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Stable Marriage Problem with Ties and Critical Agents

A bipartite graph G = (A ∪ B,E)
Vertex set A ∪ B: A = {a1, . . . , an1} B = {b1, . . . , bn2}

Edge set E ⊆ A × B: Mutually acceptable agent-pairs

Matching M: Set of independent edges

Critical agents: C ⊆ A ∪ B
Feasible Matching: Matches all critical agents

Critical matching N: No other matching matches more critical agents than N

Preference list: Ranking over the acceptable agents (ties are allowed)

Goal: Compute a critical matching that is optimal w.r.t. preferences
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Optimality Notions
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Optimality Notion
Stability (without critical nodes) [Gale and Shapley, 1962]

A pair (a, b) /∈ M blocks a matching M if both a and b have incentive to deviate from M
A matching M is stable if no vertex-pair blocks it
Stable matching always exists
For strict list instance, all stable matchings have the same size
For tied list instance, stable matchings may have different sizes
Computing a maximum-size stable matching is NP-hard [Manlove et al., 2002]
3
2 -approximation of maximum size stable matching [Király, 2013]

Stability (in the presence of critical nodes)
Stable and critical matching is not guaranteed to exist

In a tied list instance, computing a critical and stable matching is NP-hard
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(a1, b1) and (a4, b2) are
blocking pairs

Maximally Satisfying Lower-quotas (MSLQ) [Goko et al., 2022, Makino et al., 2022]

Find a near-critical matching M in the set of all stable matchings

Computing MSLQ stable matching is NP-hard even with one-sided ties

Our Goal
Find an optimal matching M in the set of all critical matchings

Critical

Optimal Our goal
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Relaxed Stability [Krishnaa et al., 2020]

A matching M is Relaxed Stable Matching (RSM) if for every blocking pair (a, b)
a is matched to a critical node or
b is matched to a critical node

a1

a2

a3

a4

b1

b2

b3

b4

N

A B

1 1
2

1

1 2

1
1

1
21

1

2 12 1

N is not an RSM

(a4, b4) is a blocking
pair w.r.t. N(a4, b4) is not justified
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Relaxed Stability [Krishnaa et al., 2020]

Our goal

Compute a matching that is critical and relaxed stable

Observation

Computing max-size critical Relaxed Stable Matching (RSM) is NP-hard

Ignore critical nodes
Problem is same as computing max-size stable matching

Does a critical relaxed stable matching always exist?

Can it be efficiently computed?

The best-known approximation ratio for max-size stable matching is 3
2

Can we achieve 3
2 -approximation for max-size critical RSM?
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Background
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Gale-Shapley algorithm [Gale and Shapley, 1962]

No critical nodes and no ties

Well-known linear-time algorithm for stable matching

Vertices in A propose and vertices in B accept/reject

Algorithm outputs a stable matching M
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Ties in Preference Lists
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Király’s algorithm: Version I [Király, 2011]

Tied lists on the receiving (B) side and strict list on the proposing (A) side

Execute Gale-Shapley algorithm

Unmatched vertices on A-side gets one more chance to propose with a ‘∗’ status

∗ status of a improves its rank by ϵ in all its neighbours’ preference lists (1 > ϵ > 0)
3
2 -approximation algorithm of the max-size stable matching

a1

a2

a3

b1

b2

A B

2 1

1
2

1

1
1 1

a1 → b2

1

1

b2 was unmatched and hence accepts a1’s proposal

a2 → b2

b2 rejects a2’s proposal as a2 is not better than a1 for b2

a3 → b2

b2 rejects a3’s proposal as a3 is not better than a1 for b2a2 and a3 get ‘∗’ status as they exhausted their preference lists

a∗
2 → b2

b2 rejects a∗
2 ’s proposal as a∗

2 is not better than a1 for b2

a∗
3 → b2

b2 accepts a∗
3 ’s proposal and rejects a1 as a∗

3 is better than a1 for b2

1 1

a1 → b1

b1 was unmatched and hence accepts a1’s proposal

2 1
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Király’s algorithm: Version II

Tied lists on the proposing (A) side and strict lists on the receiving (B) side

Uncertain proposal (a, b): b is k th-ranked nbr of a, ∃b′ ̸= b at rank k , and b′ is
unmatched
The uncertain proposal (a, b) remains uncertain until b rejects a
b rejects uncertain a as soon as it gets any proposal
When b rejects an uncertain a then a marks b to propose “once again in future"
Favourite nbr b of a: k = min rank for a at which marked or unmatched nbrs exist

(i) b is an unmatched vertex at rank k , or
(ii) if all vertices at rank k are matched, then b is unproposed vertex by a or
(iii) if all vertices at rank k are already proposed by a, then b is a marked vertex by a
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Király’s algorithm [Király, 2013]

Tied lists on both sides

Combine the two ideas: Version I and Version II
Run the algorithm for tied lists on the proposing (A) side
If any a ∈ A remained unmatched then it gets a ∗ status
Stop when each a ∈ A is either matched or exhausted its pref list as a ∗ status vertex
Output matching M is a stable matching
3
2 -approximation of maximum size stable matching
The best approximation ratio achieved till now

Suppose ∃ a blocking pair (a, b) w.r.t. the output matching M

b must be matched
a must be matched: If not, a must have proposed to b at least twice

b ∈ B cannot be in an uncertain proposal after receiving its second proposal
M(b) is not worse than a – contradiction

a must have proposed to b and b rejected it
(a, b) was not uncertain: a′ = M(b) is not worse than a for b

(a, b) was uncertain: a proposed b again before proposing to M(a)

M(b) = a′

a

b

M(a) = b′
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Király’s algorithm [Király, 2013]

3
2 -approximation of maximum size stable matching M∗

Proof idea: No 1 or 3-length aug-path w.r.t. M in (M ⊕ M∗)

Suppose such 3-length augmenting path exists

Claim 1: a1 prefers b1 over b2

Claim 2: b1 prefers a1 over a2

M∗ is not stable – a contradiction

a2

a1 b1

b2

b2 is unmatched in M

No proposal sent to b2

a1 without ∗ status

No proposal sent to b2No proposal sent to b2

a1 without ∗ status

(a1, b1) is uncertain

b1 rejected a1

a1 proposed b2
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Feasible RSM: Multi-level Gale-Shapley algorithm

Assumptions: (i) Strict lists and (ii) C ⊆ A

All a ∈ A are at level 0 to begin with

Execute Gale-Shapley algorithm

Vertices at higher level are preferred more by b ∈ B than those at lower level

a1

a2

a3

b1

b2

b3

A B

1 2

1
1

2 2

1
1

2 1

All a ∈ A are initially at level 0

a0
2 → b1

b1 accepts a0
2’s proposal as it was unmatched

1
1

a0
3 → b2

1
1

b2 accepts a0
3’s proposal as it was unmatched

a0
1 → b1

b1 rejects a0
1’s proposal as M(b1) = a0

2 is better preferred

a1
1 → b1

1 2

b1 prefers a1
1 as it is at a higher level

a0
2 → b2

b2 rejects a0
2’s proposal as M(b2) = a0

3 is better preferred

a1
2 → b1

1
1

b1 prefers a1
2 better than a1

1

a2
1 → b1

1 2

b1 prefers a2
1 as it is at a higher level

a1
2 → b2

2 2

b2 prefers a higher level neighbour a1
2

a0
3 → b3

2 1

b3 accepts a0
3’s proposal as it was unmatchedThe highest level achieved = 2 = |C|
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Feasible RSM: Multi-level Gale-Shapley algorithm

Assumptions: (i) Strict lists and (ii) C ⊆ A
All a ∈ A are at level 0 to begin with

Execute Gale-Shapley algorithm

Unmatched critical vertices raise their level up to |C| and propose again

Vertices at higher level are preferred more by b ∈ B than those at lower level

Correctness

Assuming G admits a feasible matching:
Claim 1: Output matching M is feasible.
Claim 2: Output matching M is relaxed stable.
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Properties of the output matching

Each a ∈ A is assigned a level at the end of the algorithm

Partition the vertices based on levels to give a level structure for G

All the matched edges are horizontal

No steep downward (at least two levels down) edges

All blocking edges are upwards (maybe steep)

All neighbours of unmatched critical a are in B|C|
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B|C|−1

...
B1

B0

⊗
⊗

Must be
critical

Must be
matched

a1

b2

b1

a2

Ai+1

Ai

Ai−1

ai
1 b2a

b

b

M(b)

b
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Correctness

Output matching is feasible

Proof Sketch:
By contradiction

Suppose M is not feasible. By assumption, a feasible matching N exists.

u0
v1u1

A|C| B|C|

v2u2A|C|−1 B|C|−1

. . .

viuiAx Bx

. . .

vk−1uk−1A2 B2

vkukA1 B1

vk+1A0 B0

Matched

nodes

All neighbours of u0 are
in B|C|

All matched edges in M
are horizontal

No steep downward
edge

Path must end in
A0 ∪ B0

#critical vertices > |C|
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Correctness

Output matching M of our algorithm is Relaxed Stable Matching

A

...

A|C|

A|C|−1

...
A1

A0

B

...

B|C|

B|C|−1

...
B1

B0

All blocking edges w.r.t.
M are upwards

Must be
critical

Must be
matched

All matched edges in M
are horizontal

All blocking edges w.r.t.
M are justified
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Algorithm’s Outline

An Evolving Perspective
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Summary of our algorithm

Assumptions: (i) Strict lists and (ii) No critical nodes

Critical nodes on A-side

Critical vertices in A propose to all neighbours in B

Gale-Shapley Level

No critical nodes

All vertices in A propose to all neighbours in B

Lower level (Level 0, 1, . . . , t − 1)

Critical nodes on B-side

All vertices in A propose to critical neighbours in B

Keshav Ranjan IIT Madras Relaxed Stability Sept 22, 2023 12 / 13



Summary of our algorithm

Assumptions: (i) Strict lists and (ii) C ⊆ A

Higher level (Level 1, 2, . . . , |C|)
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Summary of our algorithm

Assumptions: (i) Tied lists and (ii) C ⊆ A

Higher level (Level 1, 2, . . . , |C|)

Critical nodes on A-side

Critical vertices in A propose to all neighbours in B

Gale-Shapley level (Level 0)

No critical nodes

All vertices in A propose to all neighbours in B

Király’s algorithm (Level 0 and 0∗)

All vertices in A propose to all neighbours in B

Lower level (Level 0, 1, . . . , t − 1)

Critical nodes on B-side

All vertices in A propose to critical neighbours in B
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Summary of our algorithm

Assumptions: (i) Tied lists, (ii) C ⊆ A∪B and (iii) |A ∩ C| = s and |B ∩ C| = t

Higher level (Level t, . . . , s + t)

Critical nodes on A-side

Critical vertices in A propose to all neighbours in B

Gale-Shapley level (Level 0)

No critical nodes

All vertices in A propose to all neighbours in B

Király’s algorithm (Level t and t∗)

All vertices in A propose to all neighbours in B

Lower level (Level 0, 1, . . . , t − 1)

Critical nodes on B-side

All vertices in A propose to critical neighbours in B
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Summary of our algorithm

M is critical

M is Relaxed Stable Matching (RSM)

|M| ≥ 3
2 · |M∗| for any Max-size Critical Relaxed Stable Matching M∗

A

...

...

As+t

At+1

At

At−1
...

A0

B

...

...

Bs+t

Bt+1

Bt

Bt−1
...
B0

Must be
critical

Must be
critical

Must be
matched

Must be
matched
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Conclusion

For an instance G = (A∪B,E ,C) with ties on both sides and C ⊆ A∪B

Critical Relaxed Stable Matching (RSM) always exists

Computing maximum size critical RSM is NP-Hard
3
2 -approximation of the max-size critical RSM

Natural extension is to the many-to-many setting

Thank You!
keshav@cse.iitm.ac.in
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