PROBLEM SET 5

TOPICS IN MANIFOLDS, SPRING 2016

Problem 1. Consider the horocycle $C=\left\{x+i y \in \mathbb{H}^{2}: x^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}\right\}$, where \mathbb{H}^{2} denotes the upper half plane with the hyperbolic metric $d s$. Let \mathbb{E}^{1} denote the real line \mathbb{R}^{1} with the standard Euclidean metric $d t$. Produce an explicit isometry from $\mathbb{E}^{1} \rightarrow C$; i.e. produce a continuous map $\gamma: \mathbb{E}^{1} \rightarrow C$ such that $\gamma^{*}(d s)=d t$.

Problem 2. This problem refers to the hyperbolic polygon R in Figure 5.12 from Stillwell.
(a) Show that the result of identifying edges of R as shown in the figure is topologically the torus with one puncture (see Stillwell 5.4.1).
(b) Find explicit hyperbolic translations g, h which realize the identifications shown in the figure, and show that they generate a free group (see Stillwell 5.4.2).
(c) Show that R is the Dirichlet region for the group $\langle g, h\rangle$ (see Stillwell 5.8.1).

Problem 3. By a suitable choice of hyperbolic polygon, show that the sphere with $n \geq 4$ punctures is a hyperbolic surface (see Stillwell 5.5.1).

