PROBLEM SET 11

INTRO TO REAL ANALYSIS

Problem 1. Let f be uniformly continuous on all of \mathbb{R} , and define a sequence of functions by $f_n(x) = f(x + \frac{1}{n})$. Show that $f_n \to f$ uniformly. Give an example to show that this proposition fails if f is only assumed to be continuous and not uniformly continuous on \mathbb{R} .

Problem 2. Assume (f_n) and (g_n) are uniformly convergent sequences of functions.

- (1) Show that $(f_n + g_n)$ is a uniformly convergent sequence of functions.
- (2) Give an example to show that the product $(f_n g_n)$ may not converge uniformly.
- (3) Prove that if there exists an M > 0 such that $|f_n| \leq M$ and $|g_n| \leq M$ for all $n \in \mathbb{N}$, then $(f_n g_n)$ does converge uniformly.

Problem 3. (Dini's theorem) Assume $f_n \to f$ pointwise on a compact set K and assume that for each $x \in K$ the sequence $f_n(x)$ is increasing. Follow these steps to show that if f_n and f are continuous on K, then the convergence is uniform.

- (a) Set $g_n = f f_n$ and translate the preceding hypothesis into statements about the sequence (g_n) .
- (b) Let $\epsilon > 0$ be arbitrary, and define $K_n = \{x \in K : g_n(x) \ge \epsilon\}$. Argue that $K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots$, and use this observation to finish the argument.

Problem 4. Assume $f_n \to f$ pointwise on [a, b] and the limit function f is continuous on [a, b]. If each f_n is increasing (but not necessarily continuous), show $f_n \to f$ uniformly. HINT: We need to find an N such that

$$a > N \implies |f_n(x) - f(x)| < \epsilon \quad \forall x$$

To find N, divide the interval [a, b] into sub-intervals $a = t_0 < t_1 < \cdots < t_n = b$, such that for any $i, |f(y_1) - f(y_2)| < \epsilon/3$ for all $y_1, y_2 \in [t_i, t_{i+1}]$.

Problem 5. (1) Define $f_0(x) = x$ for all $x \in [0, 1]$. Now, let

$$f_1(x) = \begin{cases} 3x/2, & \text{for } 0 \le x \le 1/3, \\ 1/2, & \text{for } 1/3 < x < 2/3, \\ 3x/2 - 1/2, & \text{for } 2/3 \le x \le 1. \end{cases}$$

Sketch f_0 and f_1 over [0, 1] and observe that f_1 is continuous, increasing, and constant on the middle third $(1/3, 2/3) = [0, 1] \setminus C_1$.

(2) Construct f_2 by imitating this process of flattening out the middle third of each nonconstant segment of f_1 . Specifically, let

$$f_2(x) = \begin{cases} \frac{1}{2}f_1(3x), & \text{for } 0 \le x \le 1/3, \\ f_1(x), & \text{for } 1/3 < x < 2/3, \\ \frac{1}{2}f_1(3x-2) + \frac{1}{2}, & \text{for } 2/3 \le x \le 1. \end{cases}$$

If we continue this process, show that the resulting sequence (f_n) converges uniformly on [0, 1].

(3) Let $f = \lim f_n$. Prove that f is a continuous, increasing function on [0, 1] with f(0) = 0 and f(1) = 1 that satisfies f'(x) = 0 for all x in the open set $[0, 1] \setminus C$. Recall that the "length" of the Cantor set C is 0. Somehow, f manages to increase from 0 to 1 while remaining constant on a set of "length 1."

The following problem is optional. It will not contribute to or detract from your grade, but you are encouraged to attempt it.

Date: November 6, 2017.

Challenge 1. (Arzela-Ascoli theorem) Suppose (f_n) is a sequence of functions on [0, 1] satisfying the following conditions:

- (1) the sequence is uniformly bounded, i.e. there exists an M > 0 such that $|f_n(x)| \le M$ for all $x \in [0, 1]$, and for all $n \in \mathbb{N}$.
- (2) The sequence is *equicontinuous*, i.e. for any $\epsilon > 0$, there is a $\delta > 0$ such that for all $x, y \in [0, 1]$ and $n \in \mathbb{N}$,

$$|x - y| < \delta \implies |f_n(x) - f_n(y)| < \epsilon.$$

Then, the sequence (f_n) has a uniformly converging subsequence. Consult Problem 6.2.15 in the book for hints.

*All questions taken from Understanding Analysis: 2nd Edition by Stephen Abbott.