area covered by the chaotic region (see
Fig. 4). Though chaos does develop even at energies E . 4 (along the periphery of the four
lobes in Fig. 2), the fraction of the area of the Poincaré surface occupied by chaotic sections
is negligible as indicated by f ≈ 0 for E . 4. In this restricted sense, we see a rather sharp
transition to chaos at E ≈ 4: f ∼ 10−4 at E = 3.8 while f ≈ .04, .06, .11 and .2 at E = 3.85,
3.9, 3.95 and 4. As seen in Fig. 4, f rises dramatically and reaches f ≈ 1 in the phase
5.33 . E . 5.6 of global chaos. It then drops gradually to zero with increasing energy. The
above sharp transition to chaos is somewhat uncommon among KAM systems where invariant
tori gradually break down. We find that this transition to chaos is also encoded in the Gaussian
curvature R of the Jacobi-Maupertuis metric [3]: R > 0 in the energetically allowed region for
E < 4 but takes on either sign when E > 4 [5]. As already noted in §3, E = 4 is also the
accumulation point of stable to unstable transitions in both librational and rotational pendulum
solutions. Thus, this accumulation of phase transitions in the pendulum orbits appears to be a
novel signature of the sharp transition to chaos in the three rotor problem.

In recent times, there has been interest in choreographies in the classical 3 and n body
problems. A choreography is a periodic solution where all particles move on the same physical
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Figure 4: Fraction f of energetically allowed region on ϕ1 = 0 surface occupied by chaotic sections as a
function of energy. There is a sharp transition to chaos at E ≈ 4, a gradual return to regularity as E →∞ and
an indication of global chaos around E = 5.5.

curve equally separated in time, e.g., Lagrange equilateral solutions and the figure 8 in the three
body problem [2]. Remarkably, we find that the elliptic fixed points at the centers of the left
and right lobes in the low energy (E . 5.33) ‘ϕ1 = 0’ Poincaré surfaces provide ICs leading to
choreographies in the 3 rotor problem (see Fig. 2). This will be elaborated upon in a forthcoming
article [5].
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