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This paper extends our earlier approach [cf. A. Thyaharaja, Phys. Plasmas 17, 032503 (2010) and
Krishnaswami et al., Phys. Plasmas 23, 022308 (2016)] to obtaining !a priori bounds on enstrophy in
neutral fluids and ideal magnetohydrodynamics. This results in a far-reaching local, three-
dimensional, non-linear, dispersive generalization of a KdV-type regularization to compressible/
incompressible dissipationless 2-fluid plasmas and models derived therefrom (quasi-neutral, Hall, and
ideal MHD). It involves the introduction of vortical and magnetic “twirl” terms k2

l ðwl þ ðql=mlÞBÞ
$ðr$ wlÞ in the ion/electron velocity equations (l ¼ i; e) where wl are vorticities. The cut-off
lengths kl and number densities nl must satisfy k2

l nl ¼ Cl, where Cl are constants. A novel feature is
that the “flow” current

P
l qlnlvl in Ampère’s law is augmented by a solenoidal “twirl” currentP

lr$r$ k2
l jflow;l. The resulting equations imply conserved linear and angular momenta and a

positive definite swirl energy density E& which includes an enstrophic contribution
P

lð1=2Þk2
l qlw

2
l .

It is shown that the equations admit a Hamiltonian-Poisson bracket formulation. Furthermore, singu-
larities in r$ B are conservatively regularized by adding ðk2

B=2l0Þðr$ BÞ2 to E&. Finally, it is
proved that among regularizations that admit a Hamiltonian formulation and preserve the continuity
equations along with the symmetries of the ideal model, the twirl term is unique and minimal in non-
linearity and space derivatives of velocities. Published by AIP Publishing.
https://doi.org/10.1063/1.5016088

I. INTRODUCTION

Plasma physics finds extensive applications in astro-
physics, physics of fusion devices, and in technological
applications.1–3 Plasmas have complex dynamics when they
interact with self-generated and externally applied electro-
magnetic fields. The dynamics of such systems are governed
both by Maxwell’s equations and either a kinetic or fluid
model representing the co-evolution of the plasma variables.
In kinetic descriptions, appropriate distribution functions are
introduced for the ions and electrons of the plasma. They are
evolved according to equations such as the Boltzmann-
Fokker-Planck system. The charge and current densities
derived from the distribution functions are then used to
evolve the fields. In fluid models, only the first few
“principal moments” like the number densities, velocities,
temperatures, stresses, and heat fluxes appear. It is often the
case that the fluid description provides a relatively tractable
system which can be used to describe a variety of phenom-
ena actually observed in experiments and in the cosmos.
Among fluid models, the simplest ones are generalisations of
the dissipationless Euler equations of neutral fluid dynamics
to include the effects of electromagnetic body forces (e.g.,
ideal magnetohydrodynamics-MHD1,4). Alfv"en used MHD
to describe plasma waves in a magnetised fluid5 and showed
that in the absence of dissipation, B is “frozen” into the flow.
Ideal MHD is widely applied to both solar physics and
important classes of instabilities known to occur in tokamak
plasmas (“ideal ballooning and kink modes” op.cit 1,2,4). It is

generally the case that even the simplest ideal MHD descrip-
tion involves rather complicated nonlinear partial differential
equations. One does not have useful exact, analytically
derived solutions valid for experimentally relevant situa-
tions. The only generally applicable methods are numerical
methods. The dissipationless two-fluid (ion and electron)
equations are similar in their qualitative properties to the
Euler equations of inviscid fluid dynamics and ideal MHD.
They possess several conservation laws but involve energy
transfer mechanisms which can lead to short-wavelength sin-
gularities like vortex and current sheets, shocks and finite-
time unbounded behaviour of mean-square vorticity
(“enstrophy”), and current density. It is usually the case that
“ultra-violet” singularities of these types are resolved by vis-
cosity, thermal conductivity, and electrical resistivity. All
these are entropy-producing effects and are not consistent
with the conservation properties of the dissipationless mod-
els. Numerical solutions of the conservative equations can
become singular when evolved. It is important to distinguish
between purely numerical instabilities which have nothing to
do with physical properties of the system and real physical
instabilities. For these reasons, it is useful to extend methods
developed in our earlier work to “regularize” the Euler and
ideal MHD models to two-fluid plasma models. In this work,
we describe this extension which also has more fundamental
applications to the formulation of statistical theories of the
dynamics of the systems considered.

In Refs. 6–8, new conservative regularizations of incom-
pressible and compressible Eulerian flow and ideal MHD
were introduced. These are three-dimensional nonlinear dis-
persive but dissipationless counterparts of the Navier-Stokes
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and visco-resistive MHD equations, just as the KdV equation
is a dispersive but inviscid counterpart of the one-dimensional
viscous Burgers equation.9 The primary motivation was to
regulate possible vortical singularities by ensuring an !a priori
bound on enstrophy. The guiding principles in the choice of
regularizing terms were that they be local, minimal in non-
linearity and derivatives of velocity v, small enough to leave
macro-scale dynamics unchanged, and preserve Galilean, par-
ity, and time-reversal symmetries of the ideal equations.
These principles led us to regularized models called R-Euler
and R-MHD that involved a new “twirl” term k2w$ ðr$ wÞ
in the velocity equation (i.e., Newton’s law) and the corre-
sponding term r$ ðk2ðr$ wÞ $ BÞ in Faraday’s law.
These terms correspond to the addition of a vortical energy
density k2q w2=2 to the flow energy density qv2=2. Here,
w ¼ r$ v is the vorticity, while q is the mass density satis-
fying the continuity equation. The regulator k acts as a short-
distance cut-off to the growth of enstrophy and must satisfy
the constitutive law k2q ¼ constant for a conserved energy to
exist. Thus, k is like a position-dependent mean free path:
smaller in denser regions. Like viscosity ð!r2vÞ, the twirl
term is second order in velocity derivatives, but unlike the for-
mer, it is non-linear and non-dissipative. Indeed, the equations
were shown to admit a Hamiltonian-Poisson bracket (PB) for-
mulation and local conservation laws for energy, linear and
angular momenta, and flow/magnetic and cross helicities.
Analogues of the Kelvin-Helmholtz and Alfv"en theorems
were obtained, demonstrating that w and B are frozen into a
swirl velocity v& ¼ vþ k2r$ w.

In Sec. II, we extend our local conservative regulariza-
tion of compressible ideal MHD to non-relativistic two fluid
(ion-electron) plasmas. The extension to multi-fluid or
electron-positron plasmas is relatively straightforward. As in
R-MHD, the continuity equations are unchanged, while we
introduce regularization terms in the velocity equations for
each species (l ¼ i; e with charges ql and masses ml). In addi-
tion to the vortical twirl term wl $ ðr$ wlÞ analogous to the
one in R-MHD, we add a magnetic twirl term ðql=mlÞB
$ðr$ wlÞ with a common coupling strength k2

l . This is simi-
lar to the universal coupling of charged particles to both elec-
tric and magnetic fields through the electric charge. Here,
kl are (possibly different) regularizing lengths for the two
species. The two twirl terms are obtained by a judicious
replacement of wl by wl þ qlB=ml in R-MHD. The combina-
tion wþ qB=m also appears elsewhere, notably in the study
of plasmas in non-inertial frames.10 The number densities nl

and kl must satisfy the constitutive relations k2
l nl ¼ Cl, where

Cl must be constant for a conserved energy to exist. These
relations are automatic if ki;e are chosen to be the Debye
lengths or skin depths for ions and electrons, where the ideal
equations are known to breakdown. Gauss ("0r ' E ¼ .),
Faraday (@B=@t¼(r$E), and Ampère (l0"0ð@E=@tÞ ¼r
$B(l0j&) laws take their usual forms with charge density
given by . ¼

P
l qlnl. However, the “swirl” current j& ¼ jflow

þjtwirl differs from the flow current jflow ¼
P

l qlnlvl by an
additional regularization term jtwirl¼

P
l qlnlk

2
lr$wl. The

constitutive relations ensure that jtwirl¼
P

lr$ðr $k2
l jflow;lÞ

is solenoidal, thus guaranteeing charge conservation: @t.
þr 'j&¼0. The constitutive relations and modification of

current jflow 7!j& are crucial for obtaining a conserved “swirl”
energy (that includes a vortical contribution) for compressible
barotropic flow

E& ¼
ð X

l¼i;e

1

2
nlmlðv2

l þ k2
l w2

l Þ þ UlðnlmlÞ
" #"

þ B2

2l0

þ "0E2

2

$
dr; where rU0l ¼

rpl

mlnl
: (1)

Here, pl are the partial pressures. The positive definiteness of
E& along with the constitutive relations ensure that the
kinetic and compressional energies as well as the enstrophy
of each species are bounded, thus helping to regularize vorti-
cal singularities. We also derive local conservation laws for
swirl energy and linear and angular momenta in our regular-
ized two-fluid model. Unlike in the single-fluid case, we do
not have analogues of conserved magnetic and cross helic-
ities. When the number densities ni;e and ki ¼ ke ¼ k are
constants and the compressional and electric energies are
omitted, the above equations reduce to a conservative regu-
larization of incompressible quasi-neutral two-fluid plasmas.
Interestingly, in the incompressible case alone, if the current
in Ampère’s law is taken to be jflow, we obtain a different
conserved energy that includes terms with both velocity and
magnetic field curls

E&inc ¼
ð X

l

1

2
nml v2

l þ k2ðr$ vlÞ2
% &" #"

þ B2

2l0

þ k2

2l0

ðr$ BÞ2
$

dr: (2)

In Sec. III, a hierarchy of regularized plasma models is con-
sidered. In many physically interesting situations (e.g., toka-
mak or many astrophysical plasmas2,3), it is reasonable to
sacrifice the generality of the full two-fluid model and
assume quasi-neutrality ðni ) neÞ on scales larger than the
Debye length kD and frequencies less than the plasma fre-
quency xp. Additionally, in systems such as accretion disks
and planetary magnetospheres,3 one may even ignore elec-
tron inertia effects (Hall MHD). The passage from our full
regularized two fluid model to the corresponding quasi-
neutral, Hall and 1-fluid MHD models is achieved via the
successive limits "0 ! 0 (non-relativistic limit where the dis-
placement current may be ignored), me ! 0 (me=mi * 1)
and finally electric charge e!1 with ke=ki ! 1 (L+ kD

and x* xp). In each case, we have a conserved swirl
energy guaranteeing boundedness of enstrophy. In the quasi-
neutral limit, c!1 and E is non-dynamical. It is deter-
mined from the electron velocity equation rather than from
Gauss’ law

E¼(v&e$B(rpe

en
(me

e
@tveþwe$ v&eþ

1

2
rv2

e

" #
; (3)

where v&e ¼ ve þ k2
er$ we is the electron swirl velocity.

The situation is analogous to the determination of pressure
from the divergence of the Euler equation upon passing to
incompressible flow by taking the sound speed cs !1. In
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the regularized Hall model where electron inertia terms are
ignored, magnetic helicity

Ð
A ' B dr is conserved and in the

barotropic case, B is frozen into v&e. Finally, when e!1
(L+ kD), we recover the one-fluid R-MHD model
(v ) vi ) ve and ki ¼ ke ¼ k) with the magnetic field frozen
into the swirl velocity v&.

In Sec. IV, the Poisson bracket (PB) formalism for regu-
larized compressible 2-fluid models is discussed. Interestingly,
our equations follow from the PBs of Refs. 11 and 12) with E&

as the Hamiltonian. While R-MHD admits a Hamiltonian for-
mulation with the Landau-Morrison-Greene PBs,13,14 we have
not identified PBs for the quasi-neutral 2-fluid or Hall MHD
models. Moreover, unlike the Hamiltonian and equations of
motion (EOM), the 2-fluid PBs do not all reduce to the 1-fluid
PBs under the above limiting processes.

In Sec. V, we exploit the above PB formulation to propose
a way of regularizing magnetic field gradients in compressible
one- and two-fluid plasma models. In standard tearing mode
theory,1,2,15 the magnetic field can have tangential discontinu-
ities associated with current sheets and reconnection. These
current density singularities are usually resolved by resistivity;
we propose a conservative regularization. By analogy with the
vortical energy densities ð1=2Þk2

l qlðr$ vlÞ2 which regularize
velocities, we add ðk2

B=2l0Þðr$ BÞ2 to the swirl energy E&

of (1), to prevent B from developing a large curl. Here, kB is a
constant cut-off length. The EOM obtained from this
Hamiltonian using the 2-fluid PBs can be put in the same form
as before by replacing l0j& in Ampère’s law with l0j& ( k2

Br
$ðr$ ðr$ BÞÞ. On the other hand, the introduction of
such a magnetic curl energy in the 1-fluid Hamiltonian adds
(ðk2

B=ql0ÞB$ ðr $ðr$ ðr$ BÞÞÞ on the RHS of the
velocity equation upon use of the 1-fluid PBs. In other words,
we have a modified Lorentz force term j&& $ B where l0j&&
¼ r$ Bþ k2

Bðr $ðr$ ðr$ BÞÞÞ. These third derivatives
of B could smooth large gradients in current and field across
current sheets just as the uxxx term in KdV does across a
shock.9 Interestingly, XMHD16,17 provides an alternate way of
regularizing magnetic (though not vortical) singularities within
a 1-fluid setup. Indeed, the XMHD Hamiltonian includes
ðr$ BÞ2 but not ðr$ vÞ2. Moreover, the resulting regulari-
zation terms in the velocity and Faraday equations are quite
different from ours due to the use of different PBs. Another
essential difference is that the XMHD cut-off lengths di;e (nor-
malized collisionless skin-depths) are assumed constant unlike
our local cut-offs ki;e.

Section VI presents a discussion of the results obtained.
Additional details may be found in Ref. 18. In the Appendix,
we establish an interesting uniqueness property of our twirl
regularization. We do this for compressible barotropic neutral
flows and indicate the extension to two-fluid plasmas. More
precisely, we show that the twirl term k2w$ ðr$ wÞ is
unique among local regularization terms that are at most qua-
dratic in v and with at most three spatial derivatives which
preserve Galilean, parity, and time-reversal symmetries while
also admitting a Hamiltonian-PB formulation with the stan-
dard continuity equation and Landau-Morrison-Greene PBs.
The identification and elimination of possible regularization
terms are greatly facilitated by working with the Hamiltonian
rather than the equations of motion. It allows us to arrive at

the vortical energy term
Ð
ð1=2Þk2qw2dr with k2q > 0 con-

stant, as the only positive definite regularization term satisfy-
ing the foregoing criteria subject to decaying or periodic
boundary conditions (BC).

II. REGULARIZED COMPRESSIBLE 2-FLUID PLASMA
EQUATIONS

The dynamical variables of a 2-fluid plasma are: E, B,
ion and electron velocities vi;e, number densities ni;e, and
partial pressures pi;e. The continuity equations are:

@tnl þr ' ðnlvlÞ ¼ 0 where l ¼ i or e: (4)

If qi;e denote the ion and electron charges, then the regular-
ized velocity equations are

@tvlþ vl 'rvl ¼(
1

nlml
rplþ

ql

ml
ðEþ vl$BÞ

(k2
l wl$ðr$wlÞ(

k2
l ql

ml
B$ðr$wlÞ:

(5)

The mass densities and vorticities are ql ¼ mlnl and wl

¼ r$ vl, while ki;e are the short distance cut-offs. For baro-
tropic flow, ðrplÞ=ql ¼ rhl where hlðqlÞ are the specific
enthalpies. In this case, the velocity equations may be written as

@tvl þwl $ vl ¼ (rrl þ
ql

ml
ðEþ vl $BÞ ( k2

l Tw
l þ

ql

ml
TB

l

( $
:

(6)

Here, rl ¼ hl þ 1
2 v2

l are the specific stagnation enthalpies.
The vortical and magnetic “twirl” regularization terms for
each species are denoted as Tw

l ¼ wl $ ðr$ wlÞ and
TB

l ¼ B$ ðr$ wlÞ. As we will see in Sec. II A 1, conserva-
tion of energy requires that the strengths k2

l of the vortical
Tw

l and magnetic ðql=mlÞTB
l twirl forces must be the same

for a given species. This resembles the universality of the
electric charge ql through which a particle couples to both
electric and magnetic fields. The short-distance regulators
ki;e are assumed to satisfy the constitutive relations
k2

l nl ¼ Cl, where Cl are constants. We will see that these
constitutive relations help to ensure that the EOM admit a
conserved energy. Here, ki;e need not be equal (they could,
for example, be the ion and electron collisionless skin
depths). Yet another way to express the velocity equations is
by introducing the swirl velocities v&l ¼ vl þ k2

lr$ wl

which allow us to absorb the regularization terms into the
vorticity and magnetic Lorentz force terms

@tvl ¼ (rrl þ
ql

ml
Eþ v&l $ wl þ

ql

ml
B

" #
: (7)

The evolution equations for vorticities are

@twl þr$ ðwl $ vlÞ ¼
ql

ml
r$ ðEþ vl $ BÞ

(r$ k2
l Tw

l þ
ql

ml
TB

l

" #( $
(8)
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while the Faraday and Ampère evolution equations are

@B

@t
¼ (r$ E and l0"0

@E

@t
¼ r$ B( l0j&; (9)

with c ¼ 1=
ffiffiffiffiffiffiffiffiffi
l0"0
p

. Here, the total “swirl” current density j&
is related to the velocities and densities of the two species
via the constitutive law

j& ¼ j&i þ j&e; where j&i;e ¼ qi;eni;ev&i;e: (10)

The regularized ion and electron swirl currents are a sum of
flow and twirl currents for each species

j&l ¼ jflow;l þ jtwirl;l , qlnlvl þ qlnlk
2
lr$ wl: (11)

The constitutive laws k2
l nl ¼ Cl allow us to write the twirl

currents in manifestly solenoidal form

jtwirl;l ¼ r$ ðr$ k2
l jflow;lÞ: (12)

Postulating that the current appearing in Ampère’s law is j&
rather than the unregularized jflow allows us to derive a con-
served energy (15) in Sec. II A 1. In addition, the electric and
magnetic fields must satisfy

r ' B ¼ 0 and "0r ' E ¼ . where . ¼ niqi þ neqe

(13)

is the charge density. The consistency of the inhomogeneous
Maxwell equations requires that j& and . satisfy the local
conservation law @t.þr ' j& ¼ 0. Our regularized current
does indeed satisfy this condition since r ' jtwirl ¼ 0 and by
the continuity equations

r ' jflow ¼ r '
X

l

qlnlvl ¼ (@t

X

l

qlnl ¼ (@t.: (14)

A. Local conservation laws

In this section, we show that the compressible regularized
2-fluid equations of Sec. II possess locally conserved energy
and linear and angular momenta and identify the correspond-
ing currents. The conservation of energy depends crucially on
the constitutive relations and the modification of Ampère’s law
to include a regularized “twirl” current in addition to the flow
current (11). In the limit of constant densities ni;e, we obtain a
locally conserved energy for incompressible 2-fluid plasmas
provided the regularization lengths ki;e are equal. Interestingly,
we discover another way of regularizing the incompressible
equations, the difference being that it is jflow and not j& that
appears in Ampère’s law. The resulting conserved energy
shows that velocity and field curls are regularized. However,
this approach does not generalize to the compressible case.
Unlike in ideal and twirl regularized 1-fluid MHD, magnetic
helicity

Ð
A ' B dr is not conserved in the general 2-fluid

model. However, it is conserved in the Hall 2-fluid limit where
electron inertia terms are ignored (Sec. III B).

1. Local conservation of energy

The regularized Eqs. (4), (6), and (9) for barotropic 2-
fluid plasmas obeying the constitutive laws k2

l nl ¼ Cl pos-
sess a positive definite swirl energy density

E& ¼
X

l¼i;e

1

2
qlðv2

l þ k2
l w2

l Þ þ UðqlÞ
( $

þ B2

2l0

þ "0

2
E2; (15)

satisfying a local conservation law @tE& þr ' f ¼ 0, where

f ¼
X

l

rlqlvlþ k2
l qlwl$ vl$wlþ

ql

ml
ðEþ vl$BÞ

"(

(k2
l Tw

l þ
ql

ml
TB

l

" ##$
þE$B

l0

: (16)

With appropriate BCs (e.g., decaying or periodic), the total
swirl energy

Ð
E&dr is a constant of motion. Thus in addition

to the kinetic and potential energies of each species, their
enstrophies

Ð
w2

l dr (or vortical energies) are bounded above.
The corresponding kinetic, vortical, and potential energy
densities in E& will be denoted as KE;VE, and PE. The
energy flux may be compactly written in terms of the swirl
velocities vl&

f ¼
X

l

rlqlvl þ E$ B

l0

(r$ k2
l jflow;l

" #
þk2

l qlwl

(

$ vl& $ wl þ
ql

ml
B

" #" #$
: (17)

The first term comes from ideal flow, while the second is the
Poynting flux, which is augmented by a regularizing term. It
may be noted that the combination B( l0r$ k2

l jflow;l also
appears in Ampère’s law (9).

Let us sketch the proof of (16), which involves some
remarkable cancellations. To begin, we take the dot product
of the velocity equations (7) for each species with qlvl. Since
the vorticity and magnetic forces do no work

1

2
ql@tv

2
l ¼ (qlvl 'r hl þ

1

2
v2

l

" #
þ nlqlvl ' E

(k2
l qlvl ' Tw

l ( k2
l nlqlvl ' TB

l (18)

for each l ¼ i; e. Using (4), we get

@tðKElÞ þ
1

2
v2

lr ' ðqlvlÞ þ qlvl 'r hl þ
1

2
v2

l

" #

¼ nlqlvl ' E( k2
l qlvl ' Tw

l þ
ql

ml
TB

l

( $
: (19)

Again by the continuity equation

qlvl 'rhl ¼ r ' ðqlhlvlÞ ( U0lðqlÞr ' ðqlvlÞ
¼ r ' ðqlhlvlÞ þ @tUl: (20)

Thus, the time derivative of the sum of kinetic and potential
energy densities of each species is

@tðKEl þ PElÞ ¼ (r ' ðrlqlvlÞ þ nlqlvl ' E

(k2
l qlvl ' Tw

l þ
ql

ml
TB

l

" #
: (21)

The second term on the RHS is the work done by E. To write
the work done by the twirl regularization forces in
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conservation form and introduce the vortical energy density,
we dot the vorticity evolution Eq. (8) for each species with
k2

l qlwl

@t VElð Þ ¼ k2
l qlwl 'r$ ðvl$wlÞþ

ql

ml
ðEþ vl$BÞ

(

(k2
l Tw

l þ
ql

ml
TB

l

" #$
: (22)

The vector identity for the divergence of a cross product
allows us to write (22) as

@tðVElÞ ¼ k2
l ql ðvl $ wlÞ þ

ql

ml
ðEþ vl $ BÞ

(

(k2
l Tw

l þ
ql

ml
TB

l

" #$
'r$ wl

þk2
l qlr ' vl $ wl þ

ql

ml
ðEþ vl $ B

"(

(k2
l Tw

l þ
ql

ml
TB

l

" ##
$ wl

$
: (23)

Using the properties of the scalar triple product and rearrang-
ing, the rate of change of vortical energy density of each spe-
cies is

ðVElÞt¼ k2
l qlvl ' wlþ

ql

ml
B

" #
$r$wl

( $

þk2
l qlr ' vl$wlþ

ql

ml
ðEþvl$BÞ

((

(k2
l Tw

l þ
ql

ml
TB

l

( $$
$wl

$
þE 'r$ðk2

l nlqlwlÞ:

(24)

We add (21) and (24), sum over species and identify the
swirl current j& from (11). The work done by the twirl forces
k2

l qlvl ' ðTw
l þ ðql=mlÞTB

l Þ cancels out giving

ðKEþ PEþ VEÞt þ
X

l

r ' rlqlvl ( k2
l ql

"
vl $ wl

"

( ql

ml
ðEþ vl $ BÞ þ k2

l Tw
l þ

ql

ml
TB

l

" ##
$ wl

$
¼ E ' j&:

(25)

Now we use the regularized Maxwell equations (9) to calcu-
late the total work done by the electric field

E ' j& ¼
E ' ðr$ BÞ

l0

( "0E ' @tE ¼
B 'r$ E

l0

þr ' B$ E

l0

" #
( @t

"0E2

2

" #

¼ (@t
"0E2

2
þ B2

2l0

 !

þr ' B$ E

l0

" #
: (26)

Evidently, it is crucial that the current in Ampère’s law is
taken as the swirl current j& instead of jflow to obtain the local
conservation law for swirl energy E& (15).

2. Conservation of energy in incompressible flow and
regularization of B

For low acoustic Mach numbers ðMl ¼ jvl=cs
l jÞ * 1, nl

are spatially and temporally constant to leading order. In this
limit, the plasma motions while producing changes in E and
B do not produce propagating EM waves. This is equivalent
to dropping the displacement current in Maxwell’s equations
(c+ cs

l ). For physical consistency, we must take "0 ! 0.
Taking nl; kl to be constants and "0 ! 0 we arrive at an

incompressible 2-fluid model. The continuity equations
become r ' vi;e ¼ 0 and "0 ! 0 in Gauss’ law enforces
quasi-neutrality ðni ) ne , n, assuming qi ¼ (qeÞ. The
velocity equations are

@tvl þ wl $ vl ¼ (rrl þ
ql

ml
ðEþ vl $ BÞ

(k2
l wl þ

ql

ml
B

" #
$ ðr$ wlÞ; (27)

where rl ¼ pl=ql þ 1
2 v2

l . Ampère’s law (9) becomes
r$ B ¼ l0j&. Section II A 1 implies that upon dropping
compressional and electric energies, the energy density

E&inc ¼
X

l

1

2
qlðv2

l þ k2
l w2

l Þ
( $

þ 1

2l0

B2 (28)

satisfies a local conservation law with the energy current of
(17). Consequently, the enstrophy of each species is bounded
and velocity curls cannot become too large though there is as
yet no !a priori bound on field curls.

Remarkably,19 there is an alternative approach to regu-
larizing the incompressible 2-fluid model (with ki ¼ ke ¼ k),
in which r$ B is regularized along with r$ v. This is
achieved by keeping the velocity (27) and Faraday equations
unchanged but postulating that jflow ¼ n

P
l qlvl rather than

j& (11), appears in Ampère’s law

r$ B ¼ l0 jflow: (29)

Under these circumstances, we find a new energy density

~E&inc ¼
X

l

ql

2
ðv2

l þ k2w2
l Þ

( $
þ B2

2l0

þ k2ðr$ BÞ2

2l0

(30)

and associated flux

~f ¼
X

l

rlqlvlþk2qlwl$ vl& $ wlþ
ql

ml
B

" #" #( $

þE$B

l0

þk2 E$ðr$ jflowÞ( jflow$ðr$EÞ
* +

(31)

satisfying a local conservation law @t
~E&inc þr ' ~f ¼ 0. This

regularization of incompressible flow is remarkable in that
the L2 norms of v;B;r$ v and r$ B are all bounded (with
appropriate BCs). Additionally, r ' vl ¼ r ' B ¼ 0, imply-
ing vortical and magnetic singularities are regularized in this
model. Furthermore, Ampère’s law (29) results in the L2-
norm of jflow being bounded.

Equations (30) and (31) follow by dotting (27) by qlvl
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ql

2
@tv

2
l ¼(qlvl 'rrlþnqlvl 'E(k2

l qlvl ' Tw
l þ

ql

ml
TB

l

( $
: (32)

Since ql are constants and r ' vl ¼ 0

ðKElÞt þr ' ðrlqlvlÞ ¼ jflow;l ' E( k2
l qlvl ' Tw

l þ
ql

ml
TB

l

( $
:

(33)

Similarly, dotting the curl of (27) for each species with
k2

l qlwl, adding (33) and summing over l we get

@tðKEþ VEÞ þr '
X

l

rlqlvl þ k2
l qlwl $

"
vl $ wl

"

þ ql

ml
ðEþ vl $ BÞ ( k2

l Tw
l þ

ql

ml
TB

l

" ###

¼ E ' jflow þ jtwirl½ .: (34)

where jtwirl ¼
P

lr$r$ k2
l jflow;l (12). The work done by

E is got from (29) (abbreviating flow and twirl)

E ' jfl ¼(@t
B2

2l0

 !

þr ' B$E

l0

" #
and

E ' jtw ¼
X

l

r$ k2
l jfl;l 'r$E(r ' ðE$r$ k2

l jfl;lÞ
h i

¼
X

l

k2
l jfl;l 'r$ðr$EÞ

h

þr ' k2
l jfl;l$ðr$EÞ(E$r$ k2

l jfl;l

% &i
:

(35)

If we assume ki ¼ ke ¼ k (constant), then
P

l k
2
l jfl;l

¼ k2jfl ¼ ðk
2=l0Þr$ B, so that E ' jtwirl becomes

( k2ðr$ BÞ2

2l0

 !

t

þr ' ðk2jfl $ ðr$ EÞ ( E$r$ k2jflÞ:

(36)

Putting this in (34), we get the conservation of energy ~E&inc

(30). Notably, this trick of replacing j& by jflow in Ampère’s
law does not lead to a conserved energy for compressible
flow: ki;e are not constants and cannot be taken inside the
derivatives in (36) to obtain a conserved energy including
ðr$ BÞ2.

3. Local conservation of linear and angular momenta

Returning to the compressible 2-fluid equations, we
obtain a conservation law @tPa þ @bPab ¼ 0 for the total
momentum density ~P ¼ ~Pmech þ ~P field ¼

P
l¼i;e qlvl

þ "0ðE$ BÞ and symmetric stress tensor (with p ¼ pi þ pe),

Pab ¼ pdab þ
X

l

qlv
a
l v

b
l þ k2

l ql
w2

l

2
dab ( wa

l wb
l

" #( $

þ 1

l0

B2

2
dab ( BaBb

" #
þ "0

E2

2
dab ( EaEb

" #
: (37)

The first and last pairs of terms Pab
Euler and Pab

field are familiar
from ideal flow and the Poynting flux. The vortical

regularization term in between is similar to the latter with
the constants k2

l ql playing the role of 1
l0

and "0. To obtain
(37), we first multiply (4) by mlvl and (7) by ql ¼ nlml, add
them, and sum over species to get

X

l

ðqlvlÞtþqlðvl 'rvlÞþmlvlr ' ðnlvlÞ
* +

¼(rpþ
X

l

nlqlðEþvl$BÞ(k2
l qlwl$ðr$wlÞ

h

(k2
l nlqlB$ðr$wlÞ

+
: (38)

Using Gauss’ law, "0r ' E ¼
P

l nlql and the formulae for
flow and twirl currents (11), we get

@tPa
mech þ @b

X

l

ðqlv
a
l v

b
l Þ

¼ (rapþ "0Eaðr ' EÞ
þðj& $ BÞa (

X

l

k2
l qlðwl $ ðr$ wlÞÞa: (39)

From Ampère’s law l0j& $ B ¼ ðr$ BÞ $ B( l0"0ð@tEÞ
$B and Faraday’s law, we get

@tPa
mech þ @bP

ab
Euler ¼ "0Ea r ' E( 1

l0

ðB$ ðr$ BÞÞa

("0ð@tðE$ BÞ þ E$ ðr$ EÞÞa

(
X

l

k2
l qlðwl $ ðr$ wlÞÞa: (40)

Using ðS$ ðr$ SÞÞa ¼ 1
2 @

aS2 ( Sb@bSa, we get

@tPa þ @b Pab
Euler þ

1

l0

B2

2
dab ( BaBb

" #"

þ
X

l

k2
l ql

w2
l

2
dab ( wa

l wb
l

" ##

¼ "0 Eaðr ' EÞ ( 1

2
@aE2 þ Eb@bEa

( $
; (41)

which implies the local conservation law (37).
Defining the angular momentum density as ~L ¼ r$ ~P

(37) gives @La=@tþ @bKab ¼ 0, where Kab ¼ "acdrcPdb.

III. HIERARCHY OF REGULARIZED MODELS

The regularized compressible 2-fluid plasma equations
have several free parameters "0;me=mi, e, and ki=ke. By suc-
cessively taking "0 ! 0, me=mi ! 0, and e!1 together
with ki=ke ! 1, we get the (regularized) quasi-neutral
2-fluid, Hall, and 1-fluid MHD models.

A. Regularized quasi-neutral 2-fluid plasma

For quasi-neutral plasmas with qi ¼ (qe ¼ e, the num-
ber densities of ions and electrons are approximately equal,
ni ) ne ¼ n. The equations of such a plasma may be
obtained from the compressible 2-fluid model (Sec. II) by
taking "0 ! 0. Indeed, if ni; ne ! n, Gauss’ law r ' E
¼ eðni ( neÞ="0 seems to suggest that r ' E ¼ 0. But in fact,
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the electric field is not divergence free (especially on length
scales comparable to the Debye length). We must also let
"0 ! 0 in such a way that eðni ( neÞ="0 has a finite limit.
The limit "0 ! 0 is a convenient way of taking the non-
relativistic limit c ¼ 1=

ffiffiffiffiffiffiffiffiffi
"0l0
p !1 (l0 is a constant) in

which vi;e=c* 1 in the lab frame. In this limit, E is not a
propagating degree of freedom and we may ignore the dis-
placement current term in Ampère’s law (as stated in Sec.
II A 2). Furthermore, E is no longer determined by Gauss’
law but obtained from the electron velocity equation as dis-
cussed below.

In the non-relativistic quasi-neutral limit "0 ! 0, the
Faraday and Ampère-Maxwell equations become

r ' B ¼ 0;
@B

@t
¼ (r$ E; and r$ B ¼ l0j&: (42)

For consistency, r ' j& must vanish as we will verify using
the continuity equations

@tnþr ' ðnvi;eÞ ¼ 0: (43)

The difference between the continuity equations gives
r ' nðvi ( veÞ ¼ 0. Multiplying by e, we see that jflow

¼ enðvi ( veÞ is solenoidal. On the other hand, the twirl cur-
rent jtwirl ¼

P
lr$ ðr$ k2

l jflow;lÞ is always divergence
free, so the total current j& ¼ jflow þ jtwirl for quasi-neutral
plasmas is solenoidal. This also follows from the Ampère-
Maxwell equation when "0 ! 0.

The velocity equations for quasi-neutral plasmas are

@tvl þ wl $ v&l ¼ (
rpl

mln
(rv2

l

2
6

e

ml
ðEþ v&l $ BÞ: (44)

E is determined from the electron velocity equation

Eqn ¼(v&e$B(rpe

en
(me

e
@tveþwe$ v&eþ

rv2
e

2

( $
: (45)

The relation between general and quasi-neutral 2-fluid plas-
mas bears a resemblance to that between compressible and
incompressible barotropic neutral flows. In compressible
flow, p is obtained from q using the barotropic relation.
Similarly, in general 2-fluid plasmas, E is determined in
terms of the charge density from Gauss’ law. On the other
hand, in the incompressible (r ' v ¼ 0) constant density
ðq ¼ q0Þ limit, p is obtained from r2p ¼ (q0r ' ðv 'rvÞ.
Similarly, in quasi-neutral plasmas, E is determined from
(45). Note, "0 ! 0 (c!1) is like taking the Mach number
! 0 (cs !1).

In this limit, the electric term drops out of the conserved
swirl energy for barotropic flow generalizing (28)

E&qn ¼
X

l¼i;e

qlv
2
l

2
þ UlðqlÞ þ

k2
l qlw

2
l

2

" #
þ B2

2l0

: (46)

Here, ql ¼ mln and rU0l ¼ rhl ¼ rpl=ql for l ¼ i; e.

B. Regularized Hall MHD without electron inertia

In the limit me=mi * 1, we drop electron inertia terms
to get the regularized Hall model. The Maxwell, continuity,

and ion velocity equation are as in the quasi-neutral theory
of III A. Dropping electron inertia in (45)

EHall ¼ (v&e $ B(rpe

en
: (47)

For barotropic flow, where rpe=n is a gradient, Faraday’s
law becomes @tB ¼ r$ ðv&e $ BÞ. Thus unlike in the full
2-fluid model, in the R-Hall model the magnetic field is fro-
zen into the electron swirl velocity.

We have an additional conserved quantity: magnetic
helicity satisfies the local conservation law

@tðA ' BÞ þr ' /Bþ EHall $ A( 2~heB

e

" #
¼ 0: (48)

Here, / is the scalar potential and we assume the barotropic
condition ðrpeÞ=n ¼ r~he. To obtain (48), we use the homo-
geneous Maxwell equations and E ¼ (r/( @tA to compute

ðA ' BÞt ¼ (B 'r/( B ' E( A 'r$ E

¼ (r ' ð/Bþ E$ AÞ ( 2E ' B: (49)

Using the quasi-neutral electric field (45), we get

ðA ' BÞt ¼ (r ' ð/Bþ Eqn $ AÞ þ 2ðv&e $ BÞ ' B

þ2
rpe

en
þ me

e
@tve þ we $ v&e þ

1

2
rv2

e

, -( $
' B

¼ (r ' /Bþ Eqn $ A( 2~heB

e

( $

þ 2me

e
@tve þ we $ v&e þ

rv2
e

2

( $
' B: (50)

When electron inertia terms are ignored, we see that Eqn

! EHall and magnetic helicity satisfies the local conservation
law (48). The regularization enters through the electron
“swirl” velocity v&e in (47). However, even in the Hall
(me ! 0) limit, we have not found an analogue of a con-
served cross helicity v ' B of R-MHD.18

C. From R-Hall to 1-fluid R-MHD when e fi ‘

To get the regularized 1-fluid MHD model of Ref. 7 from
the above R-Hall 2-fluid model, we let e!1, holding ki and
ke fixed. The limit e!1 is a convenient way of restricting
attention to frequencies small compared to the cyclotron
xc;l ¼ eB=ml and plasma xp;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nle2=ml"0

p
frequencies and

to length scales large compared to the Debye lengths
kD;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTl"0=nle2

p
, gyroradii rl ¼ vth;l=xc;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTlml
p

=eB,
and collisionless skin depths dl ¼ c=xp;l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml=l0nle2

p
.

To switch to one-fluid variables, we express vi and ve in
terms of center of mass velocity v ¼ ðmivi þ meveÞ=m and
jflow ¼ enðvi ( veÞ

vi;e ¼ v6
me;i

m

jflow

en
: (51)

Here, m ¼ mi þ me. The continuity equation @tq ¼ (r ' ðqvÞ
for the total mass density q ¼ nm is obtained by taking a
mass-weighted average of the continuity equations in (43)
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@tððmi þ meÞnÞ ¼ (r ' ðnmivi þ nmeveÞ: (52)

The evolution equation for the center of mass velocity v is
similarly obtained from (44)

vt þ
mi

m
wi $ v&i þ

me

m
we $ v&e

¼ ( 1

nm
rðpi þ peÞ (

1

2m
rðmiv

2
i þ mev2

eÞ

þ e

m
ðv&i ( v&eÞ $ B: (53)

Neglecting terms of order me=m* 1 and introducing j&
¼ enðv&i ( v&eÞ and p ¼ pi þ pe, we get

@tvþ wi $ v&i ¼ (
1

q
rp( 1

2
rv2

i þ
1

q
ðj& $ BÞ: (54)

Next, we take the limit e!1 in (51) keeping jflow finite so
that v; vi and ve are all equal, as are w;wi and we. Defining
k ¼ ki; v&i¼ v& ¼ vþ k2r$ w. Thus, we arrive at the
velocity equation for one-fluid R-MHD

@tvþ w$ v& ¼ (
1

q
rp( 1

2
rv2 þ 1

q
ðj& $ BÞ: (55)

However unlike in the 2-fluid model, j& is no longer deter-
mined by enðv&i ( v&eÞ. Instead, it is obtained from
Ampère’s law l0j& ¼ r$ B. On the other hand, taking the
limit e!1 in the Hall electric field (47) the pressure gradi-
ent term drops out and we get

E1(fluid ¼ (v&e $ B ¼ (v& $ B: (56)

This identification of v&e with the 1-fluid swirl velocity v&
requires ke ¼ k. Thus, to get R-MHD we need ki ¼ ke ¼ k.
Finally, Faraday’s law (42) becomes @tB ¼ r$ ðv& $ BÞ
implying that B is frozen into v&.

IV. POISSON BRACKETS FOR REGULARIZED
COMPRESSIBLE TWO-FLUID PLASMAS

Poisson brackets for (unregularized) two-fluid plasmas
were proposed by Spencer and Kaufman11 and Holm and
Kuperschmidt.12 The non-trivial PBs are given by

va
l ðxÞ; v

b
l ðyÞ

n o
¼ "abc

mlnl
wc

l þ
qlBc

ml

" #
dðx( yÞ;

vlðxÞ; nlðyÞ
. /

¼ nlðxÞ; vlðyÞ
. /

¼ 1

ml
rydðx( yÞ;

EaðxÞ;BbðyÞ
. /

¼ "
abc

"0
@ycdðx( yÞ; and

va
l ðxÞ;E

bðyÞ
n o

¼ ql

ml"0
dabdðx( yÞ:

(57)

Here, a, b, and c label Cartesian components. The velocity
PBs for a given species are obtained from the Landau PB
fva; vbg ¼ "abcwcdðx( yÞ=q of fluid mechanics by replacing
wl by wl þ qlB=ml and ql by mlnl. Similarly, fvl; nlg is
obtained from fvðxÞ; qðyÞg ¼ rydðx( yÞ. The rest of the
PBs vanish fBðxÞ;BðyÞg¼fvl;Bg¼fB;nlg¼fE;nlg
¼fE;Eg¼fnl;nl0 g¼fvi;veg¼fve;nig¼fvi;neg¼0. Unlike
in 1-fluid MHD,7,13,14 velocities and B commute. Vorticity

behaves like B: fwl;nl0 g¼fwl;Bg¼0; fE;wlg is similar to
fE;Bg

EaðxÞ;wb
l ðyÞ

n o
¼ "

abcql

"0ml
@ycdðx( yÞ: (58)

Our twirl regularization is natural in the sense that the regu-
larized equations follow from these PBs with the swirl
energy (15) as Hamiltonian. We sketch how this happens. It
follows from the PBs that only the kinetic energies contrib-
ute to the continuity equations

@tnlðxÞ ¼ fnl;KElg ¼
ð

mlnlvl ' fnlðxÞ; vlðyÞgdy

¼
ð

nlvl 'rydðx( yÞ ¼ (r ' ðnlvlÞ: (59)

To obtain the velocity equations, we note that the following
relations hold for the electric (EE), kinetic (KEl), compres-
sional (PEl), and vortical (VEl) energies

vlðxÞ;EE
. /

¼ "0

ð
EbðyÞ vlðxÞ;EbðyÞ

. /
dy¼ ql

ml
E;

fvlðxÞ;PElg¼
ð

U0lfvlðxÞ;qlðyÞgdy¼(rU0l¼(rhl;

fvlðxÞ;KElg¼
ð"

qlv
b
l ðyÞfvlðxÞ;vb

l ðyÞg

þv2
l

2
vlðxÞ;qlðyÞ
. /#

dy

¼ vl$ wlþ
qlB

ml

" #
(1

2
rv2

l and

fva
l ðxÞ;VElg¼ k2

l ql

ð
wb

l ðyÞ"bcd@ycfva
l ðxÞ;v

d
l ðyÞgdy

¼("agdk
2
l wg

l þ
qlBg

ml

" #
"dcb@cw

b
l

¼(k2
l wlþ

qlB

ml

" #
$ðr$wlÞ

( $a

: (60)

Thus, using rl ¼ hl þ 1
2 v2

l , we get the velocity equations (6)
for l ¼ i; e. If fvi; neg 6¼ 0, the electron pressure would con-
tribute to the ion velocity equation. Faraday’s law receives a
contribution only from the electric energy:

@tBðxÞ ¼ "0

ð
EðyÞ ' fBðxÞ;EðyÞgdy ¼ (r$ E: (61)

Only KE, VE, and magnetic energy (ME) contribute to
Ampère’s law

EðxÞ;KEl

. /
¼ ml

ð
nlva

l EðxÞ; va
l ðyÞ

. /
dy ¼ (

jflow;l

"0
;

fEðxÞ;VElg ¼ k2
l nlml

ð
wa

l fEðxÞ;w
a
l ðyÞgdy

¼ ( k2
l nlql

"0
ðr$ wlÞ ¼ (

jtwirl;l

"0
and

EðxÞ;ME
. /

¼
ð

Ba

l0

EðxÞ;BaðyÞ
. /

dy ¼ r$ B

l0"0
: (62)
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Thus, Ampère’s law now takes the form

@tE ¼ (
1

"0

X

l

jflow;l þ jtwirl;l

0 1
þ 1

l0"0
r$ B: (63)

V. REGULARIZATION OF $3B in SINGLE AND
TWO-FLUID MODELS

The twirl terms wl $ ðr$ wlÞ and B$ ðr$ wlÞ in the
EOM and the corresponding vortical energies 1

2 k2
l nlmlw2

l can
regularize vortical singularities. Similarly, we would like to
identify appropriate terms in the EOM to regularize magnetic
field gradients and current sheets. Recall from Sec. II A 2
that in the quasi-neutral incompressible case the term
ðk2=2l0Þðr$ BÞ2 automatically arose in the conserved
energy if the current in Ampère’s law is chosen to be the
flow current jflow and ki ¼ ke ¼ k. This approach however
does not generalize to compressible flow. In the compress-
ible case, the current in Ampère’s law must be the swirl cur-
rent j& to guarantee energy conservation. On the other hand,
the PB formulation gives us a natural way of introducing
field gradient energies in compressible flow. Adding the sim-
plest possible positive definite magnetic gradient energy
(MGE) term

Ð
k2

Bðr$ BÞ2=2l0 dr to the Hamiltonian of the
single and 2-fluid models and using the relevant PBs to
obtain the EOM, we ensure the L2 boundedness of r$ B.

A. Regularization of $3B in R-MHD

We augment the R-MHD Hamiltonian with a MGE tak-
ing kB to be a constant cut-off length

H ¼
ð

qv2

2
þ U þ k2qw2

2
þ B2

2l0

þ k2
B

2l0

ðr$ BÞ2
" #

dr: (64)

Using the 1-fluid PBs,13,14 fqðxÞ; vðyÞg ¼ rydðx( yÞ

vaðxÞ; vbðyÞ
. /

¼ "abcwc

q
dðx( yÞ and

vaðxÞ;BbðyÞ
. /

¼ "acr"bgr

qðxÞ
BcðxÞ@xgdðx( yÞ; (65)

the continuity ð@tqþr ' ðqvÞ ¼ 0Þ and Faraday ð@tB ¼ r
$ðv& $ BÞÞ equations are unchanged. On the other hand, the
velocity equation is modified by

vaðxÞ;MGE
. /

¼ k2
B

2l0

ð
fvaðxÞ; ðr$ BÞ2gdy

¼ k2
B

l0q
"jkl"amn"lpnBm@xp

$
ð
ðr$ BÞj@ykdðx( yÞ
* +

dy

¼ ( k2
B

ql0

B$ r$ r$ ðr$ BÞð Þð Þ½ .a:

(66)

Combining this with contributions from KE, PE, VE, and
ME, the velocity equation takes the same form as (55) with
l0j& replaced by the “magnetic swirl” current

l0j&& ¼ r$ Bþ k2
Br$ r$ r$ Bð Þð Þ

¼ ð1( k2
Br

2Þðr$ BÞ: (67)

Evidently, l0j&& is the magnetic analogue of v& ¼ v
þk2r$ ðr$ vÞ. Furthermore, r$ B is a smoothed ver-
sion of the regularized current obtained through the applica-
tion of the integral operator ð1( k2

Br2Þ(1

r$ B ¼ l0ð1( k2
Br

2Þ(1 j&&: (68)

As noted, these additional terms in the velocity and Faraday
equations are quite different from those in XMHD.16,17 The
latter involves the introduction of a B& ¼ Bþ d2

er$ ððr
$BÞ=qÞ where de is a constant normalized electron skin
depth, rather than a swirl current j&&. This leads to a new term
j$ B& in both the XMHD velocity equation and electric field.

B. Regularization of field curl in the two-fluid model

As for the single fluid, we augment the 2-fluid
Hamiltonian (15) with a MGE taking kB as a constant cut-off

H ¼
ð X

l

1

2
mlnl v2

l þ k2
l w2

l

% &
þ UlðqlÞ

" #"

þ B2

2l0

þ "0E2

2
þ 1

2l0

k2
Bðr$ BÞ2

#

dr: (69)

Using the 2-fluid PBs (57), we see that the momentum, conti-
nuity, and Faraday equations remain unchanged since
vi; ve; ni; ne, and B commute with B. We do not introduce a
ðr$ EÞ2 term as it would modify Faraday’s law. The evolu-
tion of E is modified by the term:

EðxÞ;MGE
. /

¼ k2
B

l0"0
r$ ðr$ ðr$ BÞÞ ¼ ( jB

"0
: (70)

Combining with (62), Ampère’s law (63) becomes
l0"0@tE ¼ r$ B( l0j&&. Here, j&& ¼ jflow þ jtwirl þ jB.
Note that (70) implies r ' jB ¼ 0. Thus, jB and jtwirl are like
magnetization currents in material media/plasmas. The intro-
duction of the MGE in H has different effects in the single
and two-fluid models. In the former, the velocity equation is
modified, whereas in the latter only the Ampère equation
changes. However, the two are closely related: taking
"0 ! 0; me ! 0; e!1, the 2-fluid j&& reduces to the single
fluid form (67) in the Lorentz force term of the correspond-
ing velocity equation.

VI. DISCUSSION

Our conservative regularization of two-fluid plasma
dynamics invokes vortical and magnetic twirl terms

k2
l wl þ ql

ml
B

% &
$ ðr$ wlÞ in the velocity equations. We find

that k2
l nl must be constant for energy conservation, so that

kl behaves like kD or c=xp;l. A key feature of the regularized

two-fluid model is that the flow current jflow ¼
P

l qlnlvl in

Ampère’s law is augmented by a solenoidal “twirl” currentP
lr$ ðr$ k2

l jflow;lÞ analogous to magnetization currents

in material media. This leads to locally conserved momenta
and a positive definite swirl energy E& which in addition to
kinetic, compressional and electromagnetic contributions
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includes a vortical energy density
P

l k
2
l nlmlw2

l , thus placing

an !a priori upper bound on the enstrophy of each species. It
is noteworthy that our twirl-regularized two-fluid equations
follow from the Hamiltonian E& using Poisson brackets.11,12

This PB formalism shows that among regularizations pre-
serving the continuity equations and symmetries of the ideal
system, our twirl regularization terms are unique and mini-
mal in non-linearity and space derivatives of velocities. It is
also employed to regularize magnetic field curls in the com-

pressible models by adding ðk2
B=2l0Þ

Ð
ðr$ BÞ2dr to E& so

that field and velocity curls are L2-bounded. By taking suit-
able limits, we get a hierarchy of compressible and incom-
pressible regularized plasma models (quasi-neutral two-fluid,
Hall and 1-fluid MHD). Interestingly, in the incompressible
two-fluid case alone, it is also possible to choose the current
as jflow, which leads to a conserved swirl energy that auto-

matically includes a ðk2=2l0Þðr$ BÞ2 term in E&.
Furthermore, the assumption of local short-distance cut-offs
ki;e limits the number of effective degrees of freedom, thus
considerably extending results on the CHM model20 to the
full 3-D two-fluid equations. This feature is crucial to numer-
ical modeling of conservative plasma dynamics and conse-
quently provides a viable framework to investigate statistical
theories of turbulence in these systems. While we have regu-
larized vortical and field singularities, there remains the
question of conservatively regularizing density/pressure gra-
dients in shocks. This requires additional terms7 in the
Hamiltonian which could alter the continuity and energy
equations analogous to the KdV-type regularization of the 1-
D kinematic wave equation.

A natural question concerns the effect of our twirl regu-
larization in specific fluid and plasma systems of interest.
We have examined this in a few representative steady
flows:7,8 a rotating columnar vortex and its extension to
MHD, a vortex sheet, compressible plane flow, channel flow,
and variants of Hill’s vortex. In all these steady flows, the
non-linear regularized equations are under-determined as in
ideal Euler or ideal MHD. For instance, in our rotating
columnar vortex model for a tornado7 with core radius a, the
equations determine the density if the vorticity distribution is
prescribed. In a layer whose width can be of order the regu-
larization length k* a, the vorticity smoothly drops from
its value in the core to that in the periphery. We find that the
regularization relates this decrease in vorticity to a rise in
density. On the other hand, vorticity is allowed to have an
unrestricted jump across the layer in the unregularized model
while q is continuous and its increase is unrelated to the drop
in vorticity. Similarly, the regularization can smooth the vor-
ticity in a magnetized columnar vortex.7 Given vorticity and
current profiles, the density profile is determined. While the
Lorentz force tends to pinch the column, the twirl force
points outwards for radially decreasing vorticity. An ana-
logue of Hill’s vortex, a cylindrical vortex in pipe-like flow
was considered in Ref. 8. The flow is irrotational outside an
infinite circular cylinder of radius a with vorticity purely azi-
muthal inside the cylinder. The regularized equations with
appropriate BCs were solved numerically and unlike in the
unregularized case, the vorticity was found to be continuous

across r¼ a. In modeling a vortex sheet,7 we found steady
solutions to the regularized equations that smooth discontin-
uous changes in vorticity over a layer of thickness !k. A
regularized analogue of a Bernoulli-like equation implies a
reduction in density on the sheet compared to its asymptotic
values: depending on the relative flow Mach number, the
decrease can be significant when the thickness of the sheet is
comparable to the regulator k. These examples show that
twirl-regularized steady flows can be more regular than the
corresponding ideal ones. They also serve as a starting point
for numerical simulations of time-dependent flows. An inter-
esting example that is currently under investigation concerns
the effect of our regularizations on the growth of perturba-
tions to vortex/current sheets and their non-linear saturation.
A problem of fundamental importance is the initial value
problem in 3 D, say with periodic BCs. We would like to
numerically simulate the regularized equations and deter-
mine the spectral distribution of energy and enstrophy over
long times.
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APPENDIX: MINIMALITY OF TWIRL REGULARIZATION
IN HAMILTONIAN FORMULATION

Here, we address the question of minimality/uniqueness
of the twirl regularization, first in the context of neutral flows.
We show that the twirl term k2w$ ðr$ wÞ is the minimal
symmetry-preserving conservative regularization term that can
be added to the Euler equation while retaining the usual conti-
nuity equation and standard Hamiltonian formulation. The
Euler equation is invariant under space-time translations, rota-
tions, time reversal T, and parity P. We seek regularization
term(s) involving q, v and derivatives of v that may be added
to the Euler equation while preserving these symmetries. Any
such term must be even under T, odd under P, not involve
either r or t explicitly, and transform as a vector under rota-
tions. Furthermore, we seek terms with as few spatial deriva-
tives, no time derivatives and as low a non-linearity in v as
possible. The term must preferably involve a (possibly dynam-
ical) length k that can play the role of a short-distance cut-off.
However, there are very many such terms even if we restrict to
those quadratic in v with at most three derivatives [e.g.,
k2w$ ðr$ wÞ; k2ðw 'rÞw or k2"ijk@jwl@lvk] and it is an
arduous task to identify all of them. We may simplify our task
by requiring that the regularized equations follow from a
Hamiltonian and the standard Landau PBs. Thus, we seek a
positive definite regularization term HR involving v and its
derivatives (dependence on q is then fixed by dimensional
arguments) that may be added to the ideal Hamiltonian density
HI ¼ ð1=2Þqv2 þ UðqÞ. The possibility of including deriva-
tives of q in HR will be considered elsewhere. The advantage
of working with the Hamiltonian is that we need only consider
scalars rather than the more numerous vectors (regularizations
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that do not admit a Hamiltonian-PB formulation would how-
ever not be identified by this approach). Due to the PB struc-
ture ðfv; vg / @vÞ, the number of spatial derivatives in the
velocity equation vt ¼ fv;Hg is one more than that in H and
the degree of non-linearity in v is the same as in H. Thus,
HRðvi; @jvi;…Þ must be a P and T-invariant scalar with a mini-
mal number of derivatives and minimal non-linearity in v. It
would be natural to ask that HR be non-trivial in the incom-
pressible limit, so that it may regularize vortical singularities in
such flows. However, we find that such a restriction is not nec-
essary. On the other hand, we do require that the regularization
leave the continuity equation qt ¼ fq;Hg ¼ (r ' ðqvÞ unal-
tered, i.e., fq;HRg ¼ 0, assuming decaying or periodic bound-
ary conditions (BCs) in a box. Now, for HR to be P-even, the
sum of the number of spatial derivatives and degree of non-
linearity in v must be even. T-invariance as well as positive
definiteness requires that the degree of HR in v be even. Thus,
we begin by listing all scalars at most quadratic in v with at
most two derivatives. They are obtained by picking coefficient
tensors Cijk… below as linear combinations of products of the
rotation-invariant tensors dij and "ijk

1v; 1@ : Cij@ivj ¼ dij@ivj ¼ r ' v;
1v; 2@ : Cijk@i@jvk ¼ "ijk@i@jvk ¼ 0;

2v; 0@ : Cijvivj ¼ dijvivj ¼ v2;

2v; 1@ : Cijkvi@jvk ¼ v ' w; Cijk@iðvjvkÞ ¼ 0:

(A1)

T-invariance eliminates r ' v, P-invariance eliminates v ' w,
while v2 is already present in HI. Thus, we are left with qua-
dratic scalars with two derivatives

Cijklvi@j@kvl ¼ ðc1 þ c3Þv 'rðr ' vÞ þ c2v 'r2v

Cijkl@ivj@kvl ¼ c4ð@ivjÞ2 þ c5@ivj@jvi þ c6ðr ' vÞ2

Cijkl@i@jðvkvlÞ ¼ c7r2v2 þ ðc8 þ c9Þð2v 'rðr ' vÞ
þðc8 þ c9Þððr ' vÞ2 þ @ivj@jviÞ: (A2)

Here, Cijkl has been written as a linear combination of the
products dijdkl; dildjk, and dikdjl. Note that the order of indi-
ces in Cijk''' does not matter: e.g., the space of scalars
spanned by Cijkl@i@jðvkvlÞ and Cljki@i@jðvkvlÞ is the same. The
coefficients in the linear combination must be functions of q
alone and on dimensional grounds must be constants cn

¼ k2
nq where kn are position-dependent short-distance cut-

offs. The identity r2v2 ¼ 2v 'r2vþ 2ð@ivjÞ2 implies that
there are only five such linearly independent scalars. Since
enstrophy density w2 ¼ ð@ivjÞ2 ( ð@ivjÞð@jviÞ is a physically
interesting linear combination, it is convenient to choose
the basis for such scalars as S1 ¼ w2; S2 ¼ v 'r2v; S3

¼ ð@ivjÞð@jviÞ; S4 ¼ ðr ' vÞ2 and S5 ¼ v 'rðr ' vÞ. We will
now argue that w2 is the only independent regularizing term.
Consider first the incompressible case where S4 ¼ S5 ¼ 0.
Integrating by parts,

Ð
S3dr ¼ 0 for decaying/periodic BCs.

Furthermore,
Ð

S2dr ¼
Ð

v ' ½rðr ' vÞ (r$w.dr ¼
Ð

w2dr.
Thus for incompressible flow, we have shown that k2qw2 is
the only independent, positive definite ðk2q > 0Þ, Galilean-
invariant regularization term. For compressible flow, we
will not consider regularizations that alter the continuity

equation, leaving that possibility for the future. Thus, we
require fq;HRg ¼ 0. Since fq;wg ¼ 0, the term w2 will not
affect the continuity equation. On the other hand, the four
other possibilities do modify it

q;
ð
ðS3 ; S4 ;(S2 ;(S5Þdr

, -
¼ 2r2ðr ' vÞ: (A3)

To preserve the continuity equation, we may consider sums or
differences of the above terms. Thus, we replace the S1;…;5

basis with the new basis ~S1¼w2; ~S2¼v 'r2vþð@ivjÞð@jviÞ;
~S3¼v 'r2vþðr 'vÞ2; ~S4¼v 'rðr 'vÞþð@ivjÞð@jviÞ and ~S5

¼v 'rðr 'vÞþðr 'vÞ2. As before,
Ð

~S2 dr¼
Ð

~S3 dr
¼(

Ð
w2 dr and

Ð
~S4 dr¼

Ð
~S5 dr¼0. Subject to these BCs, we

have shown that HR¼
Ð
k2qw2 dr is the only positive-definite

velocity-dependent regularizing term in H that (a) preserves
parity, time-reversal, translation, rotation, and boost symme-
tries of the system, (b) does not alter the continuity equation
and (c) involves at most two spatial derivatives and is at most
quadratic in v. We conclude that with the standard PBs,
the twirl term (k2w$ðr$wÞ with the constitutive relation
k2q¼ const., is the only possible regularizing term in the
Euler equation that is at most quadratic in v with at most 3
derivatives while possessing properties (a) and (b).

Extending these arguments to 2-fluid plasmas, we may
add a linear combination of w2

i ; w2
e and wi ' we to the

Hamiltonian density. The cross term wi ' we leads to direct
interspecies interaction in the velocity equations which we
wish to avoid, preferring the ions and electrons to interact
via the electromagnetic field. Thus, we are left with w2

i and
w2

e which lead to the vortical energies of ions and electrons
considered in Sec. II.
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