PROBLEM SET 6

INTRODUCTION TO MANIFOLDS

Problem 1. (a) Let X be the vector field x d/dx on ℝ. For each p ∈ ℝ, find the maximal integral curve c(t) of X with c(0) = p.
(b) Let X be the vector field x² d/dx on ℝ. For each p ∈ ℝ_{>0}, find the maximal integral curve c(t) of X with c(0) = p.

Problem 2. Consider two smooth vector fields X, Y on \mathbb{R}^n :

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}, \quad Y = \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}},$$

where a^i, b^i are smooth functions on \mathbb{R}^n . Since [X, Y] is also a smooth vector field on \mathbb{R}^n ,

$$[X,Y] = \sum_{k=1}^{n} c^k \frac{\partial}{\partial x^k}$$

for some smooth functions c^k on \mathbb{R}^n . Find a formula for c^k in terms of a^i and b^i .

Problem 3. Let $F: N \to M$ be a smooth diffeomorphism manifolds. Prove that if X and Y are smooth vector fields on N, then

$$F_*[X, Y] = [F_*X, F_*Y].$$

Problem 4. Compute $\exp \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Problem 5. A manifold whose tangent bundle is trivial is said to be *parallelizable*. Prove that any Lie group G is parallelizable.

Date: September 27, 2016.