Disjoint Stable Matchings

Aadityan Ganesh, Prajakta Nimbhorkar, Geevarghese Philip, Vishwa Prakash HV

January 6, 2021

Chennai Mathematical Institute

Outline

- Background
 - Stable Matchings
 - Gale-Shapley Algorithm
 - Extended Gale-Shapley Algorithm
 - The Lattice Structure
- Disjoint Stable Matchings
 - Disjoint Perfect Matchings
 - Disjoint Stable Matchings
 - Algorithm to find Disjoint Stable Matchings
 - Correctness and Running time of the Algorithm
- Rotations
 - Rotational poset
 - Properties of Rotational poset
 - Analogous Algorithm

Stable Matchings

Marriage Matching Instance

A marriage matching instance of *size* n involves two disjoint sets of size n, the men and the women. Associated with each person is a *strictly* ordered *preference list* containing *all* the members of the opposite sex. Person p prefers q to r, where q and r are of the opposite sex of p, if and only if q precedes r on p's preference list.

Set of men Set of wome

Stable Matchings

Marriage Matching Instance

A marriage matching instance of *size* n involves two disjoint sets of size n, the men and the women. Associated with each person is a *strictly* ordered *preference list* containing *all* the members of the opposite sex. Person p prefers q to r, where q and r are of the opposite sex of p, if and only if q precedes r on p's preference list.

Stable Matchings

Marriage Matching Instance

A marriage matching instance of *size* n involves two disjoint sets of size n, the men and the women. Associated with each person is a *strictly* ordered *preference list* containing *all* the members of the opposite sex. Person p prefers q to r, where q and r are of the opposite sex of p, if and only if q precedes r on p's preference list.

Set of men Set of women

Stable Matchigs

If (m, w) are matched in a matching M, we say $m = p_M(w)$ and $w = p_M(m)$

Blocking Pair

A man *m* and a woman *w* are said to *block* a matching *M*, or the pair (m, w) is said to be a *blocking pair* for *M*, if *m* and *w* are not partners in *M*, but *m* prefers *w* to $p_M(m)$ and *w* prefers *m* to $p_M(w)$. A matching with no blocking pair is called a *stable* matching, and is otherwise *unstable*.

Stable Matchigs

If (m, w) are matched in a matching M, we say $m = p_M(w)$ and $w = p_M(m)$

Blocking Pair

A man *m* and a woman *w* are said to *block* a matching *M*, or the pair (m, w) is said to be a *blocking pair* for *M*, if *m* and *w* are not partners in *M*, but *m* prefers *w* to $p_M(m)$ and *w* prefers *m* to $p_M(w)$. A matching with no blocking pair is called a *stable* matching, and is otherwise *unstable*.

Stable Matchigs

If (m, w) are matched in a matching M, we say $m = p_M(w)$ and $w = p_M(m)$

Blocking Pair

A man *m* and a woman *w* are said to *block* a matching *M*, or the pair (m, w) is said to be a *blocking pair* for *M*, if *m* and *w* are not partners in *M*, but *m* prefers *w* to $p_M(m)$ and *w* prefers *m* to $p_M(w)$. A matching with no blocking pair is called a *stable* matching, and is otherwise *unstable*.

Stable Matching

A matching with no blocking pair

Checking stability: $O(n^2)$

Stable Pair

A pair (m, w) is called as a *stable pair* if m and w are partners in at least one stable matching.

Fixed Pair

A pair (m, w) is called as a *fixed pair* if m and w are partners in at all stable matchings.

Stable Pair

A pair (m, w) is called as a *stable pair* if m and w are partners in at least one stable matching.

Fixed Pair

A pair (m, w) is called as a *fixed pair* if m and w are partners in at all stable matchings.

Algorithm 1 Gale-Shapley

1:	<pre>procedure Find stable matching(M)</pre>
2:	assign each person to be free
3:	while some man m is free do
4:	$w \leftarrow \texttt{first woman}$ on m 's list to whom m hasn't proposed
5:	if w is free then
6:	assign m and w to be engaged to each other
7:	else
8:	if w prefers m to her current matched partner m' then
9:	assign m and w to be engaged and m' to be free
10:	else
11:	w rejects m \triangleright m remains free
12:	end if
13:	end if
14:	end while
	return Stable matching consisting of n engaged pairs
15:	end procedure

Men's Preference

w_1 :	m_1	m_2	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> ₃
<i>w</i> ₃ :	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	m_2	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> ₃
<i>w</i> ₃ :	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	m_2	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> ₃
<i>w</i> ₃ :	m_3	m_2	m_1

Men's Preference

w_1 :	m_1	m_2	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> 3
<i>w</i> ₃ :	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	m_2	<i>m</i> 3
w_2 :	<i>m</i> ₂	m_1	<i>m</i> ₃
<i>w</i> ₃ :	m_3	m_2	m_1

1. Every marriage instance has a stable matching.

- 2. All possible execution of the Gale-Shapley algorithm yields the same result.
- 3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

4. Reversing roles, i.e, women proposing, results in *"Woman-optimal"* stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

- 1. Every marriage instance has a stable matching.
- 2. All possible execution of the Gale-Shapley algorithm yields the same result.
- 3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

4. Reversing roles, i.e, women proposing, results in *"Woman-optimal"* stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

- 1. Every marriage instance has a stable matching.
- 2. All possible execution of the Gale-Shapley algorithm yields the same result.
- 3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

4. Reversing roles, i.e, women proposing, results in *"Woman-optimal"* stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

- 1. Every marriage instance has a stable matching.
- 2. All possible execution of the Gale-Shapley algorithm yields the same result.
- 3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

- 1. Every marriage instance has a stable matching.
- 2. All possible execution of the Gale-Shapley algorithm yields the same result.
- 3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

 Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Algorithm 2 Extended Gale-Shapley

1:	procedure GS-EXTENDED(M) \triangleright M is an SM instance
2:	assign each person to be free
3:	while some man m is free do
4:	$w \leftarrow first$ woman on <i>m</i> 's list
5:	if some man p is engaged to w then
6:	assign p to be free
7:	end if
8:	assign m and w to be engaged to each other
9:	for each successor m' of m on w 's list do
10:	delete w on m' 's list
11:	delete m' on w's list \triangleright deleting the pair (m', w)
12:	end for
13:	end while
	return Stable matching consisting of n engaged pairs
14:	end procedure

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> 3
w3:	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	m_2	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	<i>m</i> ₃
w3:	<i>m</i> ₃	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> 3:	<i>m</i> 3	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> ₃ :	<i>m</i> 3	m_2	m_1

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> ₃ :	<i>m</i> ₃	m_2	

Men's Preference

w_1 :	m_1	<i>m</i> ₂	<i>m</i> ₃
w_2 :	<i>m</i> ₂	m_1	
<i>w</i> ₃ :	<i>m</i> ₃	<i>m</i> ₂	

MGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with men as proposers are called as *man-oriented Gale-Shapley lists* or *MGS-lists*.

WGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with *women* as proposers are called as *woman-oriented Gale-Shapley lists* or *WGS-lists*.

MGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with men as proposers are called as *man-oriented Gale-Shapley lists* or *MGS-lists*.

WGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with *women* as proposers are called as *woman-oriented Gale-Shapley lists* or *WGS-lists*.

GS-list

Intersection of MGS-list and WGS-list.

Note: GS-lists can be obtained by applying man-oriented extended Gale-Shapley algorithm to get MGS-lists and then, starting with the MGS-lists, applying woman-oriented extended GS algorithm.

- 1. all stable matchings are contained in the GS-lists.
- 2. no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists.
- In the man-optimal (respectively woman-optimal) stable matching, each man is partnered by the first (respectively last) woman on his GS-list, and each woman by the last (respectively first) man on hers.

1. all stable matchings are contained in the GS-lists.

- 2. no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists.
- In the man-optimal (respectively woman-optimal) stable matching, each man is partnered by the first (respectively last) woman on his GS-list, and each woman by the last (respectively first) man on hers.

- 1. all stable matchings are contained in the GS-lists.
- 2. no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists.
- 3. In the man-optimal (respectively woman-optimal) stable matching, each man is partnered by the first (respectively last) woman on his GS-list, and each woman by the last (respectively first) man on hers.

- 1. all stable matchings are contained in the GS-lists.
- 2. no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists.
- In the man-optimal (respectively woman-optimal) stable matching, each man is partnered by the first (respectively last) woman on his GS-list, and each woman by the last (respectively first) man on hers.

The Lattice Structure

A person x is said to prefer a matching M to a matching M' if x prefers $p_M(x)$ to $p_{M'}(x)$.

Domination

A stable matching M is said to *dominate* a stable matching M', written $M \preceq M'$, if every man has at least as good a partner in M as he has in M'.i.e., every man either prefers M to M' or is indifferent between them. M disjointly dominates $M'(M \prec M')$ if $M \preceq M'$ and $M \cap M' = \emptyset$.

A person x is said to prefer a matching M to a matching M' if x prefers $p_M(x)$ to $p_{M'}(x)$.

Domination

A stable matching M is said to *dominate* a stable matching M', written $M \preceq M'$, if every man has at least as good a partner in M as he has in M'.i.e., every man either prefers M to M' or is indifferent between them. M disjointly dominates $M'(M \prec M')$ if $M \preceq M'$ and $M \cap M' = \emptyset$.

A person x is said to prefer a matching M to a matching M' if x prefers $p_M(x)$ to $p_{M'}(x)$.

Domination

A stable matching M is said to *dominate* a stable matching M', written $M \preceq M'$, if every man has at least as good a partner in M as he has in M'.i.e., every man either prefers M to M' or is indifferent between them. M disjointly dominates $M'(M \prec M')$ if $M \preceq M'$ and $M \cap M' = \emptyset$.

 $M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$

 $M'' = \{(m, w) \mid w = worst(p_{M_1}(m), p_{M_2}(m))\}$

 $M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$

 $M'' = \{(m, w) \mid w = worst(p_{M_1}(m), p_{M_2}(m))\}$

 $M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$

 $M'' = \{(m, w) \mid w = worst(p_{M_1}(m), p_{M_2}(m))\}$

$$M' = \{(m, w) \mid w = best(p_{M_1}(m), p_{M_2}(m))\}$$

$$M'' = \{(m, w) \mid w = worst(p_{M_1}(m), p_{M_2}(m))\}$$

The Lattice Structure

Set of all stable matchings form a distributive lattice under the *Domination* domination.

Disjoint Stable Matchings

For a given marriage instance, find a largest set S of disjoint stable matchings.

Does there exist a marriage matching instances with disjoint stable matchings?

Does there exist a marriage matching instances with disjoint stable matchings?

$m_1: w_1, w_2, w_3$	$w_1: m_2, m_3, m_1$
$m_2: w_2, w_3, w_1$	$w_2: m_3, m_1, m_2$
$m_3: w_3, w_1, w_2$	$w_3: m_1, m_2, m_3$

Does there exist a marriage matching instances with disjoint stable matchings?

$m_1: w_1, w_2, w_3$	$w_1: m_2, m_3, m_1$
$m_2: w_2, w_3, w_1$	$w_2: m_3, m_1, m_2$
$m_3: w_3, w_1, w_2$	$w_3: m_1, m_2, m_3$

If the man-optimal and the woman-optimal stable matchings share a common edge (m, w), then (m, w) is in every stable matching.

This is because w is both the best stable partner and the worst stable partner of m.

So, to have disjoint stable matchings, man-optimal and woman-optimal matchings must be disjoint.

Algorithm: Disjoint Stable Matchings

Algorithm 3 Disjoint Stable Matchings

1: procedure FIND MAXIMUM SET OF DISJOINT STABLE MATCHINGS(M) 2: \triangleright S: Set of disjoint matchings. Initialize S to be an empty set $S \leftarrow \emptyset$ 3. $M' \leftarrow M$. Beverse Boles \triangleright Men renamed as women and women as men 4: $M_{z} \leftarrow \text{FindStableMatching}(M')$ ▷ GS Algorithm: Woman-optimal 5: $X \leftarrow \text{GS-Extended}(M)$ \triangleright calling Algorithm 2 modifies M's list 6: while $X \cap M_{\tau} = \emptyset$ do 7: $S \leftarrow S \cup \{X\}$ 8: for every man m do 9: Delete first woman w on m's list \triangleright First woman is $p_X(m)$ 10: \triangleright Last man is $p_X(w)$ Delete last man on w's list 11: Mark *m* as free 12: end for 13: $X \leftarrow \text{GS-Extended}(M)$ \triangleright Get a new disjoint matching as X 14: end while 15: $S \leftarrow S \cup \{M_z\}$ return S 16: end procedure

In every iteration, we delete at least one entry from the preference list. As the size of preference list is $2n^2$, the algorithm **terminates**.

For the same reason, the running time of the algorithm is $O(n^2)$.

Men's preference list

Men's Preference

Men's Preference

Men's Preference

Each M_i in the set $S = \{M_0, M_1, \cdots, M_n = M_z\}$ is a perfect matching.

Note: It does not come freely from Extended GS! It only guarantees one-one.

Each M_i in the set $S = \{M_0, M_1, \cdots, M_n = M_z\}$ is a perfect matching.

Note: It does not come freely from Extended GS! It only guarantees one-one.

All the matchings in the set S are stable matchings.

Lemma 3

If $M_0, M_1, \dots, M_n = M_z$ are the matchings discovered by the algorithm 3 in this order, then $M_0 \prec M_1 \prec \dots \prec M_n = M_z$.

All the matchings in the set S are stable matchings.

Lemma 3

If $M_0, M_1, \dots, M_n = M_z$ are the matchings discovered by the algorithm 3 in this order, then $M_0 \prec M_1 \prec \dots \prec M_n = M_z$.

In any arbitrary execution E of the algorithm 3, for any man m, $p_{M_i}(m)$ is the best stable partner of m when, for every man, stable partners from $M_0, M_1, \cdots, M_{i-1}$ are disallowed.

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let I be an SM instance and let \mathcal{T} be a set of stable matchings in I. Let $\alpha_{j,\mathcal{T}}$ (respectively $\beta_{j,\mathcal{T}}$) denote the set of pairs obtained by assigning each man m_i (woman w_i) to $p_{j,\mathcal{T}}(m_i)$ ($p_{j,\mathcal{T}}(w_i)$), the jth element in the sorted multiset $P_{\mathcal{T}}(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,\mathcal{T}}\}$ (respectively $P_{\mathcal{T}}(w_i)$). Then, each of $\alpha_{j,\mathcal{T}}$ and $\beta_{j,\mathcal{T}}$ is a stable matching.

Given stable matchings M_1, M_2, \cdots, M_k ,

 $M'_{i} = \{(m, w) \mid w \text{ is the i-th women in the sorted multiset} \\ \{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\} \}$

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_q$$

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let I be an SM instance and let \mathcal{T} be a set of stable matchings in I. Let $\alpha_{j,\mathcal{T}}$ (respectively $\beta_{j,\mathcal{T}}$) denote the set of pairs obtained by assigning each man m_i (woman w_i) to $p_{j,\mathcal{T}}(m_i)$ ($p_{j,\mathcal{T}}(w_i)$), the jth element in the sorted multiset $P_{\mathcal{T}}(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,\mathcal{T}}\}$ (respectively $P_{\mathcal{T}}(w_i)$). Then, each of $\alpha_{j,\mathcal{T}}$ and $\beta_{j,\mathcal{T}}$ is a stable matching.

Given stable matchings M_1, M_2, \cdots, M_k ,

 $M'_{i} = \{(m, w) \mid w \text{ is the i-th women in the sorted multiset} \\ \{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\} \}$

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_q$$

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))

Let I be an SM instance and let \mathcal{T} be a set of stable matchings in I. Let $\alpha_{j,\mathcal{T}}$ (respectively $\beta_{j,\mathcal{T}}$) denote the set of pairs obtained by assigning each man m_i (woman w_i) to $p_{j,\mathcal{T}}(m_i)$ ($p_{j,\mathcal{T}}(w_i)$), the jth element in the sorted multiset $P_{\mathcal{T}}(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,\mathcal{T}}\}$ (respectively $P_{\mathcal{T}}(w_i)$). Then, each of $\alpha_{j,\mathcal{T}}$ and $\beta_{j,\mathcal{T}}$ is a stable matching.

Given stable matchings M_1, M_2, \cdots, M_k ,

 $M'_{i} = \{(m, w) \mid w \text{ is the i-th women in the sorted multiset} \\ \{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\} \}$

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_q$$

Corollary 7

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of disjoint stable matchings. Let $\alpha_{j,S}$ denote the stable matching obtained by matching each man m_i to $p_{i,S}(m_i)$, the *j*th woman in the sorted set $P_S(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,S}\}$. Then, the stable matchings from the set $C = \{\alpha_{1,S}, \alpha_{2,S}, \dots, \alpha_{k,S}\}$ forms a *k*-length chain $\alpha_{1,S} \prec \alpha_{2,S} \prec \dots \prec \alpha_{k,S}$ of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

 $\begin{aligned} M_i' &= \{(m, w) \mid w \text{ is the i-th women in the sorted set} \\ &\{ p_{M_1}(m), p_{M_2}(m), \cdots, p_{M_k}(m) \} \, \end{aligned}$

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_k$$

Corollary 7

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of disjoint stable matchings. Let $\alpha_{j,S}$ denote the stable matching obtained by matching each man m_i to $p_{i,S}(m_i)$, the jth woman in the sorted set $P_S(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,S}\}$. Then, the stable matchings from the set $C = \{\alpha_{1,S}, \alpha_{2,S}, \dots, \alpha_{k,S}\}$ forms a k-length chain $\alpha_{1,S} \prec \alpha_{2,S} \prec \dots \prec \alpha_{k,S}$ of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

 $M'_{i} = \{(m, w) \mid w \text{ is the i-th women in the sorted set} \\ \{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\} \}$

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_k$$

Corollary 7

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of disjoint stable matchings. Let $\alpha_{j,S}$ denote the stable matching obtained by matching each man m_i to $p_{i,S}(m_i)$, the *j*th woman in the sorted set $P_S(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,S}\}$. Then, the stable matchings from the set $C = \{\alpha_{1,S}, \alpha_{2,S}, \dots, \alpha_{k,S}\}$ forms a *k*-length chain $\alpha_{1,S} \prec \alpha_{2,S} \prec \dots \prec \alpha_{k,S}$ of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

$$M'_{i} = \{(m, w) \mid w \text{ is the i-th women in the sorted set} \\ \{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\} \}$$

Corollary 7

Let $S = \{M_1, M_2, \dots, M_k\}$ be a set of disjoint stable matchings. Let $\alpha_{j,S}$ denote the stable matching obtained by matching each man m_i to $p_{i,S}(m_i)$, the *j*th woman in the sorted set $P_S(m_i) = \{w_i | (m_i, w_i) \in M, M \in \alpha_{j,S}\}$. Then, the stable matchings from the set $C = \{\alpha_{1,S}, \alpha_{2,S}, \dots, \alpha_{k,S}\}$ forms a *k*-length chain $\alpha_{1,S} \prec \alpha_{2,S} \prec \dots \prec \alpha_{k,S}$ of disjoint stable matchings.

Given stable matchings M_1, M_2, \cdots, M_k ,

$$\begin{aligned} M'_i &= \{(m, w) \mid w \text{ is the i-th women in the sorted set} \\ &\{ p_{M_1}(m), p_{M_2}(m), \cdots, p_{M_k}(m) \} \ \end{aligned}$$

$$M'_1 \longrightarrow M'_2 \longrightarrow \cdots \longrightarrow M'_k$$

30/39

Theorem 8

For a given stable marriage instance, algorithm 3 gives the maximum size set of disjoint stable matchings.

Rotations

For every stable matching M, we define the following:

 $s_M(m)$

For any man m, let $s_M(m)$ denote the first women w on m's list such that w strictly prefers m to $p_M(w)$

 $next_M(m)$

For any man *m*, let $next_M(m)$ denote $p_M(s_M(m))$

Note: $s_M(m)$ might not exist. Example: W_z . Both $s_M(m)$ and $next_M(m)$ can be easily be found using *Reduced Lists*.

Roations

Definition of Rotations

An ordered list of matched pairs $\rho = (m_0, w_0), (m_1, w_1), \cdots, (m_{r-1}, w_{r-1})$ in a stable matching M is called as a rotation *exposed* in M if for each i $(0 \le i \le r-1), m_{i+1}$ is $next_M(m_i)$ where i + 1 is taken modulo r.

Elimination of a Rotation

If *M* is a stable matching and $\rho = (m_0, w_0), (m_1, w_1), \cdots, (m_{r-1}, w_{r-1})$ is a rotation exposed in *M*, then M/æ is defined to be matching in which each man who is not in ρ stays married to his partner in *M*, and each man m_i in *M* is matched to $w_{i+1} = s_M(m_i)$

That is, M/ρ differs from M by one place cyclic shift of each men in ρ 33/39

Roations

Definition of Rotations

An ordered list of matched pairs $\rho = (m_0, w_0), (m_1, w_1), \cdots, (m_{r-1}, w_{r-1})$ in a stable matching M is called as a rotation *exposed* in M if for each i $(0 \le i \le r-1), m_{i+1}$ is $next_M(m_i)$ where i + 1 is taken modulo r.

Elimination of a Rotation

If *M* is a stable matching and $\rho = (m_0, w_0), (m_1, w_1), \cdots, (m_{r-1}, w_{r-1})$ is a rotation exposed in *M*, then M/æ is defined to be matching in which each man who is not in ρ stays married to his partner in *M*, and each man m_i in *M* is matched to $w_{i+1} = s_M(m_i)$

That is, M/ρ differs from M by one place cyclic shift of each men in ρ $$^{33/39}$$

Figure 1: Graph H(M)

 $(m_i, m_j) \in E(H(m))$ if $m_j = next_M(mi)$.

- M/ρ is a stable matching such that $M \preceq M/\rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
- Every path from M_0 to M_z in \mathcal{M} corresponds to some permutation of set of all rotations.

- M/ρ is a stable matching such that $M \preceq M/\rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
- Every path from M_0 to M_z in \mathcal{M} corresponds to some permutation of set of all rotations.

- M/ρ is a stable matching such that $M \preceq M/\rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
- Every path from M_0 to M_z in \mathcal{M} corresponds to some permutation of set of all rotations.

Properties of Rotations

- M/ρ is a stable matching such that $M \preceq M/\rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
- Every path from M_0 to M_z in \mathcal{M} corresponds to some permutation of set of all rotations.

poset of rotations

The set of all rotations forms a partial order under the following relation.

 $\rho_1 \prec \rho_2$ iff in *every* path from M_0 to M_z in \mathcal{M} ρ_1 gets eliminated before ρ_2 .

Figure 2: The Rotational Poset $\Pi((M))$

Theorem 9

There is a one-one correspondence between the closed subsets of $\Pi((M))$ and stable matchings in (M)

Theorem 10

S is a closed set of rotations of $\Pi((M))$ corresponding to a stable matching M iff S is the (unique) set of rotations in every M_0 -M chain in (M)

Theorem 9

There is a one-one correspondence between the closed subsets of $\Pi((M))$ and stable matchings in (M)

Theorem 10

S is a closed set of rotations of $\Pi((M))$ corresponding to a stable matching M iff S is the (unique) set of rotations in every M_0 -M chain in (M)

- 1. For every $(m, w) \in M_i$, find $R = \{\rho | (m, w) \in \rho\}$
- 2. Find \hat{R} = closure of R
- 3. Return $M_{i+1} = M_i / \hat{R}$.

- 1. For every $(m, w) \in M_i$, find $R = \{\rho | (m, w) \in \rho\}$
- 2. Find $\hat{R} = \text{closure of } R$
- 3. Return $M_{i+1} = M_i / \hat{R}$.

- 1. For every $(m, w) \in M_i$, find $R = \{\rho | (m, w) \in \rho\}$
- 2. Find $\hat{R} = \text{closure of } R$
- 3. Return $M_{i+1} = M_i / \hat{R}$.

- 1. For every $(m, w) \in M_i$, find $R = \{\rho | (m, w) \in \rho\}$
- 2. Find $\hat{R} = \text{closure of } R$
- 3. Return $M_{i+1} = M_i / \hat{R}$.

- 1. For every $(m, w) \in M_i$, find $R = \{\rho | (m, w) \in \rho\}$
- 2. Find $\hat{R} = \text{closure of } R$

3. Return
$$M_{i+1} = M_i / \hat{R}$$
.

- Disjoint Stable Matchings in the Roommate problem.
- When disjoint stable matchings do not exist, minimize pairwise intersection.

Thank You!