Critical Relaxed Stable Matchings with Two-Sided Ties

Keshav Ranjan

IIT Madras, India

joint work with Meghana Nasre (IITM) and Prajakta Nimbhorkar(CMI)

CS Theory Seminar
(Chennai Mathematical Institute, Chennai)

Sept 22, 2023

Problem Setup

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$

■ Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\}$

$$
\mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}
$$

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
$■$ Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
■ Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
$■$ Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
■ Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs
■ Matching M: Set of independent edges

M

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
\square Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
■ Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs
■ Matching M: Set of independent edges
■ Critical agents: $C \subseteq \mathcal{A} \cup \mathcal{B}$

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
$■$ Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
■ Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs
■ Matching M: Set of independent edges
- Critical agents: $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Feasible Matching: Matches all critical agents

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
- Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
- Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs

■ Matching M: Set of independent edges

- Critical agents: $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Feasible Matching: Matches all critical agents
- Critical matching N : No other matching matches more critical agents than N

N

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
- Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
- Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs

■ Matching M: Set of independent edges

- Critical agents: $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Feasible Matching: Matches all critical agents
- Critical matching N : No other matching matches more critical agents than N

N

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
- Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
- Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs

■ Matching M: Set of independent edges
■ Critical agents: $C \subseteq \mathcal{A} \cup \mathcal{B}$

- Feasible Matching: Matches all critical agents
- Critical matching N : No other matching matches more critical agents than N
- Preference list: Ranking over the acceptable agents (ties are allowed)

rank 1 for b_{2}

Stable Marriage Problem with Ties and Critical Agents

- A bipartite graph $G=(\mathcal{A} \cup \mathcal{B}, E)$
$■$ Vertex set $\mathcal{A} \cup \mathcal{B}: \mathcal{A}=\left\{a_{1}, \ldots, a_{n_{1}}\right\} \quad \mathcal{B}=\left\{b_{1}, \ldots, b_{n_{2}}\right\}$
- Edge set $E \subseteq \mathcal{A} \times \mathcal{B}$: Mutually acceptable agent-pairs

■ Matching M: Set of independent edges
■ Critical agents: $C \subseteq \mathcal{A} \cup \mathcal{B}$

- Feasible Matching: Matches all critical agents
- Critical matching N : No other matching matches more critical agents than N
- Preference list: Ranking over the acceptable agents (ties are allowed)
- Goal: Compute a critical matching that is optimal w.r.t. preferences

Optimality Notions

Optimality Notion

$■$ Stability (without critical nodes)
[Gale and Shapley, 1962]

Optimality Notion

\square Stability (without critical nodes)
■ A pair $(a, b) \notin M$ blocks a matching M if both a and b have incentive to deviate from M

M

Optimality Notion

\square Stability (without critical nodes)
■ A pair $(a, b) \notin M$ blocks a matching M if both a and b have incentive to deviate from M

M

Optimality Notion

\square Stability (without critical nodes)
■ A pair $(a, b) \notin M$ blocks a matching M if both a and b have incentive to deviate from M - A matching M is stable if no vertex-pair blocks it

Optimality Notion

$■$ Stability (without critical nodes)
■ Stable matching always exists

Optimality Notion

\square Stability (without critical nodes)
■ Stable matching always exists

- For strict list instance, all stable matchings have the same size

Optimality Notion

\square Stability (without critical nodes)
■ Stable matching always exists

- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes

Optimality Notion

\square Stability (without critical nodes)
■ Stable matching always exists

- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes

■ Computing a maximum-size stable matching is NP-hard

Optimality Notion

\square Stability (without critical nodes)
[Gale and Shapley, 1962]
■ Stable matching always exists

- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching

Optimality Notion

\square Stability (without critical nodes)
[Gale and Shapley, 1962]
■ Stable matching always exists

- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching
- Stability (in the presence of critical nodes)

Optimality Notion

\square Stability (without critical nodes)
[Gale and Shapley, 1962]
■ Stable matching always exists

- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
- $\frac{3}{2}$-approximation of maximum size stable matching
- Stability (in the presence of critical nodes)

■ Stable and critical matching is not guaranteed to exist

Optimality Notion

\square Stability (without critical nodes)
[Gale and Shapley, 1962]

- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
- $\frac{3}{2}$-approximation of maximum size stable matching
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist

${ }_{1}^{\text {- O}}$ O, $\left\{\left(a_{2}, b_{1}\right)\right\}$ is not critical

Optimality Notion

\square Stability (without critical nodes)
[Gale and Shapley, 1962]

- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
- $\frac{3}{2}$-approximation of maximum size stable matching
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard

$$
\begin{aligned}
& \text { Only stable matching } \\
& \left\{\left(a_{2}, b_{1}\right)\right\} \text { is not critical }
\end{aligned}
$$

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard
- Maximally Satisfying Lower-quotas (MSLQ)
[Goko et al., 2022, Makino et al., 2022]

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard

■ Maximally Satisfying Lower-quotas (MSLQ)
[Goko et al., 2022, Makino et al., 2022]

- Find a near-critical matching M in the set of all stable matchings

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard

■ Maximally Satisfying Lower-quotas (MSLQ)
[Goko et al., 2022, Makino et al., 2022]

- Find a near-critical matching M in the set of all stable matchings

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard
- Maximally Satisfying Lower-quotas (MSLQ)
[Goko et al., 2022, Makino et al., 2022]
- Find a near-critical matching M in the set of all stable matchings

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
[Manlove et al., 2002]
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard
- Maximally Satisfying Lower-quotas (MSLQ)
[Goko et al., 2022, Makino et al., 2022]
- Find a near-critical matching M in the set of all stable matchings

■ Computing MSLQ stable matching is NP-hard even with one-sided ties

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard
- Maximally Satisfying Lower-quotas (MSLQ)
[Goko et al., 2022, Makino et al., 2022]
- Find a near-critical matching M in the set of all stable matchings

- Computing MSLQ stable matching is NP-hard even with one-sided ties

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard

■ Maximally Satisfying Lower-quotas (MSLQ)

- Find a near-critical matching M in the set of all stable matchings

■ Computing MSLQ stable matching is NP-hard even with one-sided ties

- Our Goal
- Find an optimal matching M in the set of all critical matchings

Optimality Notion

- Stability (without critical nodes)
[Gale and Shapley, 1962]
- Stable matching always exists
- For strict list instance, all stable matchings have the same size
- For tied list instance, stable matchings may have different sizes
- Computing a maximum-size stable matching is NP-hard
- $\frac{3}{2}$-approximation of maximum size stable matching
[Király, 2013]
- Stability (in the presence of critical nodes)
- Stable and critical matching is not guaranteed to exist
- In a tied list instance, computing a critical and stable matching is NP-hard

■ Maximally Satisfying Lower-quotas (MSLQ)

- Find a near-critical matching M in the set of all stable matchings

■ Computing MSLQ stable matching is NP-hard even with one-sided ties

- Our Goal
- Find an optimal matching M in the set of all critical matchings

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

N

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

N

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

M

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

M

Relaxed Stability

- A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
- a is matched to a critical node or
- b is matched to a critical node

M is an RSM

Relaxed Stability

Our goal

- Compute a matching that is critical and relaxed stable

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard

Relaxed Stability

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes

Relaxed Stability

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes
- Problem is same as computing max-size stable matching

Relaxed Stability

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes
- Problem is same as computing max-size stable matching
- Does a critical relaxed stable matching always exist?

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes
- Problem is same as computing max-size stable matching
- Does a critical relaxed stable matching always exist?
- Can it be efficiently computed?

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes
- Problem is same as computing max-size stable matching
- Does a critical relaxed stable matching always exist?
- Can it be efficiently computed?
- The best-known approximation ratio for max-size stable matching is $\frac{3}{2}$

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes
- Problem is same as computing max-size stable matching
- Does a critical relaxed stable matching always exist?
- Can it be efficiently computed?
- The best-known approximation ratio for max-size stable matching is $\frac{3}{2}$

■ Can we achieve $\frac{3}{2}$-approximation for max-size critical RSM?

Our goal

- Compute a matching that is critical and relaxed stable

Observation

- Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard
- Ignore critical nodes
- Problem is same as computing max-size stable matching
- Does a critical relaxed stable matching always exist?
- Can it be efficiently computed?
- The best-known approximation ratio for max-size stable matching is $\frac{3}{2}$
- Can we achieve $\frac{3}{2}$-approximation for max-size critical RSM?

Background

Gale-Shapley algorithm

- No critical nodes and no ties
- Well-known linear-time algorithm for stable matching

Gale-Shapley algorithm

- No critical nodes and no ties
- Well-known linear-time algorithm for stable matching
- Vertices in \mathcal{A} propose and vertices in \mathcal{B} accept/reject

Gale-Shapley algorithm

- No critical nodes and no ties
- Well-known linear-time algorithm for stable matching
- Vertices in \mathcal{A} propose and vertices in \mathcal{B} accept/reject

- No critical nodes and no ties

■ Well-known linear-time algorithm for stable matching

- Vertices in \mathcal{A} propose and vertices in \mathcal{B} accept/reject

$$
a_{1} \rightarrow b_{1}
$$

- No critical nodes and no ties
- Well-known linear-time algorithm for stable matching
- Vertices in \mathcal{A} propose and vertices in \mathcal{B} accept/reject

- No critical nodes and no ties
- Well-known linear-time algorithm for stable matching
- Vertices in \mathcal{A} propose and vertices in \mathcal{B} accept/reject

$$
\begin{aligned}
& a_{1} \rightarrow b_{1} \quad X \\
& a_{2} \rightarrow b_{1}
\end{aligned}
$$

All $a \in \mathcal{A}$ are either matched or exhausted their preference list

Gale-Shapley algorithm

- No critical nodes and no ties
- Well-known linear-time algorithm for stable matching
- Vertices in \mathcal{A} propose and vertices in \mathcal{B} accept/reject
- Algorithm outputs a stable matching M

Ties in Preference Lists

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side
- Execute Gale-Shapley algorithm

b_{2} was unmatched and hence accepts a_{1} 's proposal
- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side
- Execute Gale-Shapley algorithm

$$
\begin{aligned}
& a_{1} \rightarrow b_{2} \\
& a_{2} \rightarrow b_{2} X
\end{aligned}
$$

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side
- Execute Gale-Shapley algorithm

$$
\begin{aligned}
& a_{1} \rightarrow b_{2} \\
& a_{2} \rightarrow b_{2} \times \\
& a_{3} \rightarrow b_{2} \times
\end{aligned}
$$

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side
- Execute Gale-Shapley algorithm
- Unmatched vertices on \mathcal{A}-side gets one more chance to propose with a ' $*$ ' status

$$
\begin{aligned}
& a_{1} \rightarrow b_{2} \\
& a_{2} \rightarrow b_{2} \times \\
& a_{3} \rightarrow b_{2} \times
\end{aligned}
$$

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side

■ Execute Gale-Shapley algorithm
■ Unmatched vertices on \mathcal{A}-side gets one more chance to propose with a '*' status
■ * status of a improves its rank by ϵ in all its neighbours' preference lists ($1>\epsilon>0$)

$$
\begin{array}{lll}
a_{1} & \rightarrow & b_{2} \\
a_{2} & \rightarrow & b_{2} \\
a_{3} & \rightarrow & b_{2} \\
a_{2}^{*} & \rightarrow b_{2} & X
\end{array}
$$

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side
- Execute Gale-Shapley algorithm
- Unmatched vertices on \mathcal{A}-side gets one more chance to propose with a '*' status

■ * status of a improves its rank by ϵ in all its neighbours' preference lists ($1>\epsilon>0$)

$$
\begin{aligned}
& a_{1} \rightarrow b_{2} \times \\
& a_{2} \rightarrow b_{2} \times \\
& a_{3} \rightarrow b_{2} \times \\
& a_{2}^{*} \rightarrow b_{2} \times \\
& a_{3}^{*} \rightarrow b_{2}
\end{aligned}
$$

b_{2} accepts a_{3}^{*} 's proposal and rejects a_{1} as a_{3}^{*} is better than a_{1} for b_{2}

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side

■ Execute Gale-Shapley algorithm

- Unmatched vertices on \mathcal{A}-side gets one more chance to propose with a '*' status

■ * status of a improves its rank by ϵ in all its neighbours' preference lists ($1>\epsilon>0$)

$$
\begin{aligned}
& a_{1} \rightarrow b_{2} \times \\
& a_{2} \rightarrow b_{2} \times \\
& a_{3} \rightarrow b_{2} \times \\
& a_{2}^{*} \rightarrow b_{2} \times \\
& a_{3}^{*} \rightarrow b_{2} \\
& a_{1} \rightarrow b_{1}
\end{aligned}
$$

- Tied lists on the receiving (\mathcal{B}) side and strict list on the proposing (\mathcal{A}) side

■ Execute Gale-Shapley algorithm

- Unmatched vertices on \mathcal{A}-side gets one more chance to propose with a '*' status

■ * status of a improves its rank by ϵ in all its neighbours' preference lists ($1>\epsilon>0$)

- $\frac{3}{2}$-approximation algorithm of the max-size stable matching

$$
\begin{aligned}
& a_{1} \rightarrow b_{2} \times \\
& a_{2} \rightarrow b_{2} \times \\
& a_{3} \rightarrow b_{2} \times \\
& a_{2}^{*} \rightarrow b_{2} \times \\
& a_{3}^{*} \rightarrow b_{2} \\
& a_{1} \rightarrow b_{1}
\end{aligned}
$$

b_{1} was unmatched and hence accepts a_{1} 's proposal

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side
- Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched
- The uncertain proposal (a, b) remains uncertain until b rejects a

■ b rejects uncertain a as soon as it gets any proposal

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched

- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched

- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched

- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"
- Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side
- Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched
- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"
- Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side
- Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched
- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched

- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side
- Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched
- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a

$$
a_{1} \rightarrow b_{1}
$$

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side
- Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched
- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched

- The uncertain proposal (a, b) remains uncertain until b rejects a
- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a

```
|- - - - - - - -----
```


$$
\left.\begin{array}{l}
a_{1} \rightarrow b_{1} \times \\
a_{2} \rightarrow b_{1}
\end{array}\right\}
$$

b_{1} rejects a_{1} and accepts a_{2} 's proposal as $\left(a_{1}, b_{1}\right)$ was uncertain

Király's algorithm: Version II

- Tied lists on the proposing (\mathcal{A}) side and strict lists on the receiving (\mathcal{B}) side

■ Uncertain proposal $(a, b): b$ is $k^{\text {th }}$-ranked nbr of $a, \exists b^{\prime} \neq b$ at rank k, and b^{\prime} is unmatched
■ The uncertain proposal (a, b) remains uncertain until b rejects a

- b rejects uncertain a as soon as it gets any proposal
- When b rejects an uncertain a then a marks b to propose "once again in future"

■ Favourite nbr b of $a: k=\min$ rank for a at which marked or unmatched nbrs exist
(i) b is an unmatched vertex at rank k, or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a

```
|- - - - - - - -----
```


b_{2} was unmatched and hence accepts a_{1} 's proposal

Király's algorithm

- Tied lists on both sides

Király's algorithm

- Tied lists on both sides

■ Combine the two ideas: Version I and Version II

Király's algorithm

- Tied lists on both sides
- Combine the two ideas: Version I and Version II
- Run the algorithm for tied lists on the proposing (\mathcal{A}) side

Király's algorithm

- Tied lists on both sides
- Combine the two ideas: Version I and Version II
- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status

Király's algorithm

■ Tied lists on both sides

- Combine the two ideas: Version I and Version II
- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status
- Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex

Király's algorithm

■ Tied lists on both sides

- Combine the two ideas: Version I and Version II
- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status
- Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex
- Output matching M is a stable matching

Király's algorithm

- Tied lists on both sides

■ Combine the two ideas: Version I and Version II

- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status
- Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex
- Output matching M is a stable matching

■ Suppose \exists a blocking pair (a, b) w.r.t. the output matching M

Király's algorithm

- Tied lists on both sides

■ Combine the two ideas: Version I and Version II

- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status
\square Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a * status vertex
- Output matching M is a stable matching

■ Suppose \exists a blocking pair (a, b) w.r.t. the output matching M

- b must be matched

Király's algorithm

- Tied lists on both sides

■ Combine the two ideas: Version I and Version II

- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status
\square Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a * status vertex
- Output matching M is a stable matching
- Suppose \exists a blocking pair (a, b) w.r.t. the output matching M
- b must be matched
- a must be matched: If not, a must have proposed to b at least twice
$\square b \in \mathcal{B}$ cannot be in an uncertain proposal after receiving its second proposal
- $M(b)$ is not worse than a - contradiction
- Tied lists on both sides

■ Combine the two ideas: Version I and Version II

- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status

■ Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex

- Output matching M is a stable matching
- Suppose \exists a blocking pair (a, b) w.r.t. the output matching M
- b must be matched
- a must be matched: If not, a must have proposed to b at least twice
$\square b \in \mathcal{B}$ cannot be in an uncertain proposal after receiving its second proposal
- $M(b)$ is not worse than a - contradiction
- a must have proposed to b and b rejected it

$$
\begin{array}{rl}
M(b)=a^{\prime} & \bullet \ldots \\
a \bullet \ldots & b \\
a & M(a)=b^{\prime}
\end{array}
$$

- Tied lists on both sides
- Combine the two ideas: Version I and Version II
- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status

■ Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex

- Output matching M is a stable matching
- Suppose \exists a blocking pair (a, b) w.r.t. the output matching M

■ b must be matched

- a must be matched: If not, a must have proposed to b at least twice
$\square b \in \mathcal{B}$ cannot be in an uncertain proposal after receiving its second proposal
- $M(b)$ is not worse than a-contradiction
\square a must have proposed to b and b rejected it
- (a, b) was not uncertain: $a^{\prime}=M(b)$ is not worse than a for b

$$
\begin{array}{rl}
M(b)=a^{\prime} & \bullet \ldots \\
a \bullet \ldots & b \\
a & M(a)=b^{\prime}
\end{array}
$$

- Tied lists on both sides

■ Combine the two ideas: Version I and Version II

- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status

■ Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex

- Output matching M is a stable matching
- Suppose \exists a blocking pair (a, b) w.r.t. the output matching M

■ b must be matched

- a must be matched: If not, a must have proposed to b at least twice
$■ b \in \mathcal{B}$ cannot be in an uncertain proposal after receiving its second proposal
- $M(b)$ is not worse than a-contradiction
- a must have proposed to b and b rejected it

■ (a, b) was not uncertain: $a^{\prime}=M(b)$ is not worse than a for b

- (a, b) was uncertain: a proposed b again before proposing to $M(a)$

$$
\begin{array}{rll}
M(b)=a^{\prime} & \bullet \ldots & b \\
a & \bullet \ldots \ldots & M(a)=b^{\prime}
\end{array}
$$

Király's algorithm

- Tied lists on both sides
- Combine the two ideas: Version I and Version II
- Run the algorithm for tied lists on the proposing (\mathcal{A}) side
- If any $a \in \mathcal{A}$ remained unmatched then it gets a $*$ status
- Stop when each $a \in \mathcal{A}$ is either matched or exhausted its pref list as a $*$ status vertex
- Output matching M is a stable matching
- $\frac{3}{2}$-approximation of maximum size stable matching

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}

Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists

$$
b_{2} \text { is unmatched in } M
$$

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}

Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}

Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists

■ Claim 1: a_{1} prefers b_{1} over b_{2}

No proposal sent to b_{2}

a_{1} without $*$ status

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}

■ Suppose not then b_{1} and b_{2} are tied

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}

■ Suppose not then b_{1} and b_{2} are tied

No proposal sent to b_{2}
a_{1} without $*$ status
$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}

■ Suppose not then b_{1} and b_{2} are tied

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Suppose not then b_{1} and b_{2} are tied
- b_{1} received other proposals

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Suppose not then b_{1} and b_{2} are tied
- b_{1} received other proposals

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}

Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Suppose not then b_{1} and b_{2} are tied
- b_{1} received other proposals
- a_{1} must propose b_{2} before proposing to b_{1}

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}

Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Suppose not then b_{1} and b_{2} are tied
- b_{1} received other proposals
- a_{1} must propose b_{2} before proposing to b_{1}

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}

■ Claim 2: b_{1} prefers a_{1} over a_{2}

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Claim 2: b_{1} prefers a_{1} over a_{2}

■ Observation: $b \in \mathcal{B}$ is not part of an uncertain proposal after receiving its second proposal

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Claim 2: b_{1} prefers a_{1} over a_{2}

■ Observation: $b \in \mathcal{B}$ is not part of an uncertain proposal after receiving its second proposal

$$
b_{1} \text { received } \geq 3 \text { proposals }
$$

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Claim 2: b_{1} prefers a_{1} over a_{2}
- Observation: $b \in \mathcal{B}$ is not part of an uncertain proposal after receiving its second proposal

$$
b_{1} \text { received } \geq 3 \text { proposals }
$$

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Claim 2: b_{1} prefers a_{1} over a_{2}
- Observation: $b \in \mathcal{B}$ is not part of an uncertain proposal after receiving its second proposal

$$
b_{1} \text { received } \geq 3 \text { proposals }
$$

a_{1} did not get $*$ status
b_{1} rejected a_{2}^{*} but not a_{1}

Király's algorithm

$\frac{3}{2}$-approximation of maximum size stable matching M^{*}
Proof idea: No 1 or 3-length aug-path w.r.t. M in $\left(M \oplus M^{*}\right)$

- Suppose such 3-length augmenting path exists
- Claim 1: a_{1} prefers b_{1} over b_{2}
- Claim 2: b_{1} prefers a_{1} over a_{2}
- M^{*} is not stable $-a$ contradiction

Critical Nodes

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm

b_{1} accepts a_{2}^{0} 's proposal as it was unmatched

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm

$$
\begin{aligned}
& a_{2}^{0} \rightarrow b_{1} \\
& a_{3}^{0} \rightarrow b_{2}
\end{aligned}
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm

$$
\begin{aligned}
& a_{2}^{0} \rightarrow b_{1} \\
& a_{3}^{0} \rightarrow b_{2} \\
& a_{1}^{0} \rightarrow b_{1} \quad \mathrm{X}
\end{aligned}
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with

■ Execute Gale-Shapley algorithm

- Unmatched critical vertices raise their level and propose again

$$
\left.\begin{array}{l}
a_{2}^{0} \rightarrow b_{1} \times \\
a_{3}^{0} \rightarrow b_{2} \\
a_{1}^{1} \rightarrow b_{1}
\end{array}\right)
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm
- Unmatched critical vertices raise their level and propose again
- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

$$
\begin{aligned}
& a_{2}^{0} \rightarrow b_{1} \quad \mathrm{X} \\
& a_{3}^{0} \rightarrow b_{2} \\
& a_{1}^{1} \rightarrow b_{1} \\
& a_{2}^{0} \rightarrow b_{2} \times
\end{aligned}
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm
- Unmatched critical vertices raise their level and propose again
- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

$$
\left.\begin{array}{l}
a_{2}^{0} \rightarrow b_{1} \quad \mathrm{X} \\
a_{3}^{0} \rightarrow b_{2} \downarrow \\
a_{1}^{1} \rightarrow b_{1} \quad \mathrm{x} \\
a_{2}^{1} \rightarrow b_{1}
\end{array}\right)
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm
- Unmatched critical vertices raise their level and propose again
- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

$$
\begin{aligned}
& a_{2}^{0} \rightarrow b_{1} \mathrm{X} \\
& a_{3}^{0} \rightarrow b_{2} \downarrow \\
& a_{1}^{1} \rightarrow b_{1} \times \\
& a_{2}^{1} \rightarrow b_{1} \times \quad \\
& a_{1}^{2} \rightarrow b_{1}
\end{aligned}
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm
- Unmatched critical vertices raise their level and propose again
- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

$$
\begin{aligned}
& a_{2}^{0} \rightarrow b_{1} \\
& a_{3}^{0} \rightarrow b_{2} \\
& a_{1}^{1} \rightarrow b_{1} \\
& a_{2}^{1} \rightarrow b_{1} \\
& a_{1}^{2} \rightarrow b_{1} \\
& a_{2}^{1} \rightarrow b_{2}
\end{aligned}
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm
- Unmatched critical vertices raise their level and propose again
- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

$$
\begin{array}{rlll}
a_{2}^{0} & \rightarrow & b_{1} & X \\
a_{3}^{0} \rightarrow b_{2} & X \\
a_{1}^{1} \rightarrow b_{1} & X \\
a_{2}^{1} & \rightarrow & b_{1} & X \\
a_{1}^{2} & \rightarrow & b_{1} & \\
a_{2}^{1} & \rightarrow & b_{2} \\
a_{3}^{0} & \rightarrow & b_{3}
\end{array}
$$

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with
- Execute Gale-Shapley algorithm
- Unmatched critical vertices raise their level and propose again
- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

Feasible RSM: Multi-level Gale-Shapley algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$
- All $a \in \mathcal{A}$ are at level 0 to begin with

■ Execute Gale-Shapley algorithm
■ Unmatched critical vertices raise their level up to $|C|$ and propose again

- Vertices at higher level are preferred more by $b \in \mathcal{B}$ than those at lower level

Correctness

Assuming G admits a feasible matching:
Claim 1: Output matching M is feasible.
Claim 2: Output matching M is relaxed stable.

Properties of the output matching

Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

Properties of the output matching

- Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm
- Partition the vertices based on levels to give a level structure for G

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

Properties of the output matching

- Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm
- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

■ No steep downward (at least two levels down) edges

Properties of the output matching

- Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm
- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

■ No steep downward (at least two levels down) edges

Properties of the output matching

- Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm
- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

■ No steep downward (at least two levels down) edges

Properties of the output matching

- Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm
- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal

■ No steep downward (at least two levels down) edges

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)

Properties of the output matching

■ Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)

Properties of the output matching

\square Each $a \in \mathcal{A}$ is assigned a level at the end of the algorithm

- Partition the vertices based on levels to give a level structure for G
- All the matched edges are horizontal
- No steep downward (at least two levels down) edges
- All blocking edges are upwards (maybe steep)
- All neighbours of unmatched critical a are in $\mathcal{B}_{|C|}$

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.

All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.

All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.

All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

No steep downward edge

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.
$\left.\begin{array}{lccc}\mathcal{A}_{|C|} & u_{0} & \mathcal{B}_{|C|} \\ \mathcal{A}_{|C|-1} & u_{1} & v_{1} & \\ & \mathcal{A}_{1} & v_{2} & \mathcal{B}_{|C|-1} \\ \mathcal{A}_{x} & u_{i} & \bullet v_{i} & \mathcal{B}_{X} \\ & \mathcal{A}_{2} & u_{k-1} & \bullet v_{k-1} \\ \mathcal{A}_{1} & u_{k} \bullet & \mathcal{B}_{2} \\ \mathcal{A}_{0} & \bullet v_{k} & \mathcal{B}_{1}\end{array}\right\}$ Matched

All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

No steep downward edge

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.
$\left.\begin{array}{lccc}\mathcal{A}_{|C|} & u_{0} & \mathcal{B}_{|C|} \\ \mathcal{A}_{|C|-1} & u_{2} & v_{1} & \\ & \mathcal{A}_{1} & v_{2} & \mathcal{B}_{|C|-1} \\ \mathcal{A}_{X} & u_{i} \bullet & \bullet v_{i} & \mathcal{B}_{X} \\ & \mathcal{A}_{2} & u_{k-1} & \bullet v_{k-1} \\ \mathcal{A}_{1} & u_{k} \bullet & \mathcal{B}_{2} \\ \mathcal{A}_{0} & \bullet v_{k} & \mathcal{B}_{1}\end{array}\right\}$ Matched

All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

No steep downward edge

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.
$\left.\begin{array}{llll}\mathcal{A}_{|C|} & u_{0} & \mathcal{B}_{|C|} \\ \mathcal{A}_{|C|-1} & v_{1} & v_{1} & \\ \mathcal{A}_{x} & u_{1} & \mathcal{B}_{|C|-1} \\ & v_{2} & v_{i} & \mathcal{B}_{X} \\ \mathcal{A}_{2} & u_{k-1} & \bullet v_{k-1} & \mathcal{B}_{2} \\ \mathcal{A}_{1} & u_{k} \bullet & \bullet v_{k} & \mathcal{B}_{1} \\ \mathcal{A}_{0} & & \bullet v_{k+1} & \mathcal{B}_{0}\end{array}\right\}$ Matched

> All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

No steep downward edge

Path must end in $\mathcal{A}_{0} \cup \mathcal{B}_{0}$

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.

> All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

No steep downward edge

Path must end in $\mathcal{A}_{0} \cup \mathcal{B}_{0}$

Correctness

Output matching is feasible

Proof Sketch:

- By contradiction
- Suppose M is not feasible. By assumption, a feasible matching N exists.

All neighbours of u_{0} are in $\mathcal{B}_{|C|}$

All matched edges in M are horizontal

No steep downward edge

Path must end in $\mathcal{A}_{0} \cup \mathcal{B}_{0}$
\#critical vertices > $|C|$

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

All blocking edges w.r.t. M are upwards

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

> All blocking edges w.r.t. M are upwards

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

> All blocking edges w.r.t. M are upwards

All matched edges in M are horizontal

Correctness

Output matching M of our algorithm is Relaxed Stable Matching

All blocking edges w.r.t. M are upwards
All matched edges in M are horizontal

Must be
matched

All blocking edges w.r.t. M are justified

Algorithm's Outline An Evolving Perspective

Summary of our algorithm

■ Assumptions: (i) Strict lists and (ii) No critical nodes

Gale-Shapley Level
 No critical nodes
 All vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Summary of our algorithm

- Assumptions: (i) Strict lists and (ii) $C \subseteq \mathcal{A}$

$$
\text { Higher level (Level 1, 2, . . , }|C|)
$$

Critical nodes on \mathcal{A}-side
Critical vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Gale-Shapley level (Level 0)
No critical nodes
All vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Summary of our algorithm

■ Assumptions: (i) Tied lists and (ii) $C \subseteq \mathcal{A}$

Higher level (Level 1, 2, $\ldots,|C|$)
Critical nodes on \mathcal{A}-side
Critical vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Király's algorithm (Level 0 and 0^{*})
All vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Summary of our algorithm

- Assumptions: (i) Tied lists, (ii) $C \subseteq \mathcal{A} \cup \mathcal{B}$ and (iii) $|\mathcal{A} \cap C|=s$ and $|\mathcal{B} \cap C|=t$

Higher level (Level $t, \ldots, s+t$)
Critical nodes on \mathcal{A}-side
Critical vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Király's algorithm (Level t and t^{*})
All vertices in \mathcal{A} propose to all neighbours in \mathcal{B}

Lower level (Level 0, 1, ...,t-1)
Critical nodes on \mathcal{B}-side
All vertices in \mathcal{A} propose to critical neighbours in \mathcal{B}

Summary of our algorithm

- M is critical

Correctness

- M is critical

■ M is Relaxed Stable Matching (RSM)

Correctness

- M is critical

■ M is Relaxed Stable Matching (RSM)

- $|M| \geq \frac{3}{2} \cdot\left|M^{*}\right|$ for any Max-size Critical Relaxed Stable Matching M^{*}

Conclusion

- For an instance $G=(\mathcal{A} \cup \mathcal{B}, E, C)$ with ties on both sides and $C \subseteq \mathcal{A} \cup \mathcal{B}$

Conclusion

- For an instance $G=(\mathcal{A} \cup \mathcal{B}, E, C)$ with ties on both sides and $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Critical Relaxed Stable Matching (RSM) always exists

Conclusion

- For an instance $G=(\mathcal{A} \cup \mathcal{B}, E, C)$ with ties on both sides and $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Critical Relaxed Stable Matching (RSM) always exists
- Computing maximum size critical RSM is NP-Hard

Conclusion

- For an instance $G=(\mathcal{A} \cup \mathcal{B}, E, C)$ with ties on both sides and $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Critical Relaxed Stable Matching (RSM) always exists
- Computing maximum size critical RSM is NP-Hard
- $\frac{3}{2}$-approximation of the max-size critical RSM

Conclusion

- For an instance $G=(\mathcal{A} \cup \mathcal{B}, E, C)$ with ties on both sides and $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Critical Relaxed Stable Matching (RSM) always exists
- Computing maximum size critical RSM is NP-Hard
- $\frac{3}{2}$-approximation of the max-size critical RSM
- Natural extension is to the many-to-many setting

Conclusion

- For an instance $G=(\mathcal{A} \cup \mathcal{B}, E, C)$ with ties on both sides and $C \subseteq \mathcal{A} \cup \mathcal{B}$
- Critical Relaxed Stable Matching (RSM) always exists
- Computing maximum size critical RSM is NP-Hard
- $\frac{3}{2}$-approximation of the max-size critical RSM
- Natural extension is to the many-to-many setting

Thank You!
keshav@cse.iitm.ac.in

Reference I

Gale, D. and Shapley, L. S. (1962).
College admissions and the stability of marriage.
The American Mathematical Monthly, 69(1):9-15.
Goko, H., Makino, K., Miyazaki, S., and Yokoi, Y. (2022).
Maximally satisfying lower quotas in the hospitals/residents problem with ties.
In 39th International Symposium on Theoretical Aspects of Computer Science.
Rinály, Z. (2011).
Better and simpler approximation algorithms for the stable marriage problem.
Algorithmica, 60(1):3-20.
五
Király, Z. (2013).
Linear time local approximation algorithm for maximum stable marriage.
Algorithms, 6(3):471-484.
宔
Krishnaa, P., Limaye, G., Nasre, M., and Nimbhorkar, P. (2020).
Envy-freeness and relaxed stability: Hardness and approximation algorithms.
In International Symposium on Algorithmic Game Theory, pages 193-208. Springer.

Reference II

Makino, K., Miyazaki, S., and Yokoi, Y. (2022).
Incomplete list setting of the hospitals/residents problem with maximally satisfying lower quotas.
In Kanellopoulos, P., Kyropoulou, M., and Voudouris, A. A., editors, Algorithmic Game Theory - 15th International Symposium, SAGT 2022, Colchester, UK, September 12-15, 2022, Proceedings, volume 13584 of Lecture Notes in Computer Science, pages 544-561. Springer.

Manlove, D. F., Irving, R. W., Iwama, K., Miyazaki, S., and Morita, Y. (2002). Hard variants of stable marriage.
Theoretical Computer Science, 276(1-2):261-279.

