PROBLEM SET 11

INTRODUCTION TO MANIFOLDS

Problem 1. Compute the de Rham cohomology ring of the *n*-sphere S^n .

Problem 2. Compute the de Rham cohomology ring of the multiply-punctured Euclidean space $\mathbb{R}^n \setminus \{p_1, \ldots, p_m\}$, where $m \ge 1$.

Problem 3. Compute the de Rham cohomology ring of the *n*-dimensional torus T^n .

Problem 4. Compute the de Rham cohomology vector spaces of the real projective space \mathbb{RP}^n .

Problem 5. Compute the de Rham cohomology vector spaces $H^k(\Sigma_g)$ for $k \ge 0$, where Σ_g is the compact orientable surface of genus g.

Problem 6. An open cover of a manifold M is a *good cover* if every finite intersection of open sets is contractible. Prove that if a manifold M has a finite good cover, then its de Rham cohomology vector spaces $H^k(M)$ are finite dimensional for all $k \ge 0$.

Date: November 6, 2015.