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Abstract
We study baryons in multicolour QCD1+1 via Rajeev’s gauge-invariant
reformulation as a nonlinear classical theory of a bilocal meson field constrained
to lie on a Grassmannian. It is known to reproduce ’t Hooft’s meson spectrum
via small oscillations around the vacuum, while baryons arise as topological
solitons. The lightest baryon has zero mass per colour in the chiral limit; we
find its form factor. It moves at the speed of light through a family of massless
states. To model excitations of this baryon, we linearize equations for motion
in the tangent space to the Grassmannian, parameterized by a bilocal field U.
A redundancy in U is removed and an approximation is made in lieu of a
consistency condition on U. The baryon spectrum is given by an eigenvalue
problem for a Hermitian singular integral operator on such tangent vectors.
Excited baryons are like bound states of the lightest one with a meson. Using
a rank-1 ansatz for U in a variational formulation, we estimate the mass and
form factor of the first excitation.

PACS numbers: 11.15.Pg, 12.38.−t, 11.10.Kk, 14.20.−c, 11.25.Sq
Mathematics Subject Classification: 81T13, 81T40, 81V05, 37K05, 14M15,
45C05

1. Introduction and summary

An interesting problem of theoretical physics is to find the spectrum and structure of hadrons
[1] from QCD. Besides direct numerical approaches, we are far from formulating this problem
in (3+1)D, though there has been recent progress in the (2+1)D pure-gauge model [6, 7].
In (1+1)D, ’t Hooft obtained [2] an equation for masses and form factors of mesons in the
multicolour N → ∞ limit of QCD. There are an infinite number of them with squared masses
growing linearly M2

n ∼ g̃2n. The coupling g̃2 = g2
YMN has dimensions of mass2, so the

1751-8113/10/395401+28$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/39/395401
mailto:govind.krishnaswami@durham.ac.uk
http://stacks.iop.org/JPhysA/43/395401


J. Phys. A: Math. Theor. 43 (2010) 395401 G S Krishnaswami

model is UV finite. Our aim is to do the same for the spectrum of baryons in QCD1+1. Baryons
are more subtle than mesons; it has not been possible to extend ’t Hooft’s summation of planar
diagrams to find the baryon spectrum [3]. A way forward was shown in Rajeev’s formulation
[4, 5] of QCDN=∞

1+1 as a nonlinear classical theory of quark bilinears (meson fields) on a curved
phase space. As N → ∞, the gauge-invariant bilinears M have small fluctuations and satisfy
nonlinear classical equations, though h̄ = 1. Some nonlinearities are due to a constraint on M
encoding Pauli exclusion. ’t Hooft’s meson equation was rederived by considering oscillations
around the vacuum, with masses of O(N0). But the model also has large departures from the
vacuum, describing baryons with masses of O(N). They live on a disconnected component of
phase space, an infinite Grassmannian with components labelled by the baryon number. This
formulation gave a qualitative picture [10, 12] of the baryon (as a soliton of the meson field and
as a bound state of quarks) and estimates for the mass and form factor of the lightest baryon
[9]. The latter was in reasonable agreement with numerical calculations [8]. They were also
used to model the xB-dependence of the nucleon structure function F3(xB,Q2) measured in
deep inelastic scattering [10, 11].

Here we derive an equation for the spectrum of small oscillations around the lightest
baryon, to describe excited baryons or baryon–meson bound states. For simplicity we consider
one quark flavour, so these correspond to the nucleon resonances P11,D13, S11,D15, etc
[1]. There may also exist heavier baryonic extrema of energy, analogues of �,�. Their
investigation and oscillations around them are postponed. Oscillations near a baryon are
harder to study than near the vacuum (section 3). To begin, we need the precise baryon ground
state (g.s.). The form factor of the lightest baryon is well described by a single valence quark
wavefunction ψ . In the chiral limit of massless quarks, the g.s. is exactly determined via ψ . We
find ψ exactly and establish that the lightest baryon has zero mass/colour (section 4), like the
lightest meson [2]. The soliton has a size ∼P −1, where P is the mean null-momentum/colour
of the baryon. Being massless, the baryon moves at the speed of light traversing a one-
parameter family of even parity massless states. The probability of finding a valence quark
with positive null-momentum between [p, p + dp] in a baryon is P −1 exp (−p/P ) dp. Away
from the chiral limit, the g.s. of the baryon is massive, containing sea and antiquarks [11].
Here we work in the simpler chiral limit. It is possible to derive [10] this soliton picture as a
Hartree–Fock approximation to N quarks interacting via a linear potential, with a wavefunction
antisymmetric in colour but symmetric otherwise. This is a way of seeing that the baryon is a
fermion and that N is an integer.

As in ’t Hooft’s work, excitations around the translation-invariant Dirac vacuum were
described by Rajeev [4] using a meson ‘wavefunction’ χ̃ (ξ). Around a non-translation-
invariant baryon, we need the N → ∞ limit of a bilocal field M(x, y) ∼ qa†(x)qa(y)/N .1

The vacuum is M = 0 while the baryon g.s. is Mo = −2ψψ †. A complication arises from a
quadratic constraint (ε + M)2 = 1; the ‘quark density matrix’ must be a projection operator,
up to normal ordering. We ensure that it is satisfied at all times (section 1.2), and when making
approximations (section 5.4). Pleasantly, when linearized around the baryon M = Mo +V , the
constraint [ε +Mo, V ]+ = 0 encodes an ‘orthogonality’ of ground and excited states crucial for
consistency of the linearized equations (section 5.5). This condition generalizes the vanishing
dot product of radius ε + Mo and tangent V to a sphere. Roughly, V is a meson and Mo + V is
a meson–baryon pair. If Mo = 0, we return to mesonic oscillations around the Dirac vacuum.
Due to translation invariance around Mo = 0, the bilocal field Ṽ (p, q) ∼ χ̃ (ξ) could be taken
to depend only on ξ = p/(p−q) and not on the ‘total momentum’ p−q. This simplification is
absent near the baryon (section 5.6). So in section 5.1, we solve the constraint [ε+Mo, V ]+ = 0

1 We work in a gauge where the parallel transport from x to y is the identity.

2



J. Phys. A: Math. Theor. 43 (2010) 395401 G S Krishnaswami

via another bilocal field V = i[ε + Mo,U ]. But there is a gauge freedom under U → U + Ug

where [ε + Mo,Ug] = 0. We gauge-fix the redundancy (section 5.2) by writing U in terms of
a vector u and another bilocal field U+− one-fourth the size of U. Roughly, u is a correction to
the valence quarks ψ , due to the excitation. U+− has the corresponding data on sea/antiquarks
in the excited baryon. The gauge-fixing conditions ψ †u = 0 and ψ †U+− = 0 are interpreted
as orthogonality of ground and excited states. But the naively linearized equations do not
preserve these conditions! The gauge freedom at each time step is used to derive linearized
equations respecting the gauge conditions (section 5.7). Though the equations for U+− and u
are linear, we were not able to find oscillatory solutions by separation of variables. For, they
couple u,U+− and their adjoints, like a Schrödinger equation where the Hamiltonian depends
on the wavefunction and its conjugate! So in section 5.8 we put u = 0, allowing us to separate
variables and find oscillatory solutions, at the cost of a consistency condition on U+− (66).
Regarding V as a meson, we expect it contains a quark–antiquark sea but no valence quarks u.
This motivates the u = 0 ansatz.

We are left with an eigenvalue problem K̂(U) = ωU (68) for the form factor U+−.
We show that the linearized Hamiltonian K̂ is Hermitian using the gauge condition and the
ansatz u = 0. In the chiral limit, the mass2 of excited baryons are M2 = 2ωP , where
P is the lightest baryon’s momentum. But the eigenvalue problem for K̂ is quite non-
trivial. It is a singular integral operator on a ‘physical subspace’ of Hermitian operators.
This space of physical states U+− consists of Hilbert–Schmidt operators subject to the gauge
and consistency conditions (appendix G). The eigenvalue problem for the baryon spectrum
follows from a variational energy E . In section 5.9 we suggest a rank-1 variational ansatz
U+− = φη†. Here φ, η are the sea/antiquark wavefunctions of the excited baryon. The
kinetic terms in E differ from the naive ones due to linearization around a time-dependent
g.s. The potential energy is a sum of Coulomb energy (attraction between anti- and sea-
quarks) and exchange energy (between sea-partons and ‘background’ valence quarks ψ). In
section 5.10 we obtain a crude estimate for the mass and form factor of the first excited baryon
by minimizing E in a parameter controlling the decay of the sea quark wavefunction. But our
estimate for the mass of the first excited baryon 0.3 g̃N is not expected to be accurate2 or
an upper bound, as we imposed the gauge-fixing condition but not the consistency condition
from the ansatz u = 0. In appendix G, we try to solve this consistency condition. A more
careful treatment will hopefully give a quantitative understanding of the baryon spectrum.

1.1. Summary of classical hadrondynamics

We begin by recalling Rajeev’s reformulation [4] of QCDN=∞
1+1 as a classical theory of meson

fields. In the null coordinates x = x1, t = x0 − x1 we specify initial values on the null
line t = 0. The energy E = pt = p0 and null-momentum p = px = p0 + p1 obey3

m2 = 2Ep − p2. In the gauge Ax = A0 + A1 = 0, one component of quarks and the gluon
A1 are eliminated. For quarks of one flavour and N colours a, b, the action of SU(N) QCD1+1

represents fermions χa interacting via a linear potential

S =
∫

dt dxχ †a
[
−i∂t − 1

2

(
p +

m2

p

)]
χa

− g2

4N

∫
dt dx dyχ †a(y)χb(y)|x − y|χ †b(x)χa(x). (1)

2 From ’t Hooft’s work [2] the mass of the first excited meson in the chiral limit is about 1.4g̃.
3 Under a Lorentz boost of rapidity θ , t → teθ and x → e−θ x − t sinh θ .
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M̂(x, y) = − 2
N

: χ †a(x)χa(y):, with x, y being null-separated, defines a gauge-invariant
bilocal field. Normal ordering is with respect to the Dirac vacuum. E and p have the
same sign, so negative momentum states are filled in the vacuum and we split the one-particle
Hilbert spaceH = L2(R) = H−⊕H+ into ∓ momentum states4. Canonical anti-commutation
relations (CAR) for χ, χ † from (1) imply commutation relations for M̂ , with fluctuations of
order 1/N . As N → ∞, M̂ tends to a classical field M, the integral kernel5 of a Hermitian
operator on H. The Poisson brackets (PB) of M are given by

(i/2){M(x, y),M(z, u)} = δ(z − y)�(x, u) − δ(x − u)�(z, y). (2)

� = ε + M where ε is the Hilbert transform kernel ε̃(p, q) = 2πδ(p − q)sgn p, or
ε(x, y) = i

π
P(x − y)−1. The CAR imply a constraint as N → ∞, �2 = I ; the eigenvalues

of � are −1 (singly-occupied) or 1 (unoccupied). � = ε is the vacuum. Thus the phase space
is a Grassmannian [4]:

Gr1 = {M : M† = M, (ε + M)2 = I, tr|[ε,M]|2 < ∞}, (3)

the symplectic leaf of � = ε under the coadjoint action of a restricted unitary group [4]. The
coadjoint orbit formula for Poisson brackets of linear functions of M, fu = − 1

2 tr uM, is

{fu, fv} = i

2
tr [u, v]� = f−i[u,v] +

i

2
tr[u, v]ε. (4)

The connected components of Gr1 are labelled by an integer B = − 1
2 tr M (appendix E),

quark number per colour, or baryon number. An analogue of parity is PM̃pq(t) = M̃qp(−t) or
PMxy(t) = M∗

−x,−y(−t). For example, the static real symmetric M̃ are even and the imaginary
antisymmetric M̃ are odd. From (1), the energy/colour is a parity-invariant quadratic function
on Gr1:

E(M) = −1

2

∫
1

2

(
p +

μ2

p

)
M̃(p, p)[dp] +

g̃2

16

∫
|M(x, y)|2|x − y| dx dy. (5)

The current quark mass m is renormalized as μ2 = m2 − g̃2

π
while reordering quark bilinears.

The kinetic energy T = − 1
2 tr hM is expressed in terms of the dispersion kernel

h̃(p, q) = 2πδ(p − q)h(p), where 2h(p) = p + μ2p−1. (6)

Define a positive ‘interaction operator’ on Hermitian matrices Ĝ : M �→ G(M) ≡ GM with
the kernel Ĝ(M)xy = 1

2Mxy |x − y| (appendix C). Then the potential energy is

U = g̃2

8
tr MĜ(M) = g̃2

16

∫
dx dy|M(x, y)|2|x − y| � 0. (7)

In Fourier space6 G̃(M)pq = − ∫ [dr]
r2 M̃p+r,q+r . We also associate with M a constant of

motion (appendix A), its mean momentum per colour PM. Under a boost, P → eθP ,
E → e−θE + p sinh θ :

PM = −1

2
tr pM = −1

2

∫
pM̃(p, p)[dp] where p(p, q) = 2πδ(p − q)p. (8)

The squared-mass/colour M2 = 2EP − P 2 is a Lorentz-invariant constant of motion.
Hamilton’s equations of motion (eom) are the initial value problem (IVP)

i

2

dM

dt
= i

2
{E(M),M} = [E′(M), ε + M]. (9)

4 Our convention for Fourier transforms is ψ(x) = ∫
[dp]eipxψ̃(p), where 2π [dp] = dp.

5 In Fourier space, M̃(p, q) = ∫
dx dy e−i(px−qy)Mxy . We write M̃pq for M̃(p, q) and Mxy for M(x, y).

6 This uses v(x) = 1
2 |x| = − -

∫ [dr]
r2 e−irx obtained by solving v′′(x) = δ(x) with v(0) = v′(0) = 0. We used the

definition of finite part integrals (appendix B) to put -
∫ ∞
−∞

[dr]
r

= 0 and -
∫ ∞
−∞

[dr]
r2 = 0.

4
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The PB is expressed via the commutator using the variational derivative of energy, which is
inhomogeneous linear in M, E′ = T ′ + U ′ = −h/2 + (g̃2/4)Ĝ(M). Its matrix elements are

E′(M)pq = −πδ(p − q)h(p) +
g̃2

4
G̃(M)pq, where

U ′(M)xy ≡ δU(M)

δMyx

= g̃2

4

|x − y|
2

Mxy. (10)

1.2. Preservation of quadratic constraint under time evolution

We check that (9) preserves the constraint �2 = I . Define the constraint matrix C(t) = �2−I

and let C(0) = 0. We have an autonomous system of first-order nonlinear ODEs:

∂tC = ∂t (ε + M)2 = [ε + M, ∂tM]+ = −2i[�, [E′,�]]+ = −2i[E′(M(t)),�2(t)]. (11)

Under suitable hypotheses, it should have a unique solution7 given C(0). Now consider the
guess Cg(t) ≡ 0. It obeys (11) as both sides vanish: ∂tCg(t) = 0 and −2i[E′,�2(t)] =
−2i[E′, I ] = 0. Thus, Cg(t) ≡ 0 is the solution: constraint is always satisfied.

2. Ground state in the B = 0 meson sector

In the non-interacting case g̃ = 0, M = 0 is a static solution since the eom are

i

2
Ṁpq = 1

4
Mpq

[
q − p + m2

(
1

q
− 1

p

)]
when g̃ → 0. (12)

Here, rhs ≡ 0 iff M = 0, so it is the only static solution if g̃ = 0. Even with interactions, M = 0
is static: ∂tM = {E(M),M} = 0 at M = 0 (5). But even at M = 0, E′(0) = −πδ(p−q)h(p)

does not vanish! Does the gradient of energy vanish at M = 0? Yes. To see why, first note
that M = 0 is a static solution as E′(0) and ε are diagonal in momentum space. By (9)

∂tM = −2i[E′(M), ε + M]|M=0 = −2i[E′(0), ε] = 0. (13)

E′(M) = 0 is sufficient, but not necessary for a static solution. −2i[E′(M),�] is the
symplectic gradient of energy at M. The contraction of the exterior derivative of energy with
the Poisson bivector field produces the Hamiltonian vector field. So the (symplectic) gradient
of energy does vanish at M = 0. The state M = 0 has zero mass M and qualifies as a g.s.

3. Small oscillations about vacuum and ’t Hooft’s meson equation

We recall the equation for mesons [2, 4] by considering small oscillations about the vacuum.
Let V be a tangent vector at the translation-invariant M = 0. The constraint �2 = I becomes8

[ε, V ]+ = 0 or

Ṽpq(sgn p + sgn q) = 0 ⇒ Ṽ = (0, Ṽ −+|Ṽ +−, 0). (14)

Ṽpp = 0, so V has zero mean momentum PV (8). But the generator Pt = p − q of translations
Mxy → Mx+a,y+a , M̃pq → ei(p−q)aM̃pq may be regarded as the total momentum. So we

7 The rhs is a cubic function of �. Picard iteration should establish that the solution to (11) exists and is unique.
We may need technical hypotheses (besides tr|[ε, M(0)]|2 < ∞ appendix E) on �(0) to ensure that observables (e.g.
energy) remain finite.
8 V +−

pq : H− → H+ has entries with p > 0 > q, (V +−)† = V −+. We separate matrix rows with |.

5
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pick independent variables Pt and ξ = p/Pt . We write Ṽ +− = χ̃ (Pt , ξ, t). Hermiticity
implies9

Ṽ −+(p, q, t) = χ̃(Pt , ξ, t) with χ̃∗(Pt , ξ, t) = χ̃(−Pt , 1 − ξ, t). (15)

ξ is the quark momentum fraction. For small oscillations about M = 0 of energy ω = p0, we
put

Ṽ +−
pq (t) = χ̃ (Pt , ξ) eiωt and Ṽ −+

pq (t) = χ̃(Pt , ξ)e−iωt for ω ∈ R. (16)

Parity acts as Pχ̃ = χ̃∗. The simplest χ̃ obeying (15) are independent of Pt with
χ̃∗(ξ) = χ̃(1 − ξ). So even parity states are real with χ̃ (ξ) = χ̃(1 − ξ) and odd parity
ones imaginary with χ̃ (ξ) = −χ̃ (1 − ξ). The norm (appendix E) on V implies the L2 norm
on χ̃ (ξ) up to a divergent constant. The linearized eom are
i

2
V̇ = [E′(V ),�] =

[
T ′ +

1

4
g̃2G(V ),�

]
= [T ′, V ] +

g̃2

4
[G(V ), ε] + O(V 2),

i

2
∂t Ṽpq = −1

2
{h(p) − h(q)} Ṽpq − g̃2

4
(sgn q − sgn p) -

∫
[ds]

s2
Ṽp+s,q+s .

(17)

Put η′ = s/Pt to get an eigenvalue problem for ω. It is rewritten as ’t Hooft’s equation for the
squared masses M2 = 2ωPt − P 2

t with quarks of equal mass [2]
(
μ2 = m2 − g̃2

π
, η = ξ + η′).

For instance, with μ2 = 0, the eigenstates alternate in parity χ̃n(ξ) ≈ in−1 sin(nπξ) with
squared-masses M2

n ≈ nπg̃2:

−ω

2
χ̃ (ξ) = −1

4

[
Pt +

μ2

ξPt

+
μ2

Pt − ξPt

]
χ̃(ξ) +

g̃2

2
-
∫

χ̃ (ξ + η′)
η′2Pt

[dη′],

M2χ̃ (ξ) =
(

μ2

ξ
+

μ2

1 − ξ

)
χ̃ (ξ) − g̃2

π
-
∫ 1

0

χ̃(η)

(ξ − η)2
dη.

(18)

4. Ground state of baryon

The trajectories Mo(t) of the least mass on the B = 1 component are the baryonic g.s; they
depend on m, g̃. The chiral limit is m → 0 holding g̃ fixed, ν = m2/g̃2 → 0. Regarding
QCD1+1 as an approximation to QCD3+1 on integrating out directions ⊥ to hadron propagation,
g̃−1 ∼ O (transverse hadron size). So the chiral limit should describe u/d quarks that are
much lighter than the size of hadrons. But it is hard to find the g.s. from the nonlinear eom
(9). Inspired by valence partons, we found that the g.s. is approximately of rank 1 [9, 10,
12]. M = −2ψψ † lies on the B = 1 component if ψ̃ is a positive momentum (εψ = ψ) unit
vector. We guessed that a minimum mass +parity state is10

M̃0pq = −4π

P
e− p+q

2P θ(p)θ(q), ψ̃0(p) =
√

2π

P
e

−p

2P θ(p),

ψ0(x) = 1√
2πP

[
1

(2P)−1 − ix

]
.

(19)

In section 4.1 we show that (19) has zero mass as ν → 0. In section 4.2 we show that it is
one of a family of degenerate massless states connected by time evolution. Mt is thus a baryon
g.s.:

M̃tpq = M̃0pq ei(p−q)t/2, ψ̃t (p) = eipt/2ψ̃0(p),

ψt (x) = 1√
2πP

[
1

2P
− i

(
x +

t

2

)]−1

.
(20)

9 Pt � 0 in the +− block while Pt � 0 in the −+ block, but ξ ∈ [0, 1] always.
10 P = −tr pM/2 (8) is the baryon momentum/colour; it fixes the frame. A rescaling of p and P is a boost.

6
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p−q is not a constant, unlike near the translation-invariant M = 0 (section 3). Since
Mxx ∼ [(x + t/2)2 + (2P)−2]−1, the baryon is localized at x = −t/2 at time t and has a
size ∼ 1/P . As x = x1, t = x0 − x1, the massless baryon travels at the speed of light11

along x1 = −x0. The probability of finding a valence quark of momentum p in the baryon
is − 1

2M̃(p, p)12. So the degeneracy and time dependence are consequences of relativity:
a massless soliton cannot be at rest. Time-dependent vacua are unusual13. Continuously
connected static vacua (states of neutral equilibrium) are more common, e.g. the g.s. of a ball
on a horizontal plane. There are time-dependent states of arbitrarily small energy greater than
zero, where the ball adiabatically rolls between vacua. What is remarkable about Mt is that
there is no ‘additional kinetic energy of rolling between vacua’, due to the masslessness of
the quarks. But this massless baryon is special to the chiral limit. Away from m = 0, the
g.s. of the baryon is roughly M = −2ψψ †, with ψ̃(p) ∝ pa e−p/2P θ(p), a ≈ √

3ν/π and
M2 ≈ g̃2√πν/3 for small ν [9].

4.1. Mass of the separable exponential ansatz

To find the mass of (19), we split energy (5) as 2E = P +m2KE + g̃2(SE + PE), where g̃2SE/2
is a self-energy. In terms of ν = m2/g̃2, the mass2 2EP − P 2 is given by

M2 = g̃2P(νKE + SE + PE)
m→0−→ g̃2P(SE + PE), where

PE = 1

4

∫
dx dy|Mxy |2 |x − y|

2
, SE = 1

2π

∫
M̃pp

[dp]

p
, KE = −1

2

∫
M̃pp

[dp]

p
.

(21)

For M = −2ψψ †, PE = ∫
dx |ψ |2V (x), where V = 1

2

∫
dy|ψ(y)|2|x − y| obeys V ′′ = |ψ |2,

V (0) = 1

2

∫
dy|ψ(y)|2|y| and V ′(0) = −1

2

∫ ∞

−∞
dy|ψ(y)|2sgn y. (22)

Thus, PE =
∫

[dp] ψ̃(p)

∫
[dr]ψ̃∗(p + r)Ṽ (r),

where Ṽ = −1

r2

∫
[dq]ψ̃(q)ψ̃∗(q − r). (23)

Here, |ψo(y)|2 = 1
2πP

[(2P)−2 + y2]−1 is even, so V ′(0) = 0 and Ṽ (r) is real and even. But
V (0), SE and PE are log-divergent. Yet, we will show that SE + PE= 0, regarded as a limit
of regulated integrals14

11 So though the null line t = 0 is not a Cauchy surface, the baryon trajectory intersects it.
12 The off-forward pdfs of deeply virtual Compton scattering [13] depend on off-diagonal entries of M.
13 They are forbidden in elementary QM: energy eigenstates must have simple-harmonic time dependence. But if
the g.s. of a QFT describes a massless particle whose number is conserved, it cannot be static. Classical evolution
allows more possibilities. A near example is of a pair of like charges. The unattainable g.s. is for them to be at rest
infinitely apart. A state of finite separation cannot be static: repelling charges accelerate.
14 To bypass the regularization, we can set up rules for manipulating these integrals based on the answers we get via
the regularized calculations. From (23) the potential energy is

(2πP )PE = −
∫ ∞

0
dq e−q -

∫ ∞

−q

ds

s2
e− s+|s|

2 = −
∫ ∞

0
dq e−q

[
-

∫ 0

−q

ds

s2
+ -

∫ ∞

0

ds

s2
e−s

]

= -
∫ ∞

0

ds

s
e−s − -

∫ ∞

0

ds

s2
e−s . (24)

These terms are equal by integration by parts if we ignore the boundary term. So for PE + SE = 0, we must define

(πP )SE = − -
∫ ∞

0
dss−1e−s ≡ − -

∫ ∞

0
dss−2 e−s or s−1 e−s |s=0 ≡ 0. (25)

7
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Ṽ (r) = − 1

r2P
er/2P

∫ ∞

max(0,r)

e−q/P dq = − 1

r2
exp

(
− |r|

2P

)
;

SE = 1

2π

∫
M̃pp

[dp]

p
= −1

πP

∫ ∞

0

e−q

q
dq and

PE = 1

4π2P

∫
dx dy

|x − y|
(1 + x2)(1 + y2)

. (26)

4.1.1. Regularized/variational estimation of the baryon ground state. Let us use an IR
regulator to ensure that PE and SE are finite. Let ψ̃(p) ∼ pa e−pθ(p) so that ψ̃ is continuous
at p = 0 if a > 0. For a = 0, this reduces to our ansatz ψo in the frame with 2P = 1. We
regard this as an ansatz for minimizing M2 (21). We show M2 vanishes as a → 0 if ν = 0.
Let

ψ̃a(p) = 21+a
√

π√
�(1 + 2a)

pa e−p θ(p), ψa(x) =
√

�(1 + 2a)

2a�
(

1
2 + a

) 1

(1 − ix)1+a
for which

P(a) =
∫

p|ψ̃p|2[dp] = 1

2
+ a, KE =

∫
|ψ̃p|2 [dp]

2p
= 1

a
,

SE = −
∫

|ψ̃p|2 [dp]

πp
= −1

πa
. (27)

Integrating and imposing the initial condition Va(0) = �(a) / [2
√

π�(a + 1/2)]:

V ′
a(x) = x�(a + 1)2F1

(
1
2 , a + 1; 3

2 ;−x2
)

√
π�

(
a + 1

2

) ,

Va(x) = �(a)
(
2ax2

2F1
(

1
2 , a + 1; 3

2 ;−x2
)

+ (x2 + 1)−a
)

2
√

π�
(
a + 1

2

) .

(28)

Note that 2F1
(

1
2 , a + 1; 3

2 ;−x2
) ∝ x−1 for large x and a > 0, so Va(x) ∝ |x| as |x| → ∞.

However, we could not do the final integral to get PE = ∫
dxVa |ψa|2. It converges for a > 0 as

Va |ψa|2 ∼ |x|−1−2a as |x| → ∞. On integrating for some simple values of a we find that SE +
PE → 0 as a → 0. We fit a series15 to the calculated PE (table 1) for several a ∈ [10−2, 10−4].
It is plausible that the coefficient of 1/a is exactly 1/π � 0.3183 and cancels SE= −1/πa

and moreover that PE + SE vanishes at a = 0. Encouraged by this, we calculated PE(a) using
Mathematica for several round values of a−1. There was a pattern and we conjectured (31),
which was confirmed for hundreds of a’s. We are confident that PE + SE vanishes as a → 0.

15 It is tempting to Laurent expand the integrand in a and integrate term by term. But this does not work as the
operations of integration and Laurent expansion do not commute:

Va(x) = (2πa)−1 + (2π)−1(2x arctan x − log{(1 + x2)/4}) + · · · = V−1a
−1 + V0 + V1a + · · ·

|ψa(x)|2 = (π(1 + x2))−1[1 − a log{(1 + x2)/4} + · · ·] = |ψ |20 + |ψ |21a + · · · . (29)

Integrating term by term, the first converges 1
a

∫
V−1|ψ |20 = 1

2πa
, but to half the numerical value:

PE =
∫

dxV (x)|ψ(x)|2 ?= 1

a

∫
V−1|ψ |20 +

∫
(V−1|ψ |21 + V0|ψ |20) + a

∫
(V−1|ψ |22 + V0|ψ |21 + V1|ψ |20) + · · · . (30)

The a0 term diverges V0|ψ |20 ∼ |x|−1,
∫

V0|ψ |21 also diverges: expanding in a destroys convergence of the integral!

8



J. Phys. A: Math. Theor. 43 (2010) 395401 G S Krishnaswami

Table 1. Though PE ≈ 6.9 × 10−7 + 0.3183/a + 1.046a − 4.3a2 grows as a → 0, SE + PE ∝ M2

decreases.

a 0.1 0.01 0.005 0.003 33 0.001 67 0.001 25 0.001 0.0001
PE 3.255 31.84 63.67 95.5 190.99 254.65 318.3 3183
SE + PE 0.072 09 0.010 03 0.005 123 0.003 44 0.001 733 0.001 302 0.001 043 0.000 105

So Mo = −2ψ0ψ
†
0 (19) is a massless baryon in the chiral limit: limm→0 M2/g̃2 = 0. From

(21), its energy/colour is Eo = P/2, where P is its momentum/colour.

PE(a)
?= �(a)�

(
1
2 + 2a

)
4a�

(
1
2 + a

)3 = 1

πa
+

π

3
a − 12ζ(3)

π
a2 + O(a3). (31)

4.2. Degeneracy and time dependence of massless baryon states in the chiral limit

We generalize the massless baryon Mo (19) to a family Mt (20). Mt clearly lie on the B = 1
component. Further, P(t) = − 1

2 trpM0(t) = P(0) = P , KE(t) = KE(0), SE(t) = SE(0) and
by going to position space, PE(t) = PE(0). So Mt is massless (21) like M0 (19). We found Mt

by time-evolving M0 in the chiral limit, so t is time. M0 evolves according to Ṁ = {E(M),M}
(9):

i

2
Ṁpq = 1

2
M̃pq[h(q) − h(p)] − g̃2

4
G(M)pq[sgn p − sgn q] − g̃2

4
[M,GM ]pq . (32)

We must show that Mt obeys the eom i
2Ṁpq = 1

4 (q − p)Mpq + g̃2

4 Z(M)pq , where

Z(M)pq = 1

π

(
1

p
− 1

q

)
M̃pq − G(M)pq{sgn p − sgn q} − [M,GM ]pq. (33)

In appendix D we show that Z(M(t)) ≡ 0 for all t, so the interactions cancel out! Now

M(t)pq = Mpq(0) e
i
2 (p−q)t ⇒ i

2
Ṁpq(t) = 1

4
(q − p)Mpq(t). (34)

So M0 evolves to Mt with energy P/2, describing a baryon moving at the speed of light.

5. Small oscillations about the lightest baryon

5.1. Linearization and solution of constraint on perturbation V

Suppose Mo(t) is the g.s. for B = 1 with momentum Po = − 1
2 tr pMo. Write M = Mo + V,

where V is a small perturbation tangent to Gr1 at Mo(t). Then V † = V and tr V = 0.
V is a meson and Mo + V a baryon–meson pair. What are the masses and form factors of
excited baryons? The constraint �2 = 1 linearizes to [ε + Mo, V ]+ = 0. This generalizes
v · φ + φ · v = 0 for tangent vectors to S2. Now

ε + Mo =
(−1 0

0 1 + M++
o

)
⇒ [ε + Mo, V ]+ =

( −2V −− V −+M++
o

M++
o V +− 2V ++ + [M++

o , V ++]+

)
= 0.

(35)

In particular, V −− = 0. Roughly, V −+M++
o = 0 expresses orthogonality of the ground and

excited states. Equation (35) is solved16 by introducing a Hermitian matrix U and a ‘potential’

16 We have not shown that this is the most general solution of (35). By analogy with the sphere, we suspect that the
anti-commutant of � is the image of the adjoint action i ad� on Hermitian matrices.

9
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for V. V = i[�o,U ] is automatically traceless, Hermitian and anti-commutes with �o. This
generalizes v = φ×u for a tangent vector to φ ·φ = 1. Motivated by (20), let Mo(t) = −2ψψ †

be a separable baryon state; then

V = i

(
0 −U−+

(
2 + M++

o

)
(
2 + M++

o

)
U+− [

M++
o , U++

]
)

= 2i

(
0 −U−+(1 − ψψ †)

(1 − ψψ †)U+− [U++, ψψ †]

)
.

(36)

Here, 1 = I ++ is the identity on H+. We let U−− = 0 since it does not contribute. U++ and
U+− are the unknowns. Recall that for mesonic oscillations around M = 0, the constraint
implied V ++ = 0 = U++.

5.2. Gauge-fixing freedom in the choice of U for fixed V = i[�o,U ]

Our solution V = i[�o,U ] to constraint (35) is unchanged under U �→ U+Ug , if [Ug,�o] = 0.
This generalizes the fact that if φ × u = v is tangent to S2

φ·φ=1 at φ, then so is φ × (u + ug)

for any ug parallel to φ. We eliminate this redundancy by imposing a gauge condition picking
out one member from each equivalence class U ∼ U + Ug . A convenient condition can be
used to kill some entries of U. To understand the extent of the gauge freedom, we first find
the commutant {�o}′, i.e. the pure-gauge matrices [�o,Ug] = 0. For Mo = −2ψψ † with
εψ = ψ and ψ †ψ = 1, this becomes

(i)
[
Pψ,U++

g

] = 0 and (ii) PψU+−
g = U+−

g . (37)

Pψ = ψψ † projects to span(ψ) in H+. (i) states that U++
g ∈ {Pψ }′, which we characterize by

extending ψ0 ≡ ψ to an orthonormal basis for H+: {ψk}∞0 . The commutant of Pψ consists of
the Hermitian matrices

U++
g = a00ψ0ψ

†
0 +

∑
k,l�1

aklψkψ
†
l = (a00, 0|0, A) with a00 ∈ R. (38)

Here A : span⊥
ψ → span⊥

ψ . To find U+−
g , let {ηk}∞0 be an orthonormal basis for H− and write

(37) (ii) as

U+−
g =

∑
k,l�0

uklψkη
†
l = PψU+−

g =
∑
l�0

u0lψ0η
†
l . (39)

The solution is ukl = 0 for k �= 0 and u0l is arbitrary. Equations (38) and (40) characterize the
pure-gauge Ug:

U+−
g =

∑
l�0

u0lψ0η
†
l =

(
u00 u01 · · · u0l · · ·

0

)
with u0l being arbitrary. (40)

Gauge-fixing conditions: the gauge freedom (40) is used to kill the first row of U+−.
This is equivalent to imposing PψU+− = 0 or ψ †U+− = 0. Similarly, the pure-gauge U++

g ’s
(38) can be used to kill the 00 entry and all but the first row and column of U++. So most
of U++ is pure gauge. Thus in the mostly zero gauge, U may be taken in the form (�0 and �u
represent column vectors)

U−− = 0, U−+ = (�0 W), U++ = (0, �u†|�u, 0) = uψ † + ψu†, where

W : span⊥
ψ → H−; �u = (u1u2 · · ·)t , ψ0 ⊥ u =

∑
k�1

ukψk ∈ H+. (41)

For mesonic oscillations V ++ = U++ = 0 (14) but around a baryon, U++ can be taken of rank 2.
The physical degrees of freedom are encoded in a vector u ∈ H+ and a matrix (U−+)† = U+−

in the

mostly zero gauge: ψ †u = 0, ψ †U+− = 0 and U−− = 0. (42)

10
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So ψ is ⊥ to the excitation U. For example17 the rank-1 ansatz U−+ = ηφ† with φ, η ∈ H±
and φ†ψ = 0. The g.s. time dependence is simple, ψ̃t (p) = ψ̃0(p) eipt/2 (20). So if at t = 0,
φ
†
0ψ0 = 0, then orthogonality is maintained if φ̃t (p) = φ̃0(p) e−ipt/2. To summarize, if U is

picked in gauge (42), then by (36)

V =
(

0 V −+

V +− V ++

)
= i

(
0 −U−+(2 + Mo)

(2 + Mo)U
+− [Mo,U

++]

)
= 2i

(
0 −U−+

U+− uψ † − ψu†

)
.

(43)

Conversely, U(V ) is defined up to addition of a pure-gauge Ug. Given V, we can find a
convenient representative in the equivalence class of U’s that it corresponds to. In the mostly
zero gauge, upon using u†ψ = 0, we get u = 1

2iV
++ψ .18 Thus, U++ = uψ † + ψu† =

− i
4 [V ++, 2ψψ †]. In this gauge, U+− ∝ V +−. Given V, the most general corresponding U is

the sum of any Ug ∈ {�o}′ ((38) and (40)) and

Umostly zero gauge =
(

0 U−+

U+− U++

)
= 1

2i

(
0 −V +−

V +− [V ++, ψψ †]

)
. (44)

5.3. Linearized equations of motion for perturbation V

For M(t) = Mo(t) + V (t), (9) becomes i∂t (Mo + V ) = 2
[
E′

Mo+V ,�o + V
]
. The solution

describes a curve M(t) on the B = 1 component of phase space. Our g.s. is time
dependent, so this is like the effect of Jupiter on the motion of Mercury. For the nucleon,
we refer to resonances created by scattering a π, e− or ν off the proton. From (10),
E′(Mo + V ) = E′(Mo) + g̃2

4 GV , so linearizing,

i

2
V̇ =

(
− i

2
∂tMo + [E′(Mo),�o]

)
+ [E′(Mo), V ] +

g̃2

4
[GV ,�o] + O(V 2). (45)

The terms in round brackets add to zero if Mo(t) satisfies the eom, as does our baryon g.s.
(20). So

1

2
V̇ = i[V,E′(Mo)] − ig̃2

4
[GV ,�o] = i[V, T ′] − ig̃2

4
{[GMo

, V ] + [GV ,�o]}. (46)

Here T ′ = −h/2. To see the departure from ’t Hooft’s meson equation write V̇ = H = H1+H2

with

H1 = i[h, V ] − ig̃2

2
[GV , ε] and H2 = − ig̃2

2
{[GMo

, V ] + [GV ,Mo]}. (47)

H1 is independent of Mo and leads to ’t Hooft’s meson equation (17) if Mo = 0. H2 has
‘baryon–meson’ interactions leading to many complications. In blocks, the eom are(

0 V̇ −+

V̇ +− V̇ ++

)
= i

(
0 [h, V −+]

[h, V +−] [h, V ++]

)

− ig̃2

2

(
[GM,V ]−− [GM,V ]−+ + G−+

V (2 + M++)

−h.c. [GM,V ]++ +
[
G++

V ,M++
]

)
. (48)

17 A more general example of a matrix with ψ in its kernel is U−+ = U−+(1 − Pψ) for any matrix U−+.
18 Since u ⊥ ψ , this is consistent only if V ++ψ ⊥ ψ , i.e. ψ†V ++ψ = 0, which is the same as the condition
tr M++

o V ++ = 0. But this is guaranteed by constraint (35) 2V ++ = [V ++, M++
o ] upon multiplying by M++

o and taking
a trace.

11
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5.4. Linearized time evolution preserves constraints

Equation (46) describes the motion of a point V (t) in the tangent bundle of the Grassmannian
restricted to the base Mo(t). To establish this, we show that (46) preserves hermiticity of V
and the linear constraint (35). If V is Hermitian at time t, then so are GV, GMo

and H(V ). By
(46), V (t + δt) is also Hermitian. As for the linear constraint, suppose �o(t) is the solution of
(9) about which we perturb by V (t), and define a constraint function C(t) = [�o(t), V (t)]+,
which satisfies C(0) = 0. Then using (46)

i

2
Ċ = i

2
{[�̇o, V ]+ + [�o, V̇ ]+} = [[

E′
Mo

,�o

]
, V

]
+ +

[
�o,

[
E′

Mo
, V

]]
+ +

g̃2

4
[�o, [GV ,�o]]+.

(49)

To find the unique solution of this autonomous linear system of first-order ODEs, we make
the guess C(t) ≡ 0 which annihilates the lhs. On the rhs, the first two terms cancel as
[�o, V ] = 0. The third term vanishes as �2

o = I (section 1.2). So C(t) = 0 is the unique
solution and (46) preserves the linear constraint. Corollary: As both V (t) and V (t + δt)

satisfy the constraint, so does the difference quotient H(V (t)). And when H is split as in (46),
both [E′(Mo), V ] and [G(V ),�o] satisfy the linear constraint if V does. But if H is split as in
(47), H1 and H2 do not each satisfy (35), except at Mo = 0.

5.5. Equation of motion in ‘−−’ block: orthogonality of excited states

The −− block of the eom (48) is simplest as it is non-dynamical, [G(Mt), V (t)]−− = 0. This is
necessary for consistency of the eom. It states that V −+ G+−

M : H− → H− is always Hermitian:

G(Mt)
−+V +−

t = V −+
t G(Mt)

+−. (50)

Using the constraint V −+M++ = 0 (35), we show that V −+G+−
M ≡ 0! Our argument uses the

exponential form of the g.s. Mo(t) (20), but there may be a more general proof. We simplify
(50) using the fact that the g.s. interaction operator (C.9) is always of rank 1. Putting

G̃(Mt)
−+
pr = (2/P ) e−r/2P e− i

2 rt e−p/2P e
i
2 pt I2(−p) in (50)

⇒
∫ ∞

0
[dr] e

i
2 (p−r)t e− p+r

2P I2(−p)V +−
rq =

∫ ∞

0
[dr]V −+

pr e
i
2 (r−q)t e− r+q

2P I2(−q)

(51)

for all p, q < 0. Dividing by I2 �= 0 (C.4) and using ψ̃t (r) ∝ θ(r) e−r(1/P−it)/2 (20), we get∫ ∞
0 [dr]ψ̃t (r)V

+−
rq

I2(−q)e− q

2 ( 1
P

−it)
=

∫ ∞
0 [dr]V −+

pr ψt (r)

I2(−p) e− p

2 ( 1
P

−it)
= c(t), ∀p, q < 0. (52)

The lhs and rhs depend on q and p, respectively, so they must be equal! c(t) ∈ R by
hermiticity. So (50) becomes∫ ∞

0
[dr]Ṽ −+

pr ψ̃t (r) = c(t) e− p

2 ( 1
P

−it)I2(−p), ∀p < 0. (53)

V −+ maps the g.s. to c(t)× a vector in H−. But V annihilates the g.s: V −+M++
o = 0 (35)! So

c(t) ≡ 0, V −+G+−
Mo

= 0 and [GMo
, V ]−− ≡ 0. It states that the excited states are ⊥ to the g.s.

5.6. Lack of translation invariance: failure of the ansatz V +−
pq (t) = χ̃t (ξ)

In the +− block of the eom (48), let us try what worked for mesons (section 3). Around
the translation-invariant M = 0 vacuum, V +−

pq (t) = χ̃t (ξ, Pt ) could be taken independent of

12
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Pt = p − q (16). For oscillations around a non-translation-invariant baryon Mo (19), such
an ansatz does not work; Pt cannot be regarded as the momentum of Ṽ . The orthogonality
constraint V −+M++

o = 0 (35) is violated if χ̃ is independent of p−q. To see this, V −+M++
o = 0

is expressed using M̃ = −2ψψ † as∫ ∞

0
χ̃ (ξ, t)ψ̃t (q) dq = 0, ∀p < 0 ⇔

∫ 1

0
χ̃(ξ, t)ψ̃t (p(1 − ξ−1))

dξ

ξ 2
= 0, ∀p < 0.

(54)

χ̃t must be ⊥ to each of fp(ξ ; t) = ψ̃t (p(1 − 1/ξ))/ξ 2 for p < 0 at all times t. For example,
at t = 0,

fp(ξ) = ξ−2ψo(p(1 − 1/ξ)) ∼ ξ−2 exp{−p(1 − 1/ξ)} for p < 0. (55)

fp(ξ) are linearly independent positive functions going from fp(0) = 0 to fp(1) = 1 with
maxima shifting rightwards as 0 � p � −∞. Plausibly, for χ̃ to be ⊥ (in L2(0, 1)) to all
of them requires χ̃ ≡ 0. So non-trivial Ṽ +−

pq must depend on p−q. It seems prudent to work
instead with the unconstrained U.

5.7. Linearized evolution of the unconstrained perturbation U

To find the linearized evolution of U, we put V = i[�o,U ] in (46)

i[�o, U̇ ] = [[�o,U ], h] +
g̃2

2
[G[�o,U ], ε] +

g̃2

2
{[GMo

, [�o,U ]] + [G[�o,U ],Mo]}. (56)

Some entries of U are redundant due to gauge freedom. So we derive the eom in the mostly
zero gauge in terms of the vector u and matrix U+− (41). This requires some care. The eom
do not know our gauge choice, and we must not expect them to preserve the gauge conditions
(42) ψ †u = 0 and ψ †U+− = 0. Using (43), we begin by writing (the tentative nature of this
evolution is conveyed by

.=)

2iu̇
.= V ++ψ̇ + V̇ ++ψ, 2iU̇+− .= V̇ +−. (57)

Here, ψ̇t (p) = 1
2 ipψ̃t (p), if ψ is chosen as the g.s. valence quark wavefunction in the chiral

limit (20). We use the eom (48) for V and (43) to express the rhs in terms of u,U+−. For
example,

2iu̇
.= 2i(uψ † − ψu†)ψ̇ + 2[uψ † − ψu†, h]ψ − g̃2

{[
uψ † − ψu†,G++

M

]
+ G+−

M U−+ + U+−G−+
M

}
ψ − ig̃2[ψψ †,G++

V

]
ψ. (58)

GV is given in appendix C.1. We regard these as equations for (u,U+−)(t+δt) given (u,U)+−(t)

satisfying the gauge conditions (42). So on the rhs we can use (42) to simplify

iu̇
.= i(uψ † − ψu†)ψ̇ + (uψ † − ψu†)hψ − hu

+
g̃2

2

{
G++

M u − (uψ † − ψu†)G++
M ψ − U+−G−+

M ψ − iPψG++
V ψ + iG++

V ψ
}
,

iU̇+− .= [U+−, h] +
g̃2

2

{
(ψu† − uψ †)G+−

M − U+−G−−
M + G++

M U+− + i(1 − Pψ)G+−
V

}
.

(59)

But we have a problem. This evolution does not preserve the gauge-fixing conditions:

i
d

dt
(ψ †u)

.= iψ̇ †u − u†hψ − ψ †hu +
g̃2

2

{
ψ †G++

M u + u†G++
M ψ

} �= 0,

i
d

dt
(ψ †U+−)

.= iψ̇ †U+− − 2ψ †hU+− + g̃2
{
u†G+−

M + ψ †G++
M U+−} �= 0.

(60)
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But at each time step, we may add to U(t + δt) a pure-gauge Ug(t + δt) to bring it to the mostly
zero gauge, so that at t + δt , ψ †u = 0 and ψ †U+− = 0. This corresponds to subtracting out
the instantaneous projections on ψ and defining a new time evolution that preserves (42)

iu̇ := 1
2 (1 − Pψ)(V ++ψ̇ + V̇ ++ψ) and iU̇+− := 1

2 (1 − Pψ)V̇ +−. (61)

This projection involves no approximation. We use (42) to simplify the rhs to get19

iu̇ ≡ −l = iuψ †ψ̇ + {ψ †hψ − [1 − Pψ ]h}u

− g̃2

2

{
ψ †G++

M ψu + U+−G−+
M ψ − [1 − Pψ ]

(
G++

M u + iG++
V ψ

)}
iU̇+− ≡ −L+− = U+−h − [1 − Pψ ]hU+−

− g̃2

2

{
uψ †G+−

M + U+−G−−
M − [1 − Pψ ]

(
G++

M U+− + iG+−
V

)}
. (62)

Our goal is small oscillations around the baryon. We write (62) as a Schrödinger equation,
where the wavefunction consists of a vector u and a matrix U+− and the Hamiltonian is the
pair (l, L+−):

− i
d

dt

(
u

U+−

)
=

(
l(u, u†, U+−, U−+)

L+−(u, u†, U+−)

)
. (63)

However, (l, L+−) depend on u,U+− and u†, U−+ through GV in (62). Indeed, from appendix
C.1,

G+−
V = 2iG(uψ † − ψu† + U+−)+−,

1

2i
G++

V = G++
uψ†−ψu† − G++

U−+ + G++
U+− . (64)

So the time dependence does not factorize under separation of variables20. This prevented us
from finding oscillatory solutions to the full system (62) using (ω is complex a priori)

ũp(t) = ũp ei(ω+p/2)t and Ũ+−
pq = Ũ+−

pq ei(ω+(p−q)/2)t . (65)

5.8. Eigenvalue problem for oscillations in approximation u = 0

We make an ansatz that permits us to find oscillations around the baryon. V is a meson bound to
Mo whose valence-quark wavefunction is ψ . u and U+− represent valence and sea/antiquarks
in V, respectively. Mesons are usually described as a quark–antiquark sea. This suggests
putting u = 0. Moreover, for mesons around the vacuum, V +− ∝ U+− �= 0 (section 3),
and our analysis should reduce to that far from the baryon. For u to remain zero under time
evolution (62), a consistency condition must hold for g̃ �= 0:

iu̇ = − g̃2

2

{
U+−G−+

M − i(1 − Pψ)G++
V

}
ψ = 0, where G++

V = 2i
{
G++

U+− − G++
U−+

}
.

(66)

It states that ψ is in the kernel of a certain operator. Equation (66) is studied in
appendix G. Hilbert–Schmidt U+− obeying (66) and ψ †U+− = 0 form the physical subspace

19 Signs of l, L+− are chosen so that the Hamiltonian in section 5.8 is positive. Some integrals are IR divergent if

ψ̃(p) ∝ e−p/2P θ(p) is the exact chiral g.s. For example for the regulator of section 4.1.1, ψ†hψ = 1
2 ( 1

2 +a+ μ2

a
). We

suspect that all divergences cancel in physical quantities, as for the lightest baryon. Also, most of these divergences
disappear for the ansatz u = 0 studied in sections 5.8–5.10.
20 We are looking for vibrations about a time-dependent state ψ̃t (p) = ψ̃o(p)eipt/2. The momentum-dependent
phases in u and U+− guarantee that the gauge conditions ψ

†
t ut = 0 and ψ

†
t U

+−
t = 0 remain satisfied if they initially

were.
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for the ansatz u = 0. Now we assume oscillatory behaviour about the time-dependent g.s.
The time dependence in the eom (62) factorizes

U+−
pq (t) = U+−

pq ei(ω+ p−q

2 )t ⇒
(

ω +
p − q

2

)
U+−

pq ei(ω+ p−q

2 )t = L+−(U+−)pq ei(ω+ p−q

2 )t .

(67)

Let K+−(U+−) = L+−(U+−) +
[
U+−,

p

2

]
. We get an eigenvalue problem for the excitation

energies ω above the g.s. of the baryon21. The correction
[
U+−,

p

2

]
accounts for the time

dependence of the g.s.:

K+−(U+−) =
[
U+−,

p

2

]
+ (1 − Pψ)hU+− − U+−h

+
g̃2

2

{
U+−G−−

M − (1 − Pψ)
(
G++

M U+− − 2G+−
U+−

)} = ωU+−. (68)

The eigenvector is a matrix U+− with ψ in its left nullspace and constrained by (66). Similarly,

K−+(U−+) =
[p

2
, U−+

]
+ U−+h(1 − Pψ) − hU−+

+
g̃2

2

{
G−−

M U−+ − (
U−+G++

M − 2G−+
U−+

)
(1 − Pψ)

} = ω∗U−+

⇒ K̂(U) =
(

0 K−+(U−+)

K+−(U+−) 0

)
=

(
0 ω∗U−+

ωU+− 0

)
. (69)

An advantage of the ansatz u = 0 is that K+− depends only on U+−. K̂ is Hermitian with
respect to the Hilbert–Schmidt inner-product defined in appendix E:

(U, K̂(U)) = (K̂(U), U) i.e. � tr U−+K̂(U)+− = � tr K̂(U)−+U+−. (70)

Indeed, cyclicity of tr, the gauge condition U−+ψ = 0 and self-adjointness22 of Ĝ (C.1) imply

tr U−+K̂(U)+− = tr

[
U−+

[
U+−,

p

2

]
+ U−+(1 − Pψ)hU+− − U−+U+−h

+
g̃2

2

{
U−+U+−G−−

M − U−+(1 − Pψ)
(
G++

M U+− − 2G+−
U+−

)}]

= tr

[ [p
2
, U−+

]
U+− + U−+hU+− − hU−+U+−

+
g̃2

2

{
G−−

M U−+U+− − U−+G++
M U+− + 2G−+

U−+U
+−}]

= tr K̂(U)−+U+−. (71)

The original linearized H(V ) (47) is not self-adjoint. By passing from V �→ U , eliminating
redundant variables and imposing u = 0, we isolated a subspace on which the linearized
evolution admits harmonic time dependance and is formally self-adjoint. K̂† = K̂ ⇒ ω = ω∗.
The eigenmodes U+− thus describe oscillations about the baryon. Without translation
invariance, we use PM = −tr p(Mo+V )/2 = P +PV (appendix A) as the excitation momentum
instead of Pt (section 5.6). So the mass2 per colour is M2

M = PM(2EM − PM). For small
oscillations, EMo+V ≈ Eo + ω where Eo is the g.s. energy. 2Eo � P where P is the g.s.
momentum. In the chiral limit, 2Eo = P (section 4.1.1), so

M2
Mo+V = PM(2EM − PM)

≈ (P + PV )(2Eo + 2ω − P − PV )
m→0−→ (P + PV )(2ω − PV ). (72)

21 Recall (8) that p is the Hermitian operator with kernel ppq = 2πδ(p − q)p.
22 This means that tr U−+G+−

U+− = tr G−+
U−+ U+−, which follows from the definition of G̃(U)pq .
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Since V � Mo, we expect |PV | � P , so P + PV ≈ P > 0. To ensure23 M2
Mo+V � 0, we

need 2ω � PV − (2Eo − P) or in the chiral limit, 2ω � PV . But for u = 0, PV = 0 by (43).
So

u = 0 ⇒ M2 = P(2EM − P) ≈ P(2Eo + 2ω − P)
m→0−→ 2ωP. (73)

So K̂ and ω should be � 0 in the chiral limit. Define the parity of meson V as even if
Ṽpq is real symmetric and odd if it is imaginary antisymmetric. For the ansatz u = 0,
the eigenvalue equation (68) and (69) follows from a variational principle. If we extremize
E = (U, K̂(U)) = tr U−+K̂(U)+−,

E = tr

[ (
h − p

2

)
{U+−U−+ − U−+U+−}

+
g̃2

2

{
G−−

M U−+U+− − G++
M U+−U−+ + 2G−+

U−+U
+−}]

, (74)

holding ‖U‖2 = (U,U) = tr U−+U+− fixed via the Lagrange multiplier ω, we get (68)

δ

δU−+
qp

{
tr U−+

rs K̂(U+−)+−
sr − ω tr U−+

rs U+−
sr

} = 0 ⇒ K̂(U)+−
pq = ωU+−

pq . (75)

We treated U+−
sr = U−+∗

rs and U−+
rs = U+−∗

sr as independent variables and used the fact that
K̂+− depends only on U+−. We must solve the eigenvalue problem (68) on a space of U+−

examined in appendix G. In section 5.9 we interpret the terms in the variational energy E , and
approximately minimize it in section 5.10.

5.9. Rank-1 ansatz U+− = φη†: sea quarks and antiquarks

Let U+− = φη†, with φ, η ∈ H± being the sea/antiquark wavefunctions of the excited baryon.
They have antiquarks even if the lightest one does not, just as mesons have antiquarks though
the vacuum does not. Equation (75) states to hold tr U+−U−+ = ‖φ‖2‖η‖2 fixed and extremize
the linearized energy (U, K̂(U))

E(U) = tr
(
h − p

2

)
[‖η‖2φφ† − ‖φ‖2ηη†]

+
g̃2

2
tr
[‖φ‖2G−−

M ηη† − ‖η‖2G++
M φφ† + 2G−+

ηφ†φη†] (76)

on the physical subspace. If we factor out ‖U‖2 = ‖φ‖2‖η‖2 and work with unit vectors φ

and η,

E(U)/‖U‖2 = tr

[(
h − p

2

)
(Pφ − Pη) + g̃2

(
G−+

ηφ†φη† +
1

2
PηG

−−
M − 1

2
PφG++

M

)]
. (77)

Here Pη = ηη† and Pφ = φφ†. The variational principle cannot determine ‖φ‖ or ‖η‖. Recall
that 2h = p + μ2/p with μ2 = m2 − g̃2/π , so the kinetic and self-energies T of sea-partons
are

T = tr
(
h − p

2

)
(Pφ − Pη) = μ2

2

∫
[dp]

p
[|φ̃p|2 − |η̃p|2]. (78)

In the chiral limit T < 0 is purely self-energy. Equation (78) is valid for excitations around
the massless Mo(t) (20). If the lightest baryon were static, then h − p/2 �→ h. Interactions
are simply interpreted in position space. As φ, η ∈ H± the block designations in (77) are

23 2ω � Pt for ’t Hooft’s meson operator (18), since meson mass2’s were � 0 if m � 0 [2].
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automatic (tr PηG
−−
M = tr PηGM , etc). Thus, the Coulomb energy g̃2Vc of the sea quarks φ

interacting with antiquarks η is positive

Vc = tr Gηφ†φη† =
∫

dx dy|φ(x)|2 1

2
|x − y||η(y)|2 =

∫
dx|φx |2v(x) > 0. (79)

Here v(x) = 1
2

∫ |ηy |2|x − y|dy obeys Poisson’s equation. The exchange interaction of
sea-partons and ‘background’ valence quarks ψ is g̃2Ve = g̃2(Veη + Veφ):

Ve = 1

2
tr[PηGM − PφGM ] =

∫
dx dyψ∗(x)ψ(y)

1

2
|x − y|{φ(x)φ∗(y) − η(x)η∗(y)}. (80)

Now v(x) = 1
2

∫
ψyφ

∗
y |x−y| dy and w(x) = 1

2

∫
ψyη

∗
y |x−y| dy both obey Poisson’s equation.

Then Veη = ∫ |w′(x)|2 dx > 0 and Veφ = − ∫ |v′(x)|2 dx < 0. However, sgnVe is not clear
a priori. Thus, the energy E = T + g̃2(Vc + Ve) has a simple relativistic potential-model
meaning. In the chiral limit, the mass of an excited baryon is M2 = 2Pω, where P is the g.s.
momentum and ω = min E (73).

5.10. Crude estimate for mass and shape of the first excited baryon in the chiral limit

To estimate the mass and form factor U+− = φη† of the first excited baryon (19), we must
extremize E (77) holding ‖U‖ = 1 and restrict to U+−, satisfying the gauge and consistency
conditions (appendix G). We have not yet solved the consistency condition (G.2), an
intricate orthogonality condition. But even without it, the interacting parton model derived in
section 5.9 may be postulated as a mean-field description of excited baryons. So as an
approximation, we impose ψ †φ = 0 but ignore (G.2). Our ansatz for the unit norm η, φ

contains two parameters a, b controlling the decay of sea-parton wavefunctions24

ψ̃p =
√

4πc e−cpθ(p), φ̃p =
√

8πbb2(b + c)√
b2 + 3c2

p

(
p − 2

b + c

)
e−bpθ(p),

η̃p = −ap
√

8πa eapθ(−p). (81)

A boost rescales p. We choose our frame by fixing the momentum P = 1/2c of the g.s. Since
φ̃, η̃ have been chosen real, Ṽ = i[�̃o, Ũ ] = 2i(0,−η̃φ̃T |φ̃η̃T , 0) has odd parity, Ṽ T = −Ṽ .
The minimum of E = T + g̃2(Vc + Ve) among (81) is the (approx.) energy of the first excited
baryon. But it is not an upper-bound, as we ignored (G.2). In the chiral limit, the self-energy
is T = Tφ + Tη:

Tφ = tr
(
h − p

2

)
Pφ = − g̃2(3b2 − 2bc + 3c2)

4π(b2 + 3c2)/b
, Tη = tr

(p
2

− h
)

Pη = − g̃2a

2π
. (82)

Tη, Tφ are minimized as a, b → ∞. By real symmetry of G(M) (appendix C) and Pη, the
exchange integral

Veη = 1

2
tr PηG

−−
M =

∫
[dp]η̃p

∫
[dq]η̃qG(M)−−

p>q

= 4a2P

π(1 − 2aP )4

{
(1 − 2aP )2 + 8aP log

8aP

(1 + 2aP )2

}
. (83)

24 To be accurate in the chiral limit m → 0, φ̃p and η̃p should probably vanish like small positive powers of p as
p → 0±, just as the valence quark wavefunction ψ does. But to keep the calculation of E simple, we chose the
smallest integer powers (φ̃p ∼ p2 and η̃p ∼ p) that ensure the absence of IR divergences and orthogonality ψ†φ = 0.
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Veη > 0 since G(M)−−
pq and η̃q are positive. Veη increases with a; it vanishes at a = 0. We

cross-checked this using Veη = ∫ |w′(x)|2 dx (80). Veφ = ∫
dxv(x)v′′(x)∗ (80) is minimized

as b → ∞:

Veφ = −1

2
tr PφG++

M = −
∫ ∞

0
[dp]φ̃p

∫ p

0
[dq]φ̃qG(M)++

p>q = − 2b2P

π(3 + 4b2P 2)
< 0. (84)

So the exchange energy is the difference of two positive quantities g̃2Ve = g̃2(Veη + Veφ). As
for the Coulomb energy (79), Vc = ∫ |φ(x)|2v(x) dx, with v(x) = 1

π

(
a + x arctan x

a

)
:

Vc = a2(a + 2b)(b2 + 3c2) + 2b2(2a + b)(b2 + c2)

π(a + b)2(b2 + 3c2)
, where 2Pc = 1. (85)

So T and Veφ prefer large, while Vc and Veη prefer small values of a and b. What about
E = T + g̃2(Veφ + Veη + Vc)? a and b are lengths, so define dimensionless parameters
α = aP and β = bP . In the chiral limit, the minimum M2

1 of 2EP is the mass2 of the
first excited baryon (73), so it must be Lorentz invariant: independent of P. g̃ is the only
other dimensional quantity, so E = g̃2e(α, β)/P , where e is a function of the dimensionless
variational parameters. We find

πe = α

2
− 12β3 − 4β2 + 3β

4(4β2 + 3)
+

α + 2β + 12αβ2 + 8β3

β−2(α + β)2(4β2 + 3)
− 2β2

4β2 + 3

+
(1 − 2α)2 + 8α log 8α

(2α+1)2

(4α)−2(1 − 2α)4
. (86)

As there is no other scale, the minimum of e should be at α, β ∼ O(1). But as figure 1(a)
of level curves of e indicates, the minimum is e = 0 as α, β → 0+, corresponding to the
pathological state where both φ̃ and η̃ (81) tend point-wise to zero! If both α and β are the
free parameters, the minimum occurs on the boundary of the space of rank-1 states U+− = φη†

obeying the gauge condition. Perhaps this was to be expected: without imposing (G.2), we
are exploring unphysical states! In the spirit of getting a crude estimate sans imposing (G.2),
we put α = 1, and minimize in β to find βmin = 0.445 with e(1, βmin) = 0.205. So our crude
estimate25 for the mass/colour of the first excited baryon in the chiral limit is M1 = 0.29g̃.
Figure 1(b) has the approximate valence, sea and antiquark densities (81) with the parameters
aP = 1, bP = βmin and 2cP = 1. The momentum/colour P of the lightest baryon sets the
frame of reference. However, this is not an upper-bound on the mass gap, M1 could be an
underestimate as we did not impose (G.2). There is still the unlikely possibility of zero modes
other than the one-parameter family of states associated with the motion of the lightest baryon
(section 4).

6. Discussion

We found that the lightest baryon has zero mass/colour in the chiral limit of large-N QCD1+1.
There is no spontaneous chiral symmetry breaking in this sense. Being massless, it evolves at
the speed of light into a family of massless even parity states (section 2). They have the same
quark distributions M̃(p, p), differing only in off-diagonal form factors M̃0(p, q) ei(p−q)t/2.
The other modulus of the baryon is its size 1/P . P is its mean momentum/colour, fixed by the
frame. Excited baryons (small oscillations around Mo) are like bound states of a meson V with
Mo. On eliminating redundant variables, we derived an approximate eigenvalue problem for a

25 As the plot shows, if we set β = 1 and minimize in α, then αmin = 0.212 with M = 0.32g̃, which is roughly the
same.
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(a) (b)

Figure 1. (a) Level curves of the dimensionless energy e(α, β). (b) Valence, sea and anti-quark
densities in the excited baryon for P = 1, α = 1, β = .445. The orthogonality of sea and
valence (φ†ψ = 0 gauge condition) implies that φ̃(p) has a node. The normalization of anti/sea
distributions is arbitrary and small compared to the valence distribution. One may contrast these
with the first excited meson for which |χ̃ (ξ)|2 ≈ sin2 πξ where ξ, 1−ξ are the quark and antiquark
momentum fractions.

singular integral operator to determine the form factors U+− and masses of excited baryons26.
Based on the ansatz U+− = φη†, we derived an interacting mean-field parton model for the
structure of excited baryons (section 5.9). Using simple trial anti/seaquark wavefunctions
η, φ, we estimated the mass and shape of the first excited baryon for which V has odd parity
(analogue of Roper resonance). The baryon Mo breaks translation invariance, deforms the
vacuum and consequently deforms the shape of the meson V. Unlike the mesons χ̃(ξ) near
the Dirac vacuum, where ξ ↔ 1 − ξ relates quark and antiquark distributions; the distribution
of quarks |φ̃p|2 and antiquarks |η̃p|2 in V is not simply related. By linearizing around Mo,
we approximated these excited baryons as non-interacting and stable. The nonlinear/linear
treatment of Mo/V also prevented us from assigning a parity to excited baryons. But their
nonlinear time evolution (9) should contain information on interactions and decay. Our
approach is summarized in figure 2.
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Appendix A. Conservation of the mean momentum PM = − 1
2 tr pM

EM and PM were used to define the mass (21) of the baryon and of oscillations above a non-
translation-invariant M̃t (p, q), where the other concept of momentum Pt = p − q is not
meaningful (see section 3). Here we show that PM = − 1

2

∫
pM̃pp[dp] is conserved even if

M(x, y; t) is not static, as long as it decays sufficiently fast: |Mxy |2 ∼ |x|−1−δ for some δ > 0

26 However, we have not quite solved the consistency condition for the approximation u = 0 (appendix G) which
restricts the space of physical states U+−. It is also of interest to find a way of proceeding without this approximation.
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Figure 2. Flowchart of our approach to the baryon spectrum of large-N QCD1+1.

as |x| → ∞ for each y, t . When g̃ = 0, energy T = − 1
2 tr hM is linear. Also, ~p, h̃ and ε̃ are

diagonal, so their commutators vanish. From (4),

∂tP = {T (M), P } = {fh, fp} = f−i[h,p] +
i

2
tr[h, p]ε = 0. (A.1)

So for g �= 0 only U (7) contributes to ∂tPM . U is simpler in position space, so write

PM = −1

2

∫
[dp] dx dyp e−ip(x−y)Mxy = −1

2

∫
dx dyMxyDxy, (A.2)

where Dxy = ∫
[dp]pe−ip(x−y) = i∂xδ(x − y) is Hermitian. So we have a quadruple integral

∂tP = {E(M), P } = {U,P } = − g̃2

16

∫
dx dy dz du

|x − y|
2

Dzu{MxyMyx,Mzu}. (A.3)

We do two integrals and integrate by parts elsewhere to show ∂tP = 0! By (2), the PB is

i{MxyMyx,Mzu} = δyzMyx�xu − δxuMyx�zy + (x ↔ y). (A.4)

After one integration and relabelling variables, ∂tP = − g̃2

8 �I , where I =
i
∫

dy dz�yz

∫
dx|x − y|Mxy∂xδxz. Integrate by parts on x noting that the boundary term

B1(y, z) = [|x − y|δxzMxy]∞−∞ = 0,

I = −i
∫

dy dz�yz|z − y|∂zMzy − i
∫

dy dz�yzsgn (z − y)Mzy. (A.5)

The second term is real and does not contribute to �I . So

∂tP = g̃2

8
�

∫
dx dy�(y, x)|x − y|∂xM(x, y) ≡ g̃2

8
�J. (A.6)
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Integrating by parts, the boundary term vanishes if M falls off sufficiently fast27

J = B2 −
∫

dx dyMxy�yxsgn (x − y) −
∫

dx dyMxy |x − y|∂xεyx

−
∫

dx dyMxy |x − y|∂xMyx. (A.8)

The first two integrals are imaginary and do not contribute to �J , so

∂tP = −1

8
g̃2�K, where K =

∫
dx dyMxy |x − y|∂xMyx. (A.9)

Integrating by parts we express L = K + K∗ = 2�K = − ∫
dx dy|Mxy |2sgn (x − y) + B3.

B3 = ∫
dy[|Mxy |2|x − y|]∞−∞ is familiar to B2 (A.7), and vanishes under the same hypothesis.

Finally, sgn is odd, so ∂tP = −g̃2L/16 = 0. So PM is conserved if |Mxy |2 decays as x−1−δ

for some δ > 0.

Appendix B. Finite part integrals (Hadamard’s partie finie)

A finite part integral is like an ODE; rules to integrate the singular measure are like boundary
conditions (b.c.). Here we define the 1/p2 singular integrals appearing in the potential energy.
In position space this is manifested in the linearly rising |x − y| potential. ’t Hooft [2] defines
them by averaging over contours that go above/below the singularity. Here we formulate
them via real integrals and physically motivate and justify the definition by showing that it
satisfies the relevant b.c. Both methods use analytic continuation. Consider the rank-1 baryon
section 4.1 and suppose support ψ̃ ⊆ [0, P ],

PE =
∫

[dp]ψ̃(p) -
∫

[ds]ψ̃∗(p + s)Ṽ (s), where Ṽ (s) = −s−2W̃ (s). (B.1)

Recall that V ′′ = |ψ |2 with two b.c. (22). So Ṽ (s) = −s−2
∫

[dq]ψ̃(s + q)ψ̃∗(q) is singular
at s = 0. Here W̃ ∗(s) = W̃ (−s), i.e. �W̃ (s) is even and �W̃ (s) is odd28. Now, the two b.c.
imply

V (0) = − -
∫

�W̃ (s)
[ds]

s2
=

∫
|ψ(y)|2 |y|

2
dy,

V ′(0) = -
∫

�W̃ (s)
[ds]

s
= −1

2

∫
dy|ψ(y)|2sgn y.

(B.2)

The lhs of (B.2) do not exist as Riemann integrals since W̃ (0) = 1. But the rhs exists quite
often and can be used to define the lhs. For example, the rhs of V (0) makes sense if ψ decays
faster than 1/y. The rhs of V ′(0) makes sense as long as ψ(y) decays faster than |y|− 1

2 . This
includes |ψ(y)| ∼ 1/|y| as |y| → ∞ corresponding to ψ̃(p) having a jump discontinuity. In
particular, it can be used to define -

∫
W̃ (s)s−1ds even when W̃ ′(p) is discontinuous at p = 0.

Now we eliminate ψ and express singular integrals of W in terms of Riemann integrals of

27 From (1.1) εyx ∼ i(πx)−1 as |x| → ∞ for any fixed y. So the first term in B2 vanishes if Mxy → 0 as |x| → ∞:

B2 =
∫

dy[{εyx + Myx}|x − y|Mxy ]∞−∞. (A.7)

The second term in B2 vanishes iff lim|x|→∞ |Mxy |2|x − y| = 0, for any fixed y. This second condition subsumes the
first. So B2 = 0 provided |Mxy |2 ∼ |x|−1−δ for some δ > 0. This is easily satisfied by our ansatz Mo(x, y) (19) for
the baryon g.s.
28 From section 4.1.1, if ψ̃(p) is (dis)continuous at p = 0, then so is W̃ ′(s) at s = 0. If ψ̃(p) ∼ pa , then
W̃ (s) − 1 ∼ |s|1+2a .
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W . For simplicity, suppose ψ̃(p) ∈ R. Then, ψ(−x) = ψ∗(x), and W̃ is real and even.
The V ′(0) b.c. (B.2) is satisfied. Let us also restrict our attention to wavefunctions such that
ψ̃(p) ∼ pa , a > 0 as p → 0. Our aim is to define − -

∫
1
s2 W̃ (s)[ds], so as to satisfy the first

b.c. The rule should reduce to the Riemann integral, when this quantity is finite to begin with.

Claim. Let W̃ (s) be even and W̃ ′(0) = 0 For P > 0, if we define

-
∫ P

−P

1

s2
W̃ (s)[ds] :=

∫ P

−P

W̃ (s) − W̃ (0)

s2
[ds] − W̃ (0)

πP
, then

-
∫ P

−P

1

s2
W̃ (s)[ds] = −

∫ ∞

−∞
|ψ(x)|2 |x|

2
dx.

(B.3)

Proof. We subtracted divergent terms and analytically continued what we would have got
if W̃ (s) vanished sufficiently fast at the origin (i.e. W(s) ∼ s1+ε, ε > 0) to make the integral
converge. The main point is that this definition satisfies the V (0) b.c. (B.2). Recall that W is
the charge density:

W̃ (s) =
∫ ∞

−∞
|ψ(x)|2e−isx dx, so that W̃ (s) − W̃ (0) =

∫ ∞

−∞
dx|ψ(x)|2(e−isx − 1).

(B.4)

Moreover, W̃ ′(0) = −i
∫ ∞
−∞ x|ψ(x)|2 dx = 0 as the integrand is odd. Therefore, W̃ (s)−W̃ (0)

vanishes at least as fast as s1+ε, ε > 0 as s → 0. For example, for ψ̃(p) ∝ pae−p, W̃ (s)−1 ∝
−s2a+1 + O(s2). Therefore,

∫ P

−P
{W̃ (s) − W̃ (0)}s−2 [ds] < ∞. As the integrand is even it

suffices to consider∫ P

0

W̃ (s) − W̃ (0)

s2
[ds] =

∫ P

0

ds

2πs2

∫ ∞

−∞
dx|ψ(x)|2(e−isx − 1). (B.5)

Only the even part of (e−isx − 1) contributes to the integral on x. Reversing the integrals,
∫ P

0

W̃ (s) − W̃ (0)

s2
[ds] =

∫ ∞

−∞
dx|ψ(x)|2

(
1

2πP
− ν(x)

)
. (B.6)

This involves the sine integral 2πPν(x) = PxSi(Px) + cos(Px). Now W̃ (0) = 1, so
∫ P

0

W̃ (s) − W̃ (0)

s2
[ds] − W̃ (0)

2πP
= −

∫ ∞

−∞
dx|ψ(x)|2ν(x). (B.7)

We must show that ν(x) may be replaced by |x|/4 under the integral. Since Si(t) is odd, we
have

ν(x) = |x|
4

+
1

2πP

(
PxSi(Px) − P |x|π

2
+ cos(Px)

)
= |x|

4
+

R(Px)

2πP
, (B.8)

where R(t) = tSi(t) − |t |π/2 + cos t . We have the desired result except for a remainder term
∫ P

−P

W̃ (s) − W̃ (0)

s2
[ds] − W̃ (0)

πP
=

−
∫ ∞

−∞
|ψ(x)|2 |x|

2
dx − 1

πP

∫ ∞

−∞
|ψ(x)|2R(Px) dx. (B.9)
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When P → ∞, the remainder term → 0 as |R(t)| � 1. For finite P, R(t) ∼ − sin t
t

, |t | → ∞
is oscillatory29, so we expect the remainder term to be small. But it is zero. Consider∫ ∞

−∞
dx|ψ(x)|2R(Px) =

∫ P

0
[dq]

∫ P−q

−q

[dr]ψ̃(q + r)ψ̃∗(q)

∫ ∞

−∞
dx eirxR(Px).

R(t) is even and
∫ ∞

−∞
dx eirxR(Px) = 2

∫ ∞

0
dx cos(rx)R(Px) = 0,

(B.10)

from the properties of Si, provided |r| < P , which is the region of interest. Thus the remainder
term vanishes, and we have shown that our definition of the ‘finite part’ integral satisfies the
b.c. This justifies our definition (B.3) when W̃ (s) is even and W̃ ′(0) = 0. �

According to (B.3), -
∫ P

−P
dr
r2 = − 2

P
. Moreover, it makes sense to define -

∫ P

−P
dr
r

:= 0 since
the integrand is odd. We use these to extend the definition to functions on an even interval
[−P,P ] but with W ′(0) possibly non-zero. Suppose W(s) is continuously differentiable at
s = 0 with W(s) − W(0) − sW ′(0) ∼ s1+ε for some ε > 0 and s sufficiently small. Then we
define

-
∫ P

−P

ds

s2
W(s) :=

∫ P

−P

ds

s2
[W(s) − W(0) − sW ′(0)] − 2

P
W(0). (B.11)

This is used to evaluate Ĝ(Mo) in appendix C. In general, this rule is applied in a small
neighbourhood [−ε, ε] of the singularity. The first term on the rhs of (B.11) vanishes as
ε → 0 giving

-
∫ ∞

−∞
W(s)

ds

s2
:= lim

ε→0

[{∫ −ε

−∞
+

∫ ∞

ε

}
W(s)

ds

s2
− 2

ε
W(0)

]
. (B.12)

Appendix C. Interaction operator Ĝ and Ĝ(M ) for baryonic vacua

Ĝ is the operator on Hermitian M defining (7) the potential energy 8U = g̃2 tr MĜ(M). Ĝ(M)

is a Hermitian matrix with the kernel G(M)xy = 1
2Mxy |x −y| or G̃(M)pq = − -

∫ [dr]
r2 M̃p+r,q+r .

The null-space of Ĝ consists of the diagonal Mxy = m(x)δ(x − y), which do not lie on the
phase space (3) except for M = 0. U is positive definite. The matrix elements of Ĝ are real

Ĝzw
xy = 1

2
|x − y|δ(x − z)δ(w − y), where G(M)xy =

∫
dz dwĜzw

xy Mzw. (C.1)

The entries Ĝzw
xy are symmetric under a left–right flip Ĝzw

xy = Ĝwz
yx , which means M �→ G(M)

preserves hermiticity. Moreover Ĝzw
xy = Ĝ

yx
wz, which implies that Ĝ is Hermitian as an operator

on Hermitian matrices (appendix F). In momentum space, G̃rs
pq = G̃sr

qp = G̃
pq
rs are real, with

G̃(M)pq = ∫
[dr ds]G̃rs

pqM̃rs . Here G̃rs
pq = − -

∫ [dt]
t2 δr

p+t δ
s
q+t and δ

q
p ≡ 2πδ(p − q). G(M)xy

is simple, but the Fourier transform G̃(M)pq is sometimes more convenient to solve the eom
(e.g. section 4.2, (68)). At the baryon vacua M(τ) (20):

G̃(M(τ))pq = −e
i
2 (p−q)τ -

∫
[dr]

r2
M̃(0)p+r,q+r = e

i
2 (p−q)τG(Mo)pq. (C.2)

So it suffices to take τ = 0. For Mo = −2ψoψ
†
o (19) with ψ̃o real, G̃Mo

is symmetric. G(M)xy

is not of rank 1. But ψo(p + r) ∼ e−pe−r θ(p + r) factorizes, ensuring that G(Mo)
±∓ are of

rank 1. In general,

G̃(Mo)pq = 2

P
exp

(
−p + q

2P

)
-
∫ ∞

max(−p,−q)

dr

r2
e−r/P . (C.3)

29 The asymptotic expansion of Si(t) for large t is Si(t) ∼ π
2 + (− 1

t
+ O(t−3)) cos t + (− 1

t2 + O(t−4)) sin t .
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If p or q < 0, then t ≡ max(−p,−q) = −min(p, q) > 0 and there is no singularity:

I2(t) =
∫ ∞

t

dr

r2
e−r/P = e−t/P

t
+

1

P
Ei

(
− t

P

)
> 0, for t > 0. (C.4)

Here Ei(z) = − ∫ ∞
−z

e−u

u
du. I2(t) monotonically decays from ∞ to 0 exponentially, as t goes

from 0 to ∞. Thus, in the (p, q) = (−+), (+−) and (−−) quadrants,

G̃(Mo)pq = 2

P
exp

(
−p + q

2P

) (
e−t/P

t
+

1

P
Ei

(
− t

P

))
, where t = −min(p, q) > 0.

(C.5)

In the ++ quadrant, s = min(p, q) > 0 so we may write

G̃(Mo)
++
pq = − 1

2π
M̃o(p, q)I(s), where I(s) =

[
-
∫ s

−s

+
∫ ∞

s

]
dr

r2
e−r/P = I1 + I2.

(C.6)

Here I1(s) is a finite part integral defined in (B.11), and expressed via the sinh integral

I1(s) = -
∫ s

−s

dr

r2
e−r/P := −2

s
+

∫ s

−s

dr

r2

{
e−r/P − 1 +

r

P

}
= −2

s
cosh

( s

P

)
+

2

P
Shi

( s

P

)
.

(C.7)

Here, Shi(z) = ∫ z

0
sinh(t)

t
dt . Combining with the previously encountered I2(s) (C.4),

I(s) = I1 + I2 = −1

s
es/P +

2

P
Shi

( s

P

)
+

1

P
Ei

(
− s

P

)

= −1

s
es/P +

1

P

(
Chi

( s

P

)
+ Shi

( s

P

))
. (C.8)

Chi(z) = γ + log z +
∫ z

0
cosh t−1

t
dt . Now we summarize G̃(Mo)pq in all blocks. Let

s = min(p, q), then

G̃(Mo)pq = 2

P
exp

(
−p + q

2P

)
⎧⎪⎪⎨
⎪⎪⎩

I2(−s) = −1

s
es/P +

1

P
Ei

(
s

P

)
if s < 0

I (s) = −1

s
es/P +

1

P

(
Chi

(
s

P

)
+ Shi

(
s

P

))
if s > 0.

= 2

P
exp

(
−p + q

2P

) (
I2(−min(p, q))I2(−p)

I2(−q)I (min(p, q))

)
. (C.9)

I2(t) monotonically decays from ∞ to 0 exponentially, as t goes from 0 to ∞. I (s)

monotonically grows from −∞ to ∞ for 0 < s < ∞. The factor 2
P

exp
(−p+q

2P

) =
− 1

2π
M̃o(p, q), but only for p, q > 0. G(Mo) inherits some properties of Mo: G(Mo)

+−
pq =

f (p)g(q) is of rank 1 like Mo and V −+M++
o = 0 implies that V −+G(Mo)

+− = 0 (section 5.5).
But G(Mo) does not commute with Mo, ε or �o.

What if s = min(p, q) = 0, which is the boundary of the ++ quadrant? From (C.3),
when s = 0, G̃(Mo)pq ∝ -

∫ ∞
0

dt
t2 e−t , which cannot be prescribed a finite value30. G̃(Mo)pq

is continuous everywhere except along s = 0. It approaches ±∞ as s → 0±. However,
its derivative is discontinuous across the line p = q. It decays exponentially to zero in all
directions except along the positive p- or q-axes.

30 Recall that G̃(Mo)pq = 1
2

∫
dx dyMo(x, y)|x − y|e−i(px−qy). For s = 0, an oscillatory phase is absent. As

Mo(x, y)|x − y| ∼ x0, the integral diverges. The divergence is absent on a space of finite length or for M(x, y)
decaying faster at infinity.
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C.1. Interaction operator Ĝ(V ) in terms of U

Since V −− = 0 (35) for a tangent to the phase space at the lightest baryon Mo(t), there are
some simplifications in GV (t). Let s = max(p, q); then G(V )pq = − -

∫ ∞
−s

[dr]
r2 Ṽp+r,q+r . Due

to the positive support of M̃pq , G−−
V never appears in the eom. In the mostly zero gauge (43)

G̃(V )p>q = 2iG̃(uψ † − ψu† + U+−)p>q, G̃(V )p<q = 2iG̃(uψ † − ψu† − U−+)p<q.

(C.10)

Of course, u,ψ, V and U are all time dependent. In particular, if u = 0 as in section 5.8, we
write compactly

G+−
V = 2iG+−

U+− , G−+
V = −2iG−+

U−+ and G++
V = 2i

{
G++

U+− − G++
U−+

} = 2iG++
U+− + h.c.

(C.11)

Appendix D. Completing proof that M (t) solves equations of motion

In section 4.2 we studied the time evolution of the baryon states M(t) (20). In the chiral limit,
the eom is i

2Ṁpq = 1
4Mpq(q − p) + g̃2

4 Z(M(t))pq (33). We show here that the interaction
terms ∝ Z(t) identically vanish for our massless states M(t) (Z stands for zero). Recall that

Z(t)pq = 1

π

(
1

p
− 1

q

)
M̃t (p, q) − G(Mt)pq{sgn p − sgn q} + [G(Mt),Mt ]pq

= Z1 + Z2 + Z3. (D.1)

It is seen that Z(t)pq = Z(0)pq exp
[

i
2 (p − q)t

]
. We show here that Zpq ≡ Z(0)pq = 0. Now

Mo and G(Mo) (appendix C) are real symmetric, so Z1,2,3(p, q) are real antisymmetric. Z1 is
simplest

Z1(p, s) = π

(
1

p
− 1

s

)
M̃ps = 4

P
e−(p+s)/2P

(
1

s
− 1

p

)
θ(p)θ(s). (D.2)

Z2(p, s) = −G(M)ps{sgn p − sgn s} vanishes in the ps = ++,−− quadrants while

(Z2)
+−
ps = −2G(M)+−

ps and (Z2)
−+
ps = 2G(M)−+

ps . (D.3)

Since M̃o has positive support, Z−−
3 = [G(Mo),Mo]−− = 0. So Z−− = 0. What about the

other quadrants? To proceed, we need G(Mo)pq , from (C.5). In the −+,−−, +− quadrants

G(Mo)pq = 2

P
e

−(p+q)

2P

⎧⎪⎪⎨
⎪⎪⎩

− 1

p
ep/P +

1

P
Ei(p/P ) if p < 0, p < q

− 1

q
eq/P +

1

P
Ei(q/P ) if q < 0, q < p.

(D.4)

This is enough to evaluate Z+−
2 , (antisymmetry determines Z−+

2 , while Z++
2 = Z−−

2 = 0)

Z+−
2 (p, s) = 4

P
e−(p+s)/2P

(
1

s
es/P − 1

P
Ei

( s

P

) )
for p > 0 > s. (D.5)

This is also adequate to find Z+−
3 and Z−+

3 . For example,

Z+−
3 (p, s) = −

∫ ∞

0
[dq]M̃++

pqG(Mo)
+−
qs = − 4

P
e−(p+s)/2P

(
1

s
es/P − 1

P
Ei

( s

P

) )
. (D.6)

We see that Z+−
2 +Z+−

3 = 0. As Z+−
1 = 0, we conclude Z+− = 0. By antisymmetry, Z−+ = 0.
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++ Block: here Z++ = Z++
1 + Z++

3 with Z++
3 = [

G(Mo)
++,M++

o

]
. For Z++

3 we need
G(Mo)

++
pq = 2

P
e−(p+q)/2P I[min(p, q)] (C.9). Antisymmetry allows us to consider 0 < p � s,

Z++
3 (p, s) = 4

P 2
e− p+s

2P

∫ ∞

0
dq e− q

P {I[min(q, s)] − I[min(p, q)]}

= 4

P 2
e− p+s

2P

[
P

{
I(s) e− s

P − I(p) e− p

P

}
+

∫ s

p

dq e− q

P I(q)

]
. (D.7)

This is antisymmetric in p and s, so it is valid for all p, s > 0. The integral is expressed as∫ s

p

dq e−q/P I(q) = e−p/P Ei
( p

P

)
− e−s/P Ei

( s

P

)
, so

Z++
3 (p, s) = 4

P 2
e− p+s

2P

[
e− p

P

{
Ei

( p

P

)
− P I(p)

}
− (s ↔ p)

]
= 4

P
e− p+s

2P

(
1

p
− 1

s

)
. (D.8)

From (D.2) and (D.8), Z++ = Z++
1 + Z++

3 = 0. So Z(t) ≡ 0 and M(t) (20) solves the chiral
eom.

Appendix E. Convergence conditions and inner product on perturbations

The phase space of QCDN=∞
1+1 is the Grassmannian Gr1 (3, [4]). To define an integer-

valued baryon number labelling components of Gr1, we need the convergence condition
tr[ε,M]†[ε,M] < ∞, i.e. [ε,M] is Hilbert–Schmidt. Applying this to M = Mo + V, the
condition on a tangent vector V is

2tr[ε, V ]†[ε,Mo] + tr|[ε, V ]|2 < ∞. (E.1)

The first term is 0 for the g.s. Mo = −2ψψ † with εψ = ψ, since [ε,Mo] = 0. Decomposing
V in blocks (35), (E.1) becomes tr V +−V −+ < ∞, i.e. V +− is H-S. Also, tr V ++ < ∞ must be
trace class (section 4.1 of [4]). There is a natural positive-definite symmetric inner product
(V , V ) = tr V V on the tangent space to Gr1, if we further assume that V −− and V ++ are H-S.
We use it to define self-adjointness of the Hamiltonian for linearized evolution in (71). At
the baryon g.s., Mo = −2ψψ †, V −− = 0, so writing V = i[�o,U ] and expressing U in the
mostly zero gauge (43), the inner product is

(V , V ) = tr V V = 2� tr V −+V +− + tr V ++V ++ = 4(U,U) = 8� tr(U−+U+− + uu†). (E.2)

Appendix F. Hermiticity of a linear operator on Hermitian matrices

A transformation U �→ K(U) on Hermitian matrices must preserve hermiticity. If
K(U)pq = K̂rs

pqUrs , this becomes
(
K̂rs

pq − K̂sr∗
qp

)
Urs = 0 ∀ Hermitian U. We cannot conclude

K̂rs
pq = K̂sr∗

qp , this is not necessary as Urs = U ∗
sr are not independent. We go to a basis for

Hermitian matrices

[Rab]pq = δapδbq + δaqδbp, [Iab]pq = i(δapδbq − δaqδbp), (F.1)

and deduce the necessary and sufficient conditions31 for K̂ to preserve hermiticity of U

K̂ [rs]
pq = K̂ [rs]∗

qp and K̂ {rs}
pq = −K̂ {rs}∗

qp . (F.2)

31 Here, K
[rs]
? = Krs

? + Ksr
? and K

{rs}
? = Krs

? − Ksr
? while ? is held fixed.
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What does it mean for such a K̂ to be formally self-adjoint? The space of Hermitian matrices
has the inner-product (U,U ′) = tr UU ′. So self/skew-adjointness is the condition

(K̂U,U ′) = ±(U, K̂U ′) or tr K(U)U ′ = ±tr UK(U ′) ∀U,U ′ Hermitian.

(F.3)

So ∀ Hermitian U,U ′: K̂
qp
sr UqpU ′

rs = ±K̂rs
pqUqpU ′

rs . A sufficient condition for K̂ to
be self/skew-adjoint is (anti-)symmetry under left–right and up–down flips of indices:
K̂

qp
sr = ±K̂rs

pq . Using (F.1), necessary and sufficient conditions for self/skew-adjointness

of K̂ are

K̂
[ab]
[cd] = ±K̂

[cd]
[ab] , K̂

{ab}
{cd} = ±K̂

{cd}
{ab} and K̂

{ab}
[cd] = ∓K̂

[cd]
{ab}. (F.4)

Appendix G. Space of physical states consistent with u = 0 ansatz

The physically motivated (section 5.8) ansatz u = 0 led to a Hermitian eigenvalue problem
for the baryon spectrum (68). We imposed it so that the equation for perturbations around
the g.s. (62) admits oscillatory solutions via variable separation, by removing simultaneous
dependence on both U+− and U−+. U+− : H− → H+ must be H-S (appendix E) and respect
the gauge ψ †U+− = 0 and consistency condition (66) for u(t) to remain 0. Here we examine
(66). Momentum-dependent phases (67) cancel, leaving

eiωtU+−G−+
M ψ + 2(1 − Pψ)

(
eiωtG++

U+−ψ − e−iωtG++
U−+ψ

) = 0. (G.1)

So the coefficients of e±iωt must vanish, leaving two time-independent vector conditions

(A) :
{
U+−G−+

M + 2(1++ − Pψ)G++
U+−

}
ψ = 0 and (B) :(1++ − Pψ)G++

U−+ψ = 0, (G.2)

on a whole operator U+−. We expect a large space of solutions U+−. Equation (G.2) states
that ψ is annihilated by a pair of operators built from U+−: another type of orthogonality
between the ground/excited states. (B) is simpler than (A). Introducing an arbitrary n ∈ H−
and λ ∈ C,

(B) : (1++ − Pψ)G++
U−+ψ = 0 ⇔ GU−+ψ = λψ + n. (G.3)

Let us look for rank-1 solutions U+− = φη† with φ, η ∈ H±, the sea and antiquark
wavefunctions of the meson V bound to the baryon Mo. We solve for φ∗(x) = 1

ψ

(
λψ+n

η

)′′
.

For φ to lie in H+, φ∗(x) must necessarily be analytic in C−.32 We argue that this requires
λ = 0. ψ(x) ∝ (c − ix)−1 does not have zeros (20), but it has a pole in C−, which cannot
be cancelled by either η(x) or n(x), both of which are analytic in C−. Thus λ = 0, and in
particular G(ηφ†)++ψ = 0: an interaction operator built from U annihilates the g.s. So rank-1
solutions of (B) are of the form φ∗(x) = 1

ψ
(n/η)′′, parameterized by vectors n, η ∈ H−.33 For

e.g., η = (a + ix)−2 ∈ H−, n = (a + ix)−m ∈ H−, m > 2, and φ ∝ (2Px − i)(a − ix)−m ∈ H+

is a family of solutions of (B) with P, a > 0.
We have not yet solved (A) in such generality. Here we give a restricted class of solutions

of (A), where each term of (A) is zero. For U+− = φη† we get two conditions on φ and η:

(A1) φ
(
η†G−+

M ψ
) = 0 and (A2) (1++ − Pψ)G++

φη†ψ = 0. (G.4)

32 A necessary (but not sufficient) condition for ψ̃(p) to be a positive momentum function (ψ ∈ H+), is for ψ(x) to
be the boundary value of a function holomorphic in the upper half of the complex x plane C+.
33 We have not proved that φ ∈ H+. There may be more conditions on n, η to guarantee φ ∈ H+.
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(A1) ⇒ η†G−+
M ψ = 0: the antiquark wavefunction must be ⊥ to G−+

M ψ .34 For P = 1,
η̃p = p(p + 0.474)epθ(−p) is such a function. (A2) ⇔ Gφη†ψ = λ′ψ + m for arbitrary
λ′ ∈ C and m ∈ H−. (A2) resembles (B), but they are not the same though GU−+

† = GU+− .
We solve (A2) for η∗(x) = 1

ψ

(
λ′ψ+m

φ

)′′
. As before, there are conditions for this η to lie in H−.

But it is possible that (A1) and (A2) form too small a class of solutions of (A). We have not
yet combined (A) and (B) to find U+− obeying (G.2). We hope to remedy this in the future.
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