## Risk Analysis

### Volatility Risk, GARCH Model with R and Value at Risk

• We consider the log-return of an asset. That is, $r_t=\log(P_t)-\log(P_{t-1}),$ where $$P_t$$ is the price of the asset at time $$t$$.

• The mean return $\bar{r}=\frac{1}{m}\sum_{t=1}^m r_{n-t},$ where $$m$$ is the number of observations leading upto present period.

• If we assume that the mean return is zero, we obtain the maximum likelihood estimator of variance: $\sigma_n^2=\frac{1}{m}\sum_{t=1}^m r_{n-t}^2.$

• This formula to estimate volatility assign weght equally to each observations.

• So more remote older return have the same influence on the estimated volatility, as returns that are more current.

• As our aim is to estimate the present level of volatility, we would like to assign weight on current return more heavily than the older one.

• The generic scheme can be presented as $\sigma_n^2=\sum_{t=1}^m \alpha_t r_{n-t}^2, ~~ \sum_{t=1}^m \alpha_t =1,$ $$\alpha_t$$ is the weight of the return $$t$$ days ago.

• As our aim is to have a greater influence on current returns, then weight should decline in value for older returns, i.e., $$\alpha_t \geq \alpha_{t+1}$$

• An addition to this representation is to assume a long-run variance.

• The most commonly used model is the autoregressive conditional heteroskedasticity model, ARCH(m), which can be represented by: $\sigma_n^2=\gamma \sigma_L+ \sum_{t=1}^m \alpha_t r_{n-t}^2,~~ ~~ \gamma+ \sum_{t=1}^m \alpha_t = 1,$ where $$\sigma_L$$ is the long-run variance weighted by parameter $$\gamma$$.

• We consider ARCH(1) model, which can be presented as $\sigma_n^2=\gamma \sigma_L+ \alpha_1 r_{n-1}^2,~~ ~~ \gamma+ \alpha_1 = 1,$

• We replace $$\alpha_1$$ by $$(1-\gamma)$$ we have the model as $\sigma_n^2=\gamma \sigma_L+ (1-\gamma) r_{n-1}^2,$ where $$\gamma$$ is weight on long-run variance.

• Though ARCH model consider long-run variance, however it does not consider the previous volatility estimate.

• This disadvantage of ARCH model can be overcome by the generalized autoregressive conditional heteroskedasticity, more popularly known as the GARCH model.

• The GARCH(1,1) model can be presented as as $\sigma_n^2=\gamma \sigma_L+ \alpha_1 r_{n-1}^2 + \beta_1 \sigma_{n-1}^2,~~ ~~ \gamma+ \alpha_1 +\beta_1 = 1,$ where $$\alpha_1$$ is the weight on previous periodâ€™s return, $$\beta_1$$ is the weight on previous volatility estimate, $$\gamma$$ is the weight on long-run variance.

• We can write $$\omega=\gamma \sigma_L^2$$, such that $\sigma_n^2=\omega+ \alpha_1 r_{n-1}^2 + \beta_1 \sigma_{n-1}^2,$ where $$\sigma_L^2=\frac{\omega}{1-\alpha_1-\beta_1}$$ is the long-run variances.

• If $$\omega=0$$, $$\alpha=(1-\lambda)$$ and $$\beta_1=\lambda$$ then we have Exponentially Weighted Moving Average (EWMA) model, i.e., $\sigma_n^2=(1-\lambda)r_{n-1}^2 + \lambda \sigma_{n-1}^2$ where $$\lambda$$ is exponential decay rate. So EWMA is the special case of GARCH model.

### Fitting GARCH Model

library(tseries)
VIX<-get.hist.quote(instrument = "^VIX"
,start="2015-01-01"
,end=Sys.Date()
,provider = "yahoo")
## time series starts 2015-01-02
## time series ends   2016-12-16
par(mfrow=c(1,2))
plot(ts(VIX$AdjClose),ylab="VIX") ## Why are we using SPY and not ^GSPC? SnP.500<-get.hist.quote(instrument = "SPY" ,start="2015-01-01" ,end=Sys.Date() ,quote="AdjClose" ,provider = "yahoo") ## time series starts 2015-01-02 ## time series ends 2016-12-16 plot(ts(SnP.500$AdjClose),ylab="S&P 500")

## log-return
ln_rt<-as.numeric(diff(log(SnP.500)))

## Fit GARCH(1,1)
fit.garch<-garch(ln_rt,order=c(1,1))
##
##  ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
##      I     INITIAL X(I)        D(I)
##
##      1     7.431534e-05     1.000e+00
##      2     5.000000e-02     1.000e+00
##      3     5.000000e-02     1.000e+00
##
##     IT   NF      F         RELDF    PRELDF    RELDX   STPPAR   D*STEP   NPRELDF
##      0    1 -2.084e+03
##      1    7 -2.084e+03  2.45e-04  1.19e-03  1.0e-04  2.5e+10  1.0e-05  1.47e+07
##      2    8 -2.085e+03  1.52e-04  1.91e-04  9.0e-05  2.0e+00  1.0e-05  6.85e+00
##      3    9 -2.085e+03  5.39e-06  4.95e-06  9.9e-05  2.0e+00  1.0e-05  6.93e+00
##      4   17 -2.095e+03  5.02e-03  8.82e-03  5.2e-01  2.0e+00  1.1e-01  6.91e+00
##      5   20 -2.107e+03  5.79e-03  6.06e-03  7.3e-01  1.8e+00  3.2e-01  3.33e-01
##      6   33 -2.108e+03  8.45e-05  1.96e-03  1.1e-05  2.3e+00  8.5e-06  6.51e-01
##      7   34 -2.109e+03  5.90e-04  4.50e-04  4.6e-06  2.0e+00  4.2e-06  3.72e-01
##      8   35 -2.109e+03  3.25e-05  4.29e-05  5.3e-06  2.0e+00  4.2e-06  5.21e-01
##      9   36 -2.109e+03  2.49e-06  2.71e-06  5.6e-06  2.0e+00  4.2e-06  4.88e-01
##     10   45 -2.116e+03  3.49e-03  5.66e-03  2.7e-01  2.0e+00  2.8e-01  4.88e-01
##     11   57 -2.118e+03  7.06e-04  2.72e-03  2.8e-06  2.8e+00  3.7e-06  3.55e-03
##     12   58 -2.118e+03  2.80e-04  2.07e-04  2.6e-06  2.0e+00  3.7e-06  3.25e-04
##     13   59 -2.118e+03  2.60e-05  3.19e-05  2.4e-06  2.0e+00  3.7e-06  9.00e-05
##     14   60 -2.118e+03  1.13e-06  1.21e-06  2.1e-06  2.0e+00  3.7e-06  4.99e-05
##     15   68 -2.119e+03  8.69e-05  4.90e-05  9.3e-03  0.0e+00  1.7e-02  4.90e-05
##     16   69 -2.119e+03  9.26e-05  1.26e-04  3.3e-02  0.0e+00  6.0e-02  1.26e-04
##     17   70 -2.119e+03  1.32e-06  1.90e-05  1.4e-02  0.0e+00  2.2e-02  1.90e-05
##     18   71 -2.119e+03  1.50e-06  1.58e-05  5.5e-03  0.0e+00  9.2e-03  1.58e-05
##     19   72 -2.119e+03  7.74e-06  7.79e-06  2.9e-03  7.1e-01  4.6e-03  9.95e-06
##     20   73 -2.119e+03  1.89e-06  2.03e-06  2.3e-03  0.0e+00  3.3e-03  2.03e-06
##     21   74 -2.119e+03  1.36e-08  1.14e-08  1.7e-04  0.0e+00  2.4e-04  1.14e-08
##     22   75 -2.119e+03 -3.25e-10  8.83e-11  5.8e-06  0.0e+00  8.2e-06  8.83e-11
##
##  ***** RELATIVE FUNCTION CONVERGENCE *****
##
##  FUNCTION    -2.118826e+03   RELDX        5.809e-06
##  FUNC. EVALS      75         GRAD. EVALS      22
##  PRELDF       8.825e-11      NPRELDF      8.825e-11
##
##      I      FINAL X(I)        D(I)          G(I)
##
##      1    8.782813e-06     1.000e+00    -4.645e+02
##      2    1.913741e-01     1.000e+00    -4.872e-03
##      3    6.973940e-01     1.000e+00    -1.982e-02
## Fitted Values
sigma_hat<-fit.garch$fitted.values[,"sigt"] vol_hat<-sigma_hat*sqrt(252)*100 ## plot GARCH fitted volatility vs. VIX par(mfrow=c(1,1)) plot(ts(VIX$AdjClose),col="red",lwd=2,ylim=c(0,40))
lines(vol_hat,col="blue",lwd=2)
text<-c("VIX","GARCH(1,1)")
legend(350,40,text,col=c("red","blue"),lwd=c(2,2))