Disjoint Stable Matchings

Aadityan Ganesh, Prajakta Nimbhorkar, Geevarghese Philip, Vishwa Prakash HV
January 6, 2021
Chennai Mathematical Institute

Outline

- Background
- Stable Matchings
- Gale-Shapley Algorithm
- Extended Gale-Shapley Algorithm
- The Lattice Structure
- Disjoint Stable Matchings
- Disjoint Perfect Matchings
- Disjoint Stable Matchings
- Algorithm to find Disjoint Stable Matchings
- Correctness and Running time of the Algorithm
- Rotations
- Rotational poset
- Properties of Rotational poset
- Analogous Algorithm

Stable Matchings

Marriage Matching Instance

A marriage matching instance of size n involves two disjoint sets of size n, the men and the women. Associated with each person is a strictly ordered preference list containing all the members of the opposite sex. Person p prefers q to r, where q and r are of the opposite sex of p, if and only if q precedes r on p 's preference list.

Stable Matchings

Marriage Matching Instance

A marriage matching instance of size n involves two disjoint sets of size n, the men and the women. Associated with each person is a strictly ordered preference list containing all the members of the opposite sex. Person p prefers q to r, where q and r are of the opposite sex of p, if and only if q precedes r on p 's preference list.

Set of men Set of women

Stable Matchings

Marriage Matching Instance

A marriage matching instance of size n involves two disjoint sets of size n, the men and the women. Associated with each person is a strictly ordered preference list containing all the members of the opposite sex. Person p prefers q to r, where q and r are of the opposite sex of p, if and only if q precedes r on p 's preference list.

Set of men Set of women

Stable Matchigs

If (m, w) are matched in a matching M, we say $m=p_{M}(w)$ and $w=p_{M}(m)$

Blocking Pair

A man m and a woman w are said to block a matching M, or the pair (m, w) is said to be a blocking pair for M, if m and w are not partners in M, but m prefers w to $p_{M}(m)$ and w prefers m to $p_{M}(w)$. A matching with no blocking pair is called a stable matching, and is otherwise unstable.

Stable Matchigs

If (m, w) are matched in a matching M, we say $m=p_{M}(w)$ and $w=p_{M}(m)$

Blocking Pair

A man m and a woman w are said to block a matching M, or the pair (m, w) is said to be a blocking pair for M, if m and w are not partners in M, but m prefers w to $p_{M}(m)$ and w prefers m to $p_{M}(w)$. A matching with no blocking pair is called a stable matching, and is otherwise unstable.

Stable Matchigs

If (m, w) are matched in a matching M, we say $m=p_{M}(w)$ and $w=p_{M}(m)$

Blocking Pair

A man m and a woman w are said to block a matching M, or the pair (m, w) is said to be a blocking pair for M, if m and w are not partners in M, but m prefers w to $p_{M}(m)$ and w prefers m to $p_{M}(w)$. A matching with no blocking pair is called a stable matching, and is otherwise unstable.

Stable Matchings

Stable Matching

A matching with no blocking pair
Checking stability: $O\left(n^{2}\right)$

Stable and Fixed Pairs

Stable Pair

A pair (m, w) is called as a stable pair if m and w are partners in at least one stable matching.

Stable and Fixed Pairs

Stable Pair

A pair (m, w) is called as a stable pair if m and w are partners in at least one stable matching.

Fixed Pair

A pair (m, w) is called as a fixed pair if m and w are partners in at all stable matchings.

Gale-Shapley Algorithm

```
Algorithm 1 Gale-Shapley
    1: procedure Find stable matching \((M)\)
    2: assign each person to be free
    3: while some man \(m\) is free do
        \(w \leftarrow\) first woman on \(m\) 's list to whom \(m\) hasn't proposed
        if \(w\) is free then
        assign \(m\) and \(w\) to be engaged to each other
        else
        if \(w\) prefers \(m\) to her current matched partner \(m^{\prime}\) then
            assign \(m\) and \(w\) to be engaged and \(m^{\prime}\) to be free
        else
                \(w\) rejects \(m \quad \triangleright m\) remains free
        end if
        end if
        end while
        return Stable matching consisting of \(n\) engaged pairs
15: end procedure
```


Gale-Shapley Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}
$m_{2}:$	w_{3}	w_{1}	w_{2}
$m_{3}:$	w_{2}	w_{1}	w_{3}

Men's Preference

$w_{1}:$	m_{1}	m_{2}	m_{3}
$w_{2}:$	m_{2}	m_{1}	m_{3}
$w_{3}:$	m_{3}	m_{2}	m_{1}

Women's Preference

Gale-Shapley Algorithm

m_{1} :	W_{2}	W_{3}	W_{1}	W_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	m_{3}
m_{3} :	W_{2}	w_{1}	W3	W_{3} :	m_{3}	m_{2}	m_{1}
Men's Preference				Wom	en's	Pref	ren

Gale-Shapley Algorithm

m_{1} :	W_{2}	W3	W_{1}	W_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	m_{3}
m_{3} :	W_{2}	W_{1}	W3	W3:	m_{3}	m_{2}	m_{1}
Men's Preference				Wom	'n's	Pref	ren

Gale-Shapley Algorithm

m_{1} :	W_{2}	W3	W_{1}	W_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	m_{3}
m_{3} :	W_{2}	W_{1}	W3	W3:	m_{3}	m_{2}	m_{1}
Men's Preference				Wom	'n's	Pref	ren

Gale-Shapley Algorithm

m_{1} :	W_{2}	W3	w_{1}	W_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	w_{2}	W_{2} :	m_{2}	m_{1}	m_{3}
m_{3} :	W_{2}	W_{1}	W3	W3:	m_{3}	m_{2}	m_{1}
Men's Preference				Wom	en's	Pref	ren

Gale-Shapley Algorithm - Key Results

1. Every marriage instance has a stable matching.
same result.
It results in "Man-optimal" stable matching.
Man-optimal: Every man is matched with his most favored nartner amons all stable nartners Reversing roles, i.e, women proposing, results in Woman-optimal: Every woman is matched with her most favored nartner amono all ctahle nartners The man-optimal stable matching is woman-pessimal, and

Gale-Shapley Algorithm - Key Results

1. Every marriage instance has a stable matching.
2. All possible execution of the Gale-Shapley algorithm yields the same result.

Man-optimal: Every man is matched with his most favored
nartner amone all stahle nartners
Reversing roles, i.e, women proposing, results in

Woman-optimal: Every woman is matched with her most
favored nartner amono all stahle nartners

Gale-Shapley Algorithm - Key Results

1. Every marriage instance has a stable matching.
2. All possible execution of the Gale-Shapley algorithm yields the same result.
3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Gale-Shapley Algorithm - Key Results

1. Every marriage instance has a stable matching.
2. All possible execution of the Gale-Shapley algorithm yields the same result.
3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.
4. Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.

Gale-Shapley Algorithm - Key Results

1. Every marriage instance has a stable matching.
2. All possible execution of the Gale-Shapley algorithm yields the same result.
3. It results in "Man-optimal" stable matching.

Man-optimal: Every man is matched with his most favored partner among all stable partners.
4. Reversing roles, i.e, women proposing, results in "Woman-optimal" stable matching.

Woman-optimal: Every woman is matched with her most favored partner among all stable partners.
5. The man-optimal stable matching is woman-pessimal, and vice-versa.

Extended Gale-Shapley Algorithm

Algorithm 2 Extended Gale-Shapley

1: procedure GS-Extended (M)
2: assign each person to be free
3: while some man m is free do
4: $\quad w \leftarrow$ first woman on m 's list
5: \quad if some man p is engaged to w then assign p to be free
end if
assign m and w to be engaged to each other
for each successor m^{\prime} of m on $w^{\prime} s$ list do
delete w on $m^{\prime \prime}$ s list
delete m^{\prime} on w^{\prime} 's list $\quad \triangleright$ deleting the pair $\left(m^{\prime}, w\right)$
end for
end while
return Stable matching consisting of n engaged pairs
14: end procedure

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}
$m_{2}:$	w_{3}	w_{1}	w_{2}
$m_{3}:$	w_{2}	w_{1}	w_{3}

Men's Preference

$w_{1}:$	m_{1}	m_{2}	m_{3}
$w_{2}:$	m_{2}	m_{1}	m_{3}
$w_{3}:$	m_{3}	m_{2}	m_{1}

Women's Preference

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}	$w_{1}:$	m_{1}	m_{2}	m_{3}
$m_{2}:$	w_{3}	w_{1}	w_{2}	$w_{2}:$	m_{2}	m_{1}	m_{3}
$m_{3}:$	w_{2}	w_{1}	w_{3}	$w_{3}:$	m_{3}	m_{2}	m_{1}

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}	$w_{1}:$	m_{1}	m_{2}	m_{3}
$m_{2}:$	w_{3}	w_{1}	w_{2}	$w_{2}:$	m_{2}	m_{1}	
$m_{3}:$	w_{1}	w_{3}	$w_{3}:$	m_{3}	m_{2}	m_{1}	

Run of Extended GS Algorithm

$m_{1}:$	w_{2}	w_{3}	w_{1}	$w_{1}:$	m_{1}	m_{2}	m_{3}
$m_{2}:$	w_{3}	w_{1}	w_{2}	$w_{2}:$	m_{2}	m_{1}	
$m_{3}:$	w_{1}	w_{3}	$w_{3}:$	m_{3}	m_{2}	m_{1}	

Run of Extended GS Algorithm

m_{1} :	W_{2}		W_{1}	w_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	
m_{3} :		w_{1}	W3	W3:	m_{3}	m_{2}	
Men's Preference				Women's Preference			

Run of Extended GS Algorithm

m_{1} :	W_{2}		W_{1}	w_{1} :	m_{1}	m_{2}	m_{3}
m_{2} :	W3	W_{1}	W_{2}	W_{2} :	m_{2}	m_{1}	
m_{3} :		w_{1}	W3	W3:	m_{3}	m_{2}	
Men's Preference				Women's Preference			

GS-lists

MGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with men as proposers are called as man-oriented Gale-Shapley lists or MGS-lists.

GS-lists

MGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with men as proposers are called as man-oriented Gale-Shapley lists or MGS-lists.

WGS-list

Final preference lists generated by the extended Gale-Shapley algorithm with women as proposers are called as woman-oriented Gale-Shapley lists or WGS-lists.

GS-lists

GS-list

Intersection of MGS-list and WGS-list.
Note: GS-lists can be obtained by applying man-oriented extended Gale-Shapley algorithm to get MGS-lists and then, starting with the MGS-lists, applying woman-oriented extended GS algorithm.

Extended GS Algorithm Key Results

> no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists. In the man-optimal (respectively woman-optimal) stable matching, each man is partnered by the first (respectively last) woman on his GS-list, and each woman by the last (respectively first) man on hers

Extended GS Algorithm Key Results

1. all stable matchings are contained in the GS-lists.
\qquad matching, each man is partnered by the first (respectively
 (respectively first) man on hers.

Extended GS Algorithm Key Results

1. all stable matchings are contained in the GS-lists.
2. no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists.
matching, each man is partnered by the first (respectively last) ... (respectively first) man on hers.

Extended GS Algorithm Key Results

1. all stable matchings are contained in the GS-lists.
2. no matching (stable or otherwise) contained in the GS-lists can be blocked by a pair that is not in the GS-lists.
3. In the man-optimal (respectively woman-optimal) stable matching, each man is partnered by the first (respectively last) woman on his GS-list, and each woman by the last (respectively first) man on hers.

The Lattice Structure

A person x is said to prefer a matching M to a matching M^{\prime} if x prefers $p_{M}(x)$ to $p_{M^{\prime}}(x)$.

The Lattice Structure

A person x is said to prefer a matching M to a matching M^{\prime} if x prefers $p_{M}(x)$ to $p_{M^{\prime}}(x)$.

Domination

A stable matching M is said to dominate a stable matching M^{\prime}, written $M \preceq M^{\prime}$, if every man has at least as good a partner in M as he has in M^{\prime}.i.e., every man either prefers M to M^{\prime} or is indifferent between them. M disjointly dominates $M^{\prime}\left(M \prec M^{\prime}\right)$ if $M \preceq M^{\prime}$ and $M \cap M^{\prime}=\varnothing$.

The Lattice Structure

A person x is said to prefer a matching M to a matching M^{\prime} if x prefers $p_{M}(x)$ to $p_{M^{\prime}}(x)$.

Domination

A stable matching M is said to dominate a stable matching M^{\prime}, written $M \preceq M^{\prime}$, if every man has at least as good a partner in M as he has in M^{\prime}.i.e., every man either prefers M to M^{\prime} or is indifferent between them. M disjointly dominates $M^{\prime}\left(M \prec M^{\prime}\right)$ if $M \preceq M^{\prime}$ and $M \cap M^{\prime}=\varnothing$.

Men's Preference

Meet and Join

Meet and Join

Meet and Join

Men's Preference $M^{\prime \prime}=\left\{(m, w) \mid w=w o r s t\left(p_{M_{1}}(m), p_{M_{2}}(m)\right)\right\}$

Meet and Join

Men's Preference

$$
M^{\prime \prime}=\left\{(m, w) \mid w=\operatorname{worst}\left(p_{M_{1}}(m), p_{M_{2}}(m)\right)\right\}
$$

The Lattice Structure

Set of all stable matchings form a distributive lattice under the Domination domination.

Disjoint Stable Matchings

Why do we need them?

Problem Statement

For a given marriage instance, find a largest set S of disjoint stable matchings.

Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable matchings?

Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable matchings?

$$
\begin{aligned}
& m_{1}: w_{1}, w_{2}, w_{3} \\
& m_{2}: w_{2}, w_{3}, w_{1} \\
& m_{3}: w_{3}, w_{1}, w_{2}
\end{aligned}
$$

$$
w_{1}: m_{2}, m_{3}, m_{1}
$$

$$
w_{2}: m_{3}, m_{1}, m_{2}
$$

$$
w_{3}: m_{1}, m_{2}, m_{3}
$$

Existence of Disjoint Stable Matchings

Does there exist a marriage matching instances with disjoint stable matchings?

$$
\begin{array}{ll}
m_{1}: w_{1}, w_{2}, w_{3} & w_{1}: m_{2}, m_{3}, m_{1} \\
m_{2}: w_{2}, w_{3}, w_{1} & w_{2}: m_{3}, m_{1}, m_{2} \\
m_{3}: w_{3}, w_{1}, w_{2} & w_{3}: m_{1}, m_{2}, m_{3}
\end{array}
$$

Necessary Condition

If the man-optimal and the woman-optimal stable matchings share a common edge (m, w), then (m, w) is in every stable matching.

This is because w is both the best stable partner and the worst stable partner of m.

So, to have disjoint stable matchings, man-optimal and woman-optimal matchings must be disjoint.

Algorithm: Disjoint Stable Matchings

```
Algorithm 3 Disjoint Stable Matchings
    procedure Find maximum set of Disjoint stable matchings( }M\mathrm{ )
```



```
3: }\quad\mp@subsup{M}{}{\prime}\leftarrowM.ReverseRoles D Men renamed as women and women as me
4: }\mp@subsup{M}{z}{}\leftarrow\mathrm{ FindStableMatching( }\mp@subsup{M}{}{\prime})\quad\triangleright\mathrm{ GS Algorithm: Woman-optimal
5: }X\leftarrowGG-ExtEnded (M) D calling Algorithm 2 modifies M's lis
6: while }X\cap\mp@subsup{M}{z}{}=\varnothing\mathrm{ do
7: }\quadS\leftarrowS\cup{X
8: for every man m do
9: Delete first woman w on m's list
11:
12:
13:
14: end while
15:
    return S
16: end procedure
```

10:

Termination and Time Complexity

In every iteration, we delete at least one entry from the preference list. As the size of preference list is $2 n^{2}$, the algorithm terminates.

For the same reason, the running time of the algorithm is $O\left(n^{2}\right)$.

Run of Disjoint GS Algorithm

Men's preference list

Run of Disjoint GS Algorithm

Men's Preference

Run of Disjoint GS Algorithm

$m_{1}:$
$m_{2}:$
$m_{3}:$
$m_{4}:$
$m_{5}:$
$m_{6}:$
$m_{7}:$

Men's Preference

Run of Disjoint GS Algorithm

$m_{1}:$
$m_{2}:$
$m_{3}:$
$m_{4}:$
$m_{5}:$
$m_{6}:$
$m_{7}:$

Men's Preference

Disjoint Stable Matchings

Lemma 1

Each M_{i} in the set $S=\left\{M_{0}, M_{1}, \cdots, M_{n}=M_{z}\right\}$ is a perfect matching.

Note: It does not come freely from Extended GS! t only guarantees one-one.

Disjoint Stable Matchings

Lemma 1

Each M_{i} in the set $S=\left\{M_{0}, M_{1}, \cdots, M_{n}=M_{z}\right\}$ is a perfect matching.

Note: It does not come freely from Extended GS!
It only guarantees one-one.

Disjoint Stable Matchings

Lemma 2
All the matchings in the set S are stable matchings.

Disjoint Stable Matchings

Lemma 2

All the matchings in the set S are stable matchings.

Lemma 3
If $M_{0}, M_{1}, \cdots, M_{n}=M_{z}$ are the matchings discovered by the algorithm 3 in this order, then $M_{0} \prec M_{1} \prec \cdots \prec M_{n}=M_{z}$.

Disjoint Stable Matchings

Lemma 4

In any arbitrary execution E of the algorithm 3, for any man m, $p_{M_{i}}(m)$ is the best stable partner of m when, for every man, stable partners from $M_{0}, M_{1}, \cdots, M_{i-1}$ are disallowed.

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \longrightarrow M_{1} \longrightarrow \cdots \rightarrow M_{n} \\
& M_{0}^{\prime} \longrightarrow M_{1}^{\prime} \longrightarrow \cdots \quad \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Proof:

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \longrightarrow M_{1} \rightarrow \cdots \rightarrow M_{n} \\
& M_{0} \rightarrow M_{1}^{\prime} \rightarrow \cdots
\end{aligned} \cdots \rightarrow M_{k}^{\prime}
$$

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Proof:

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \longrightarrow M_{1} \longrightarrow \cdots \rightarrow M_{n} \\
& M_{0} \rightarrow M_{1} \rightarrow \cdots \quad \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Longest Chain of Disjoint Stable matchings

Lemma 5

The algorithm 3 gives the longest chain of disjoint stable matchings.

Proof:

$$
\begin{aligned}
& M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{n} \\
& M_{0} \rightarrow M_{1} \rightarrow \cdots \rightarrow M_{n} \rightarrow \cdots \rightarrow M_{k}^{\prime}
\end{aligned}
$$

Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))
Let I be an SM instance and let \mathcal{T} be a set of stable matchings in I. Let $\alpha_{j, \mathcal{T}}$ (respectively $\beta_{j, \mathcal{T}}$) denote the set of pairs obtained by assigning each man $m_{i}\left(\right.$ woman $\left.w_{i}\right)$ to $p_{j, \mathcal{T}}\left(m_{i}\right)\left(p_{j, \mathcal{T}}\left(w_{i}\right)\right)$, the j th element in the sorted multiset
$P_{\mathcal{T}}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, \mathcal{T}}\right\}$ (respectively $\left.P_{\mathcal{T}}\left(w_{i}\right)\right)$.
Then, each of $\alpha_{j, \mathcal{T}}$ and $\beta_{j, \mathcal{T}}$ is a stable matching.

[^0]
Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))
Let I be an SM instance and let \mathcal{T} be a set of stable matchings in I. Let $\alpha_{j, \mathcal{T}}$ (respectively $\beta_{j, \mathcal{T}}$) denote the set of pairs obtained by assigning each man $m_{i}\left(\right.$ woman $\left.w_{i}\right)$ to $p_{j, \mathcal{T}}\left(m_{i}\right)\left(p_{j, \mathcal{T}}\left(w_{i}\right)\right)$, the j th element in the sorted multiset
$P_{\mathcal{T}}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, \mathcal{T}}\right\}$ (respectively $\left.P_{\mathcal{T}}\left(w_{i}\right)\right)$.
Then, each of $\alpha_{j, \mathcal{T}}$ and $\beta_{j, \mathcal{T}}$ is a stable matching.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

Disjoint Stable Matching

Theorem 6 (Teo, C.-P. and Sethuraman, J. (1998))
Let I be an SM instance and let \mathcal{T} be a set of stable matchings in I. Let $\alpha_{j, \mathcal{T}}$ (respectively $\beta_{j, \mathcal{T}}$) denote the set of pairs obtained by assigning each man m_{i} (woman $\left.w_{i}\right)$ to $p_{j, \mathcal{T}}\left(m_{i}\right)\left(p_{j, \mathcal{T}}\left(w_{i}\right)\right)$, the j th element in the sorted multiset
$P_{\mathcal{T}}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, \mathcal{T}}\right\}$ (respectively $\left.P_{\mathcal{T}}\left(w_{i}\right)\right)$. Then, each of $\alpha_{j, \mathcal{T}}$ and $\beta_{j, \mathcal{T}}$ is a stable matching.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

$$
M_{i}^{\prime}=\{(m, w) \mid w \text { is the i-th women in the sorted multiset }
$$

$$
\left.\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}\right\}
$$

$$
M_{1}^{\prime} \longrightarrow M_{2}^{\prime} \rightarrow \cdots \rightarrow M_{q}^{\prime}
$$

Disjoint Chain

Corollary 7

Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of disjoint stable matchings. Let $\alpha_{j, S}$ denote the stable matching obtained by matching each man m_{i} to $p_{i, S}\left(m_{i}\right)$, the j th woman in the sorted set $P_{S}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, S}\right\}$. Then, the stable matchings from the set $C=\left\{\alpha_{1, S}, \alpha_{2, S}, \cdots, \alpha_{k, S}\right\}$ forms a k-length chain $\alpha_{1, S} \prec \alpha_{2, S} \prec \cdots \prec \alpha_{k, S}$ of disjoint stable matchings.

Given stable matchings M_{1}, M_{2},

Disjoint Chain

Corollary 7

Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of disjoint stable matchings. Let $\alpha_{j, S}$ denote the stable matching obtained by matching each man m_{i} to $p_{i, S}\left(m_{i}\right)$, the j th woman in the sorted set $P_{S}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, S}\right\}$. Then, the stable matchings from the set $C=\left\{\alpha_{1, S}, \alpha_{2, S}, \cdots, \alpha_{k, S}\right\}$ forms a k-length chain $\alpha_{1, S} \prec \alpha_{2, S} \prec \cdots \prec \alpha_{k, S}$ of disjoint stable matchings.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

Disjoint Chain

Corollary 7

Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of disjoint stable matchings. Let $\alpha_{j, S}$ denote the stable matching obtained by matching each man m_{i} to $p_{i, S}\left(m_{i}\right)$, the j th woman in the sorted set $P_{S}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, S}\right\}$. Then, the stable matchings from the set $C=\left\{\alpha_{1, S}, \alpha_{2, S}, \cdots, \alpha_{k, S}\right\}$ forms a k-length chain $\alpha_{1, S} \prec \alpha_{2, S} \prec \cdots \prec \alpha_{k, S}$ of disjoint stable matchings.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

$$
\begin{gathered}
M_{i}^{\prime}=\{(m, w) \mid w \text { is the i-th women in the sorted set } \\
\left.\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}\right\}
\end{gathered}
$$

Disjoint Chain

Corollary 7

Let $S=\left\{M_{1}, M_{2}, \cdots, M_{k}\right\}$ be a set of disjoint stable matchings. Let $\alpha_{j, S}$ denote the stable matching obtained by matching each man m_{i} to $p_{i, S}\left(m_{i}\right)$, the j th woman in the sorted set $P_{S}\left(m_{i}\right)=\left\{w_{i} \mid\left(m_{i}, w_{i}\right) \in M, M \in \alpha_{j, S}\right\}$. Then, the stable matchings from the set $C=\left\{\alpha_{1, S}, \alpha_{2, S}, \cdots, \alpha_{k, S}\right\}$ forms a k-length chain $\alpha_{1, S} \prec \alpha_{2, S} \prec \cdots \prec \alpha_{k, S}$ of disjoint stable matchings.

Given stable matchings $M_{1}, M_{2}, \cdots, M_{k}$,

$$
\begin{gathered}
M_{i}^{\prime}=\{(m, w) \mid w \text { is the i-th women in the sorted set } \\
\left.\left\{p_{M_{1}}(m), p_{M_{2}}(m), \cdots, p_{M_{k}}(m)\right\}\right\}
\end{gathered}
$$

$$
M_{1}^{\prime} \rightarrow M_{2}^{\prime} \rightarrow \cdots \rightarrow M_{k}^{\prime}
$$

Maximum Size Set of Disjoint Stable Matchings

Theorem 8

For a given stable marriage instance, algorithm 3 gives the maximum size set of disjoint stable matchings.

Rotations

Rotations

For every stable matching M, we define the following:
$s_{M}(m)$
For any man m, let $s_{M}(m)$ denote the first women w on m 's list such that w strictly prefers m to $p_{M}(w)$

```
nextM}(m
```

For any man m, let $\operatorname{next}_{M}(m)$ denote $p_{M}\left(s_{M}(m)\right)$

Note: $s_{M}(m)$ might not exist. Example: W_{z}.
Both $s_{M}(m)$ and $\operatorname{next}_{M}(m)$ can be easily be found using Reduced Lists.

Roations

Definition of Rotations

An ordered list of matched pairs
$\rho=\left(m_{0}, w_{0}\right),\left(m_{1}, w_{1}\right), \cdots,\left(m_{r-1}, w_{r-1}\right)$ in a stable matching M is called as a rotation exposed in M if for each i $(0 \leq i \leq r-1), m_{i+1}$ is $\operatorname{next}_{M}\left(m_{i}\right)$ where $i+1$ is taken modulo r.

Elimination of a Rotation

If M is a stable matching and
$\rho=\left(m_{0}, w_{0}\right),\left(m_{1}, w_{1}\right), \cdots,\left(m_{r-1}, w_{r-1}\right)$ is a rotation exposed in M, then $M / æ$ is defined to be matching in which each man who is not in ρ stays married to his partner in M, and each man m_{i} in M is matched to $w_{i+1}=s_{M}\left(m_{i}\right)$

Roations

Definition of Rotations

An ordered list of matched pairs
$\rho=\left(m_{0}, w_{0}\right),\left(m_{1}, w_{1}\right), \cdots,\left(m_{r-1}, w_{r-1}\right)$ in a stable matching M is called as a rotation exposed in M if for each i $(0 \leq i \leq r-1), m_{i+1}$ is $\operatorname{next}_{M}\left(m_{i}\right)$ where $i+1$ is taken modulo r.

Elimination of a Rotation

If M is a stable matching and
$\rho=\left(m_{0}, w_{0}\right),\left(m_{1}, w_{1}\right), \cdots,\left(m_{r-1}, w_{r-1}\right)$ is a rotation exposed in M, then $M / æ$ is defined to be matching in which each man who is not in ρ stays married to his partner in M, and each man m_{i} in M is matched to $w_{i+1}=s_{M}\left(m_{i}\right)$

That is, M / ρ differs from M by one place cyclic shift of each men in ρ

Representation

Figure 1: Graph $H(M)$
$\left(m_{i}, m_{j}\right) \in E(H(m))$ if $m_{j}=\operatorname{next}_{M}(m i)$.

Properties of Rotations

- M / ρ is a stable matching such that $M \preceq M / \rho$ has at least one rotation exposed in it. Fvery nath from $1 \Lambda_{0}$ to $M 1$ in 11 correenonds to some permutation of set of all rotations.

Properties of Rotations

- M / ρ is a stable matching such that $M \preceq M / \rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
permutation of set of all rotations.

Properties of Rotations

- M / ρ is a stable matching such that $M \preceq M / \rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
- Every path from M_{0} to M_{z} in \mathcal{M} corresponds to some permutation of set of all rotations.

Properties of Rotations

- M / ρ is a stable matching such that $M \preceq M / \rho$
- Every stable matching except the women optimal matching has at least one rotation exposed in it.
- Every path from M_{0} to M_{z} in \mathcal{M} corresponds to some permutation of set of all rotations.

poset of rotations

The set of all rotations forms a partial order under the following relation.
$\rho_{1} \prec \rho_{2}$ iff in every path from M_{0} to M_{z} in $\mathcal{M} \rho_{1}$ gets eliminated before ρ_{2}.

Figure 2: The Rotational Poset $\Pi((M))$

poset of rotations

Theorem 9

There is a one-one correspondence between the closed subsets of $\Pi((M))$ and stable matchings in (M)

poset of rotations

Theorem 9

There is a one-one correspondence between the closed subsets of $\Pi((M))$ and stable matchings in (M)

Theorem 10

S is a closed set of rotations of $\Pi((M))$ corresponding to a stable matching M iff S is the (unique) set of rotations in every $M_{0}-M$ chain in (M)

Algorithm based on $\Pi((M))$

Given a stable matching M_{i}, we can find the next best disjoint stable matching M_{i+1} by doing the following steps. 3 Deturn $\Lambda \Lambda .-\Lambda \Lambda . / \hat{D}$ We use the above steps recursively (until we find a matching that interencte with $\Lambda \Lambda$) to rat the mavimum shain of disinint stable

Algorithm based on $\Pi((M))$

Given a stable matching M_{i}, we can find the next best disjoint stable matching M_{i+1} by doing the following steps.

1. For every $(m, w) \in M_{i}$, find $R=\{\rho \mid(m, w) \in \rho\}$

Algorithm based on $\Pi((M))$

Given a stable matching M_{i}, we can find the next best disjoint stable matching M_{i+1} by doing the following steps.

1. For every $(m, w) \in M_{i}$, find $R=\{\rho \mid(m, w) \in \rho\}$
2. Find $\hat{R}=$ closure of R
\qquad intersects with M_{z}) to get the maximum chain of disjoint stable matchings

Algorithm based on $\Pi((M))$

Given a stable matching M_{i}, we can find the next best disjoint stable matching M_{i+1} by doing the following steps.

1. For every $(m, w) \in M_{i}$, find $R=\{\rho \mid(m, w) \in \rho\}$
2. Find $\hat{R}=$ closure of R
3. Return $M_{i+1}=M_{i} / \hat{R}$.
\qquad intersects with M_{z}) to get the maximum chain of disjoint stable matchings.

Algorithm based on $\Pi((M))$

Given a stable matching M_{i}, we can find the next best disjoint stable matching M_{i+1} by doing the following steps.

1. For every $(m, w) \in M_{i}$, find $R=\{\rho \mid(m, w) \in \rho\}$
2. Find $\hat{R}=$ closure of R
3. Return $M_{i+1}=M_{i} / \hat{R}$.

We use the above steps recursively (until we find a matching that intersects with M_{z}) to get the maximum chain of disjoint stable matchings.

Future Work

- Disjoint Stable Matchings in the Roommate problem.
- When disjoint stable matchings do not exist, minimize pairwise intersection.

Thank You!

[^0]: Given stable matchings M_{1}, M_{2}

