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Synopsis

The computational model

Arithmetic circuits are a most natural and a standard model for computing polynomi-

als. The notion of efficiency translates to a polynomial sized arithmetic circuit for the

polynomial computation. This gives rise to the notion of an algebraic analog of P vs NP,

formally known as VP vs VNP. In this algebraic setting, the goal is to show that explicit

polynomials in VNP do not have polynomial sized arithmetic circuits. In particular, we

would like to study the Permanent polynomial of a n×n matrix which Valiant showed

that it is a canonical polynomial for VNP. Valiant also conjectured that the permanent

polynomial does not have polynomial sized arithmetic circuits [Val79]. Interestingly, a

slight variant of this polynomial which is the determinant polynomial, can be computed

by a small sized arithmetic circuit [MV97].

In general, proving circuit size lower bounds for arbitrary circuits is difficult. The best

known lower bound is Ω(n log n) [BS83] for a n-variate polynomial of degree n. Thus,

restricted models of circuits were looked at with a hope that the success there would

throw some light on the general models.



Background

In a surprising result, Agrawal and Vinay [AV08] showed that proving exponential cir-

cuit size lower bounds for depth four circuits implies exponential circuit size lower

bounds for general arithmetic circuits. In particular, given a polynomial (or sub-

exponential) sized general arithmetic circuit, it can be transformed into a depth four

circuit of sub-exponential size. This initiated the effort to prove exponential lower

bounds for depth four circuits (cf. the survey by Saptharishi [Sap15] for a series of re-

lated results). Koiran [Koi12] and Tavenas [Tav15] carefully analyzed the chasm shown

in [AV08] and came up with an improved depth reduction. Gupta et al. showed that

such a chasm exists even at depth three, overQ [GKKS13].

It is known that any polynomial in VP could be written as a determinant of a quasi-

polynomial sized matrix whose entries are linear polynomials. The minimum size of the

matrix in such an expression is called the determinantal complexity. Another approach

to settle the Valiant’s hypothesis is by showing that the determinantal complexity of an

explicit polynomial is super quasi-polynomial. But, the best known lower bounds for

the permanent polynomial are quadratic [MR04, CCL08, Yab15].

Contributions made as a part of this doctoral thesis

Lower bounds for depth four circuits of bounded fan-in.

Kayal et al. [KSS14] showed a matching lower bound against Tavenas’ bound for depth

four circuits of bounded fan-in for a polynomial in VNP. Fournier et al. [FLMS14]

proved the same bound against a polynomial inVP. The key technical ingredient in those

proof is the method of shifted partial derivatives [Kay12]. We showed that these exciting

current known circuit size lower bounds for bounded depth circuits can be unified in

a simple way [CM14a]. We show that using a combinatorial technique. Interestingly,

the technique involves nothing beyond binomial estimates and property of derivatives.

This proof technique allows one to prove a similar lower bound for any polynomial that



exhibits this combinatorial property we mention.

On the limits of depth reduction at depth 3 over small finite fields

Looking at the current exciting chasm at depth four and the subsequent results against it,

one might wonder if it is sufficient to prove circuit size lower bounds at depth three. A

recent result justifies that it is true overQ [GKKS13]. Strong enough lower bounds here

can prove valiant’s conjecture. However, we observe in [CM14b] that it is not true over

fixed-size finite fields. A strong exponential circuit size lower bound is already known for

the determinant polynomial [GK98]. We also improved the situation by proving depth

three circuit size lower bounds for two seemingly different polynomials (one which is

built from the combinatorial design of Nisan and Wigderson [NW94] and the other

is again the iterated matrix multiplication polynomial) over fixed-size finite fields. This

strengthens the already known lower bounds of Grigoriev and Karpinski, over fixed-size

finite fields.

Exponential lower bounds for bounded fan-in depth five circuits

Let us now consider the arithmetic circuits that use just the addition gates and the pow-

ering gates. We shall refer to such circuits as powering circuits. In [CKW11] Chen et

al. posed the following open question. Can the monomial x1x2 . . . xn be efficiently com-

puted by a constant depth powering circuit?

Saptharishi [Sap15] observed that the monomial x1x2 . . . xn has non-trivial depth four

and depth five powering circuits of size 2O(
p

n). Ideally, we would like to prove matching

lower bounds but the current state of affairs is far from that. But we [CS17], along with

the work of Engels et al. [ERS16] make some partial progress. We show that there are

at least two restricted classes of depth five powering circuits which can not efficiently

compute the monomial. Our models encapsulate the ones considered by Engels et al.

[ERS16].



Determinantal complexity lower bounds for IMM polynomial

To resolve Valiant’s hypothesis, proving DetComp(Permn) = nω(log n) is sufficient. By

improving upon the work of Von zur Gathen [vzG86], Cai [Cai90], Babai and Seress

[vzG87], and Meshulam [Mes89], Mignon and Ressayre [MR04] proved a quadratic

lower bound on the determinantal complexity of the permanent polynomial (cf.

[CCL08, Yab15]). In this thesis, we observed that some basic determinantal complex-

ity lower bounds can be proved using the dimension of the partial derivative space as

a complexity measure. In particular, we showed that DetComp(IMMn,d ) ≥
d n
2e and

DetComp(NWn,εn) ≥ Ω(n1.5). Further, in [CM14a] we showed that the former can be

improved to DetComp(IMMn,d ) ≥
d n
2 using the rank of the Hessian matrix as a com-

plexity measure. This was via an adaptation of the argument of Mignon and Ressayre,

and Cai et al. [MR04, CCL08] to the iterated matrix multiplication polynomial. Since

IMMn,d is a generic algebraic branching program, DetComp(IMMn,d )<O(d n) thus mak-

ing it tight up to a constant factor. This improves upon the previous bound of Jansen

[Jan11]. We showed that any arithmetic formula computing the IMMn,d (X ) polynomial

must be of size Ω(d n3). This is through an adaptation of the argument of Kalorkoti

[Kal85].

Tensor rank upper bounds for small formulas

Proving arithmetic formula size lower bounds has proven to be difficult. The best

known lower bound is quadratic in the number of variables, due to Kalorkoti [Kal85].

In a surprising result, Raz [Raz10] showed that the existence of a connection between

arithmetic formula lower bounds and the explicit tensors of high rank. Specifically,

if a general arithmetic formula of polynomial size (say nc ) computes a set multilinear

polynomial of degree d ∈ (ω(1),O(log n/ log log n)) over nd variables such that the as-

sociated tensor of the polynomial is of high rank then the tensor rank is non-trivially

bounded on the above to nd (1−1/2O(c)). In [CKSV16], we show that such a connection

holds for a wider range of parameter d , d ∈ (ω(1), 2o(log n)) if we start with the homo-



geneous arithmetic formulas. This helps us extend the results of Raz that hold over the

range ω(1) ≤ d ≤ O(log n/ log log n) to ω(1) ≤ d ≤ O(log n) since formulas of degree

O(log n) can be homogenized without much overhead.
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1
Introduction

1.1. Algebraic complexity

One of the main goals in the theoretical study of computer science, is to better under-

stand the notion of efficient computation. In particular, we would like to understand

the ease or complexity of a few natural computations that we encounter. Turing [Tur37]

introduced a-machines and thus formalized the notion of a computation as a run of a ma-

chine. The word efficiency now refers to a run that takes time that is polynomial in the

size of the input. Shannon considered Boolean circuits as a model of computation for

Boolean functions [Sha49]. It is important to note that Boolean circuits can be simu-

lated by Turing machines. Later, researchers considered algebraic counterparts of the

Boolean circuits, called Algebraic circuits, also referred to as Arithmetic circuits. By

Boolean circuits computing a Boolean function, we mean that the Boolean circuit com-

putes the evaluation table of the function. It is quite possible that two Boolean functions

share the same evaluation table. But in the case of Arithmetic circuits, we are interested

in the syntactic computation of the polynomials which is a stronger notion than func-

tional computation. The underlying algebraic structure helps us understand the compu-

tations. Considering this, Valiant proposed that any circuit theoretic proof for P 6= NP

would have to be preceded by an analogous result in this more constrained arithmetic

model [Val92].

Definition 1.1.1. An arithmetic circuit is a directed acyclic graph with inputs which are

3



1. Introduction

x1 x2 x3

+ + + + + +

× × ×

+

Figure 1.1.: An arithmetic circuit computing a polynomial over F[x1, x2, x3].

the variables or constants as the leaves, the addition (+) and the multiplication (×) operations

as internal nodes and the output node computes the polynomial. ◊

The complexity measures associated with this model are the size and the depth of the

circuit which correspond to the number of arithmetic operations performed and the

longest path from the leaf to a node respectively. If the out-degree of every node in the

arithmetic circuit is at most 1, it is called an arithmetic formula.

Arithmetic circuits are a most natural and a standard model for computing polynomi-

als. The notion of efficiency here translates to a polynomial sized arithmetic circuit for

that computes the polynomial syntactically. This gives rise to the notion of an algebraic

analog of P vs NP, VP vs VNP.

1.2. Algebraic complexity classes

Algebraic-P or VP is the class of polynomials which can be computed arithmetic circuits

of polynomial size and polynomial degree. Algebraic-NP or VNP is the class of poly-

nomials where given a monomial, its coefficient in the polynomial can be computed

efficiently. Also, a polynomial is in VNP if it can be expressed as

fn(X ) =
∑

Y∈{0,1}m
gn+m(X ,Y )

4



1.3. Lower bounds

where m = |Y |= poly(n) and gn+m is a polynomial family in VP.

In this algebraic setting, the goal is to show that explicit polynomials in VNP do not

have polynomial sized arithmetic circuits (cf. [SY10]). In particular, we would like to

study the Permanent polynomial of a n×n matrix (denoted by Permn) as Valiant showed

that this polynomial is a complete polynomial for VNP.

Permn =
∑

σ∈Sn

n
∏

i=1

xi ,σ(i)

where σ varies over Sn, a set of all the permutations of [n]. The notion of completeness

in this setting is defined via the polynomial projections.

Definition 1.2.1. A polynomial f (x1, . . . , xn) is said to be a projection of the polynomial

g (y1, . . . , ym) if there exist linear polynomials {`1, . . . ,`m} over F [x1, . . . , xn] such that f =

g (`1, . . . ,`m). ◊

Valiant conjectured that the permanent polynomial does not have polynomial sized

arithmetic circuits [Val79]. Interestingly, a slight variant of this polynomial which is the

determinant polynomial, can be computed by a small sized arithmetic circuit [MV97].

The determinant polynomial of a n× n matrix is defined as

Detn =
∑

σ∈Sn

sgn(σ)
n
∏

i=1

xi ,σ(i)

where σ varies over Sn, a set of all the permutations of [n] and sgn(σ) is the sign of the

permutation σ .

Conjecture 1.2.2 (Valiant). VP( VNP.

1.3. Lower bounds

To prove Conjecture 1.2.2, one needs to prove super polynomial lower bounds for poly-

nomials in VP. In general, proving circuit size lower bounds for arbitrary circuits is dif-

ficult. The best known lower bound is sub quadratic. Baur and Strassen [BS83] proved

5



1. Introduction

a lower bound of Ω(d log n) for a n-variate polynomial of degree d , f = xd
1 + · · ·+ xd

n .

Thus, some restricted models of circuits were looked at with a hope that the success

there would throw some light on the general models.

1.3.1. Constant depth circuits

In a surprising result, Agrawal and Vinay [AV08] showed that proving exponential cir-

cuit size lower bounds for depth four circuits implies exponential circuit size lower

bounds for general arithmetic circuits. In particular, given a polynomial (or sub-

exponential) sized general arithmetic circuit, it can be transformed into a depth four

circuit of sub-exponential size. This initiated the effort to prove exponential lower

bounds for depth four circuits (cf. the survey by Saptharishi [Sap15] for a series of re-

lated results). Koiran [Koi12] and Tavenas [Tav15] carefully analyzed the chasm shown

in [AV08] and came up with an improved depth reduction. The chasm tells us that prov-

ing a size lower bound of nω(d/t ) against the ΣΠΣΠ[t ] would imply super polynomial

lower bounds against general circuits. Towards proving such lower bounds Gupta et al.

[GKKS14] proved a lower bound of 2Ω(n/t ) against ΣΠΣΠ[t ] circuits computing the de-

terminant or the permanent polynomial over a n×n matrix. They used the dimension

of the shifted partial derivate space as the complexity measure [Kay12]. Kayal, Saha and

Saptharishi [KSS14] pushed the bound of Gupta et al. [GKKS14] to nΩ(d/t ) forΣΠΣΠ[t ]

circuits computing an explicit polynomial in VNP of degree d over nO(1)-variables. This

candidate polynomial is based on the combinatorial designs of Nisan and Wigderson

[NW94]. In another surprising result Fournier et al. [FLMS14] proved that a matching

bound could also be obtained for a polynomial in VP, the iterated matrix multiplication

polynomial1. This tells us that the bound of Tavenas is tight (up to a constant in the

exponent).

1In fact, this polynomial is also a canonical polynomial for Algebraic branching programs.

6



1.3. Lower bounds

1.3.2. Unified analysis of lower bounds against bounded fan-in depth-4 circuits

One of the main motivations of our study comes from this interesting fact that two

seemingly different polynomials NWn,r ∈ VNP and IMMn,n ∈ VP behave very similarly as

far as the 2Ω(
p

n log n)-size lower bound forΣΠΣΠ[
p

n] circuits are concerned. In [CM14a],

we sought a conceptual reason for this behaviour. We identify a simple combinatorial

property such that any nO(1)-variate polynomial of degree d that satisfies it would require

2Ω(
p

d log n) size ΣΠΣΠ[
p

d ] circuits. We call this Leading Monomial Distance Property. In

particular, it does not matter whether the polynomial is easy (i.e. in VP) or hard (i.e.

the polynomial is in VNP but not known to be in VP). As a result of this abstraction

we present a simple unified analysis of the bounded fan-in depth four circuit size lower

bounds for NWn,r (X ) and IMMn,d (X ). It is now well understood that the current known

techniques can not help with proving strong enough lower bounds. However, some very

interesting lower bounds were proved in the recent past over some related models (cf.

[Sap15]).

1.3.3. On the limits of depth reduction at depth three over finite fields

Looking at the current exciting chasm at depth four and the subsequent results against

it, one might wonder if it is sufficient to prove circuit size lower bounds at depth three.

A recent result justifies that it is true over Q [GKKS13]. Gupta et al. showed that such

a chasm exists even at depth three, overQ (or fields of large characteristic) [GKKS13].

Theorem 1.3.1 ([GKKS13]). Let f be a polynomial of degree d over n variables and is

computed by an arithmetic circuit C of size s . Then f can also be computed by a non-

homogeneous ΣΠΣ circuit of size exp
�

O
�
p

d log(s d ) log n
��

.

Strong enough lower bounds here can prove valiant’s conjecture. However, we proved

that such a chasm is not present over fixed-size2 finite fields [CM14b]. A strong exponen-

tial circuit size lower bound is already known for the determinant polynomial [GK98].

We improved the situation on the lower bounds front by proving depth three circuit

2By fixed size, we mean that the size of the finite field does not grow with the number of variables.

7



1. Introduction

size lower bounds for two seemingly different polynomials (one which is built from the

combinatorial design of Nisan and Wigderson [NW94] and the other is again the iter-

ated matrix multiplication polynomial) over fixed-size finite fields. In fact, such a bound

can be obtained for any polynomial, either in VP or VNP, if it exhibits a combinato-

rial property that we call the downward closed monomials. This strengthens the already

known lower bounds of Grigoriev and Karpinski [GK98], over fixed-size finite fields.

1.3.4. Powering circuits

Let us now consider the arithmetic circuits that just use the addition gates and the pow-

ering gates. A powering gate takes in the tuple ( f , d ) as the input and output the poly-

nomial f d . It is denoted by ∧. The expression in the form of the sum of powers of linear

polynomials is a depth three powering circuit, a restriction of the general depth three cir-

cuits. Since there exists a depth three powering circuit of size at most n2n−1 to compute

a monomial, this computational model is universal3. In fact, there is a powering circuit

of depth (d + 1) and size O
�

nd · 2d ·n
1
d

�

. In [CKW11] Chen et al. posed the following

open question.

Question 1.3.2 ([CKW11]). Can the monomial x1x2 . . . xn be efficiently computed by a

constant depth powering circuit?

This is the question that motivates our work. We show that there are at least two re-

stricted classes of depth five powering circuits can not efficiently compute the monomial.

Our models encapsulate the models considered by Engels et al. [ERS16].

Saptharishi4 [Sap15] observed that the monomial x1x2 . . . xn has non-trivial Σ∧Σ∧

and Σ∧Σ∧Σ circuits of size 2O(
p

n) (cf. Lemma 6.4.1). Ideally, we would like to prove

matching lower bounds but the current state of affairs is far away from that. But we,

along with the work of Engels et al. [ERS16]make partial progress.

Engels et al. [ERS16] consider the depth five powering circuits which compute the

polynomials of the form g =
∑s

i=1 f αi
i where fi = (`

d
1 + · · ·+ `d

n + ci ), `i s are homoge-

3A computational model is said to be universal if it can simulate any computation.
4Saptharishi attributes the observation to Forbes.

8



1.4. Determinantal complexity

neous linear polynomials, ci s are non-zero elements, and d is at least 21. We improve

upon [ERS16] by extending it to a model that encapsulates their model and more.

1.4. Determinantal complexity

Let us recall that the determinant polynomial characterizes the class VP with respect to

the quasi-polynomial projections.

Definition 1.4.1. The determinantal complexity of a polynomial f , over n variables, is the

minimum m such that there are affine linear polynomials Ak ,`, 1 ≤ k ,` ≤ m defined over

the same set of variables and f = det((Ak ,`)1≤k ,`≤m). It is denoted by DetComp( f ). ◊

To resolve Valiant’s hypothesis, proving DetComp(Permn) = nω(log n) is sufficient. By

improving upon [vzG86, vzG87, Mes89, Cai90], Mignon and Ressayre [MR04] proved

that DetComp(Permn)≥
n2

2 over the fields of characteristic zero, using algebraic geome-

try. Subsequently, Cai et al. [CCL08] extended the result of Mignon and Ressayre to all

fields of characteristic 6= 2. They also provided a simpler analysis of the same. Recently,

Yabe [Yab15] improved upon the work of Mignon and Ressayre to show a lower bound

of (n− 1)2+ 1 over the reals.

In this thesis, we observed that some basic determinantal complexity lower bounds

can be proved using just the dimension of the partial derivative space as a com-

plexity measure. In particular, we observed that DetComp(IMMn,d ) ≥
d n
5 and

DetComp(NWn,εn) ≥ Ω(n1.5). Further, in [CM14a] we showed that the former can be

improved to DetComp(IMMn,d )≥
d n
2 . Similar to the approach of [CCL08] and [MR04],

we also use the the rank of Hessian matrix as our main technical tool.

Since IMMn,d (X ) has an algebraic branching program of size O(d n) [Nis91], from the

above theorem it follows that DetComp(IMMn,d (X )) =Θ(d n). This improves upon the

earlier bound of Θ(n) for the determinantal complexity of the iterated matrix multipli-

cation polynomial for any constant d > 1 [Jan11].

9



1. Introduction

1.5. Tensor rank

Proving arithmetic formula size lower bounds has been difficult as well. The best known

lower bound for an explicit polynomial is quadratic [Kal85]. In a surprising result, Raz

[Raz10] showed a connection between the size of the arithmetic formula computing a

set multilinear polynomial and the rank of the corresponding tensor (over an appropri-

ate range of parameters). More formally, let f ∈ F[X1,X2, . . . ,Xd ] be a set multilinear

polynomial of degree d over nd variables, where for every i ∈ [d ], Xi is a subset of vari-

ables of size n. In a natural way, f can be viewed as a tensor f : [n]d → F. Raz [Raz10]

showed if ω(1) ≤ d ≤ O(log n/ log log n) and f is computed by an arithmetic formula

of size poly(n), then the rank of f as a tensor is far from nd−1 (the trivial upper bound).

We know that there exist tensors g : [n]d → F of rank nd−1/d . We showed that the ten-

sor rank of f is far from nd−1 if f is computed by a homogeneous formula of polynomial

size and d is such thatω(1)≤ d ≤ no(1). We do this through a structured analysis of the

chasms at depth four for homogeneous formulas. For general formulas, this helps extend

the range of parameters from ω(1) ≤ d ≤ O(log n/ log log n) to ω(1) ≤ d ≤ O(log n).

This follows from the combination of our extension with the fact that formulas can be

homogenized without much overhead when d =O(log n).

1.6. Organization of the thesis

Chapter 3 introduces the chasms and we provide an alternate analysis of the chasms of

Agrawal and Vinay [AV08], Koiran [Koi12], and Tavenas [Tav15]. We further extend

the chasm to homogeneous formulas. In Chapter 4, we show an unified analysis of the

exponential lower bounds against the depth four circuits of bounded fan-in which com-

pute explicit polynomials. In Chapter 5, we show that there is no chasm at depth three

over fixed size finite fields. In Chapter 6, we show that there exist two restricted models

of depth five powering circuits that can not compute a monomial. In Chapter 7, we show

a tight lower bound on the determinantal complexity of the iterated matrix multiplica-

tion polynomial. In Chapter 8, we extend work of Raz [Raz10] and show a connection

10
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between the size of a homogeneous formula computing a set-multilinear polynomial

and the rank of the corresponding tensor, for an appropriate range of parameters. In

Chapter 9, we conclude by laying out the directions and the associated challenges that

lay ahead.
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2
Preliminaries

2.1. Notation

• For any integer n, we shall use [n] to denote the set {1, ..., n}.

• We shall use the underbar with the letters to denote a tuple. For example

i = (i1, i2, . . . , in). We use the bold face to denote a vector, for example v =

(v1, v2, . . . , vn)
T .

• For i= {i1, i2, . . . , in} and x= {x1, x2, . . . , xn}, we shall use xi to denote the mono-

mial x i1
1 x i2

2 . . . x in
n . The degree of the monomial m = xi, denoted by deg(m) is

(i1 + i2 + · · ·+ in). Similarly we use var(m) to denote the variables occurring in

that monomial. That is, var(m) =
¦

xi j
: i j > 0, j ∈ [n]

©

.

• We use x=` to denote all the monomials whose degree is equal to `, that is,
�

xi : i1+ i2+ · · ·+ in = `
	

. Similarly, we use x≤` to denote the set of monomials

whose degree is at most `,
�

xi : i1+ i2+ · · ·+ in ≤ `
	

.

• For a monomial m = xi, we use ∂m f to denote the partial derivative of f with

respect to the monomial m.

∂m f :=
∂

∂ xi1

�

∂

∂ xi2

. . .

�

∂ f
∂ xin

��

• For a set of monomials S, we use ∂S f to denote the set of partial derivatives of f

13



2. Preliminaries

with respect to every monomial in S, ∂S f := {∂m f : m ∈ S}.

• We use ∂ =k f to denote the set of partial derivatives of f with respect to monomials

of degree equal to k, ∂ =k f := ∂x=k f .

• For a set of polynomials { f1, f2, . . . , fm}, we use 〈 f1, f2, . . . , fm〉 to denote the ideal

generated by them.

〈 f1, f2, . . . , fm〉= {a1 f1+ a2 f2+ · · ·+ am fm : a1, . . . ,am ∈ F[X ]} .

We use 〈 f1, f2, . . . , fm〉≤` to denote the ≤ `-degree combinations of f1, . . . , fm.

〈 f1, f2, . . . , fm〉= {a1 f1+ a2 f2+ · · ·+ am fm : ∀i ∈ [m],ai ∈ F[X ]; deg(ai )≤ `} .

• For a polynomial f , by f |x←a, we mean that every appearance of x in f is replaced

by a. f |x←a and f |x←a are similarly defined.

• For a set X , we X = Y tZ use to denote the partition of X into two disjoint sets

Y and Z .

Arithmetic circuits

• Without loss of generality, we assume that the output gate is an addition gate and

the circuits are layered with alternating addition and multiplication gates. We use

Σ to represent a layer of addition gates andΠ to represent a layer of multiplication

gates. ΣΠ represents a polynomial expressed in the form of the sum of monomi-

als. ΣΠΣ represents polynomials that are expressible as sum of products of linear

forms, also called depth three circuits. Similarly, we can define the depth four

circuits ΣΠΣΠ.

• We use a superscript of a symbol {Σ,Π} to denote the bound on the fan-in of the

gates in the layer. For example,Π[m] denotes the layer of multiplication gates with

14
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a fan-in of at most m. ΣΠ[D]ΣΠ[t ] represents depth four circuits whose multipli-

cation gates have a fan-in bound of D and t respectively.

• We use the term hom in the superscript of a symbol {Σ,Π} to mean that the op-

eration is over homogeneous components feeding into the gates in that layer. For

example, Σ[hom] represents the summation of homogeneous polynomials.

2.2. Approximation of the binomial coefficients

The following beautiful lemma (from [GKKS14]) is the key to the asymptotic estimates

required for the lower bound analyses.

Lemma 2.2.1 (Lemma 6, [GKKS14]). Let a(n), f (n), g (n) : Z≥0 → Z≥0 be the integer

valued functions such that ( f + g ) = o(a). Then,

ln
(a+ f )!
(a− g )!

= ( f + g ) lna±O
�

( f + g )2

a

�

Proposition 2.2.2. For all n, k such that k ≤ 0.5n, the following bounds for the binomial

coefficient
�n

k

�

hold.

1.
� n

k

�k ≤
�n

k

�

≤
� e ·n

k

�k .

2.
�n

k

�

∼ 2n·H( k
n ) where H is the binary entropy function.

2.3. Polynomial families

In this section, we shall define the polynomials that we talk about in this thesis.

2.3.1. Determinant

Definition 2.3.1. The determinant polynomial of a n× n matrix is defined as

Detn =
∑

σ∈Sn

sgn(σ)
n
∏

i=1

xi ,σ(i)

15
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where σ varies over Sn , a set of all the permutations of [n] and sgn(σ) is the sign of the

permutation σ . ◊

Valiant showed that the determinant polynomial is complete for the class VP with

respect to quasi-polynomial projections [Bür00]. It is also known that determinant has a

polynomial sized circuit, rather a polynomial sized algebraic branching program [MV97].

2.3.2. Permanent

Definition 2.3.2. The permanent polynomial of a n× n matrix is defined as

Permn =
∑

σ∈Sn

n
∏

i=1

xi ,σ(i)

where σ varies over Sn , a set of all the permutations of [n]. ◊

Valiant showed that the permanent polynomial is complete for the class VNP over all

fields of characteristic 6= 2 (cf. [Bür00]).

2.3.3. Nisan Wigderson polynomial

Definition 2.3.3 (Nisan-Wigderson polynomial). For integers n > 0 ranging over prime

powers and an integer r , we define a polynomial family
�

NWn,r

	

as follows.

NWn,r (X ) =
∑

a(z)∈Fn[z]

x1a(1)x2a(2) . . . xna(n)

where a(z) runs over all univariate polynomials of degree < r and X =
¦

xi j : (i , j ) ∈ [n]× [n]
©

. ◊

Proposition 4 in [Val79] tells us that if there is a polynomial time algorithm to test if

the coefficient of a given monomial is 1 in the given polynomial P (X ) ∈ F[X ]with {0,1}

coefficients, then P (X ) is in VNP over F. Given any monomial m over X , we can decide

in polynomial time if it is a monomial in the polynomial {NWn,r }n>0 by checking if it

conforms to a univariate polynomial of degree at most r . Thus, {NWn,r }n>0 is in VNP.

16
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2.3.4. Iterated matrix multiplication

Definition 2.3.4 (Iterated matrix multiplication polynomial). The iterated matrix mul-

tiplication polynomial over d generic n× n matrices X1,X2, . . . ,Xd is the (1,1)th entry in

the product of these matrices. More formally, let X1,X2, . . . ,Xd be d generic n × n matri-

ces over disjoint sets of variables. For any k ∈ [d ], let x (k)i j be the variable in Xk indexed

by (i , j ) ∈ [n]× [n]. Then the iterated matrix multiplication polynomial, denoted by the

family {IMMn,d}, is defined as follows.

IMMn,d (X ) =
∑

i1,i2,...,id−1∈[n]
x (1)1i1

x (2)i1i2
. . . x (d−1)

i(d−2)i(d−1)
x (d )i(d−1)1

.

◊

This is a canonical polynomial for the algebraic branching programs and thus is in VP.
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3
Depth reduction for arithmetic circuits

3.1. Introduction

Brent [Bre74] first showed that the arithmetic formulas of size s and of unrestricted

depth can be transformed in to arithmetic formulas of depth O(log s) and of size poly(s).

This construction is very specific to the formulas and it does not extend to the arithmetic

circuits that are not formulas. For the arithmetic circuits, Hyafil [Hya79] showed that

any arithmetic circuit of polynomial size can be transformed into an arithmetic circuit of

depth O(log2 n) and of quasi-polynomial size. By improving upon the result of Hyafil,

Valiant et al. [VSBR83] proved that any arithmetic circuit of polynomial circuit size

(say nc for a constant c ) can be simulated by a O(log2 n) depth arithmetic circuit of

polynomial size. This can be formalized asVP= VNC2. Furthermore, the corresponding

O(log2 n) depth circuit is highly structured (see Theorem 3.2.1).

In a surprising result, Agrawal and Vinay [AV08] showed that proving exponen-

tial circuit size lower bounds for depth four circuits implies exponential circuit size

lower bounds for general arithmetic circuits. In particular, given a polynomial (or sub-

exponential) sized general arithmetic circuit, it can be transformed into a depth four cir-

cuit of sub-exponential size. This initiated the effort to prove exponential lower bounds

for depth four circuits (cf. the survey by Saptharishi [Sap15]). Koiran [Koi12] and Tave-

nas [Tav15] carefully analyzed the chasm shown in [AV08] and came up with an im-

proved depth reduction.

In this chapter we shall present an alternate proof to Tavenas’ depth reduction

19



3. Depth reduction for arithmetic circuits

[CKSV16]. Using this new technique, we arrive at structured depth four circuits. The

starting point of this proof is the surprising depth reduction result of Valiant et al.

[VSBR83] (and Allender et al. [AJMV98]). We shall also prove a structured depth reduc-

tion theorem for homogeneous formulas. This builds on the log product decomposition

theorem for the homogeneous formulas of Hrubes and Yehudayoff [HY11].

We shall use this extra structure of the depth four formulas presented in Section 3.3

to prove non-trivial bounds on the tensor rank of formulas computing set-multilinear

polynomials, in Chapter 8.

3.2. Depth reduction for arithmetic circuits to depth four

Let us formally recall the result of Valiant et al. [VSBR83] and Allender et al. [AJMV98].

Theorem 3.2.1 ([VSBR83, AJMV98]). Let f be a polynomial of degree d over n variables,

and is computed by an arithmetic circuit C0 of size s . Then there is an arithmetic circuit

C that also computes f , of size s ′ = poly(s , n, d ) and depth O(log d ). Furthermore, C is

homogeneous, all multiplication gates have fan-in at most 5, and if u is any multiplication

gate of C , then all its children v satisfy deg(v)≤ deg(u)/2.

The circuit C obtained from Theorem 3.2.1 has addition gates of unbounded fan-in.

It could be as large as O(s). We can transform this further to obtain a bounded fan-in

arithmetic circuit C ′ of size poly(s , n, d ) and depth at most O(log s log d ). If s = nO(1)

then the depth of the circuit obtained is O(log2 n).

By improving upon the results of Agrawal and Vinay [AV08], and Koiran [Koi12],

Tavenas [Tav15] proved the following theorem.

Theorem 3.2.2 ([AV08, Koi12, Tav15]). Let f be a polynomial of degree d over n variables

and is computed by an arithmetic circuit C of size s . Then, for any 0 < t ≤ d , f can also

be computed by a homogeneous ΣΠΣΠ[t ] circuit of top fan-in sO(d/t ) and size sO(t+d/t ).

Here we present an alternate proof of the above theorem through which we can con-

struct more structured depth four circuits.
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Proof of Theorem 4.1.1. From Theorem 3.2.1, we can assume that the circuit C we start

with is of depth O(log d ). If g is a polynomial computed at an arbitrary intermediate

node of C , then from the structure of C we have the following homogeneous expression.

g =
s
∑

i=1

gi1 · gi2 · gi3 · gi4 · gi5 (3.2.3)

where each gi j is computed by a node in C as well, and deg(gi j ) ≤ deg(g )/2. In partic-

ular, if g were the output gate of the circuit that computes the polynomial f , then the

RHS may be interpreted as a ΣΠΣΠ[d/2] circuit of top fan-in s . Let t ∈ N be a parame-

ter. To obtain a ΣΠΣΠ[t ] circuit eventually, we shall perform the following steps on the

output gate:

1. For each summand gi1 . . . gi r in the RHS, pick the gate gi j with the largest

degree (in case of a tie, pick the gate with the smaller index j ). If gi j has a

degree that is greater than t , then expand gi j in-place using (3.2.3).

2. Repeat this process until all of the gi j ’s on the RHS have a degree of at

most t .

Each iteration of the above procedure increases the top fan-in by a multiplicative factor

of s . If we could show that in O(d/t ) iterations, all the factors in each of the summands

on the RHS have a degree of at most t , then we would have obtained anΣΠΣΠ[t ] circuit

of top fanin sO(d/t ) that computes f .

Let us label a factor gi j bad if its degree is greater than t/8. To bound the number of

iterations of the above mentioned procedure, we will count the number of bad factors in

each summand. Since the procedure always maintains homogeneity, the number of bad

factors in any summand can at most be 8d/t (i.e., not too many). We will now show that

each iteration increases the number of bad factors by at least one and hence the number

of iterations must be bounded on the above by 8d/t .

In (3.2.3), if deg(g ) = k, the largest degree factor of any summand on the RHS is

at least k/5 (since the sum of the degrees of the five factors must add up to k) and it

continues to be bad if k > t . But the largest degree factor can have a degree of at most
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g

g11 g12 g13 g14 g15 gs1 gs2 gs3 gs4 gs5· · ·

s

g111 g112 g113 g114 g115
·g12 g13 g14 g15

· · ·
g1s1 g1s2 g1s3 g1s4 g1s5
·g12 g13 g14 g15

s

gs11 gs12 gs13 gs14 gs15
·gs2 gs3 gs4 gs5

· · ·
gs s1 gs s2 gs s3 gs s4 gs s5
·gs2 gs3 gs4 gs5

s

Figure 3.1.: Depth reduction analysis for arithmetic circuits

k/2. Hence the other four factors must together contribute at least k/2 to the degree.

This implies that the second largest factor in each summand has a degree of at least k/8.

This factor is bad too, if we started with a factor of degree greater than t . Therefore, as

long as we are expanding factors of degree more than t using (3.2.3), we are guaranteed

that its replacements have at least one additional bad factor. As argued earlier, we can

never have more than 8d/t such factors in any summand and this bounds the number

of iterations by 8d/t .

Observe that the above procedure can be viewed as a tree, as described in Figure 3.1,

where each node represents an intermediate summand in the iterative process. From

(3.2.3) it is clear that the tree is s -ary. Furthermore, the number of bad factors strictly

increases as we go down the tree (these are marked in red in Figure 3.1). Since the total

number of bad factors in any node is at most 8(d/t ), the depth of the tree can at most

be 8(d/t ). Therefore, the total number of leaves is at most s (8d/t ). After the end of the

procedure, each factor in every summand, is of degree at most t . Since any polynomial

of degree at most t can be written as a sum of at most nO(t ) monomials, the total size of

the resulting ΣΠΣΠ[t ] circuit is at most s O(t+d/t ) (since s ≥ n).
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3.3. Depth reduction for homogeneous arithmetic formulas

In this section, we will show that the class of homogeneous formulas can be depth re-

duced to a more structured depth four circuit.

To quickly recap the earlier proof, we began with an equation of the form g =
∑

i gi1 · gi2 · gi3 · gi4 · gi5 and recursively applied the same expansion on all the large degree

factors in each of the summands. The only property that we really used was that in the

above equation, there were at least two factors that had a large degree. In the case of

homogeneous formulas, we shall now see that there are better expansions that we could

use as a starting point.

Theorem 3.3.1 ([HY11]). Let f be an n-variate polynomial of degree d that is computed

by a homogeneous formula of size s . Then f can be expressed as

f =
s
∑

i=1

fi1 · fi2 · · · fi r (3.3.2)

where

1. the expression is homogeneous,

2. for each i , j , we have
�

1
3

� j
d ≤ deg( fi j )≤

�

2
3

� j
d and r =Θ(log d ),

3. each fi j is also computed by a homogeneous formula of size at most s .

With this, we are ready to prove a more structured depth reduction for homogeneous

formulas.

Theorem 3.3.3. Let f be a homogeneous polynomial of degree d over n variables which

is computed by a homogeneous formula of size s . Then for any 0 < t ≤ d , f can also be

computed by a homogeneous ΣΠ[a]ΣΠ[t ] formula of top fan-in at most s 10(d/t ) where

a >
1
10

d
t

log t .

The resulting depth four circuit is more structured in the sense that the multiplication

gates at the second layer have a much larger fan-in (by a factor of log t ). In Theorem 4.1.1,
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g

g11 g12 g13 . . . g1r gs1 gs2 g13 . . . gs r· · ·

s

g111 g112 . . . g11r
·g12 g13 . . . g1r

· · ·
g1s1 g1s2 g1s3 . . . g1s r
·g12 g13 · · · g1r

s

gs11 gs12 gs13 . . . gs1r
·gs2 gs3 . . . gs r

· · ·
gs s1 gs s2 gs s3 . . . gs s r
·gs2 gs3 . . . gs r

s

Figure 3.2.: Depth reduction analysis for homogeneous formulas

we only know that the polynomials feeding into these multiplication gates have a de-

gree of at most t . Theorem 3.3.1 states that if we were to begin with a homogeneous

formula, then those polynomials of degree at most t can be factorized further to give

Θ((d/t ) log t ) non-trivial polynomials instead of Θ(d/t ) as obtained in Theorem 4.1.1.

Proof of Theorem 3.3.3. We start with equation (3.3.2) which is easily seen to be a

homogeneous ΣΠΣΠ[2d/3] circuit with top fan-in s :

f =
s
∑

i=1

fi1 · fi2 · · · fi r

To obtain a ΣΠ[Θ((d/t ) log t )]ΣΠ[t ] circuit eventually, we shall perform the following

steps on the output gate:

1. For each summand fi1 . . . fi u in the RHS, pick the gate fi j with the largest

degree (in case of a tie, pick the one with the smaller index j ). If fi j has a

degree of more than t , expand that fi j in-place using (3.3.2).

2. Repeat this process until all fi j ’s on the RHS have a degree of at most t .

Each iteration increases the top fan-in by a factor of s . As long as we expand the factors

of degree k > t using (3.3.2), we are guaranteed that each new summand has at least one

more factor of degree at least k/9> t/9.
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To bound the number of iterations of the above procedure, we use the following po-

tential function: the number of factors of degree strictly greater than t/9 in a summand.

A factor that is of degree k > t and which is expanded using (3.3.2) contributes at least

two factors of degree at least k/9 > t/9 per summand. Thus, the net increase in the

potential function per iteration is at least 1. Since this is a homogeneous computation,

there can be at most 9d/t such factors of degree > t/9. Thus, the number of iterations

must be bounded by 9d/t thereby yielding a ΣΠΣΠ[t ] of top fan-in at most s O(d/t ) and

size sO(t+d/t ). This argument is similar to the argument presented in the proof of Theo-

rem 4.1.1.

We now argue that the fan-in of every product gate at the second level in theΣΠΣΠ[t ]

circuit obtained is Θ(d/t log t ). To this end, we shall now show that we require Θ(d/t )

iterations to make sure that all the factors have a degree of at most t . We will say that a

factor is small if its degree is at most t or big otherwise. To prove a lower bound on the

number of iterations, we shall use a different potential function: the total degree of all

the big factors.

Given the geometric progression of the degrees in Theorem 3.3.1, we can easily see

that the total degree of all the small factors in any summand is bounded on the above by

3t . Hence, the total degree of all the big factors is d−3t . But whenever (3.3.2) is applied

on a big factor, we introduce several small degree factors with total degree of at most 3t .

Hence, the potential drops by at most 3t per iteration. This implies that we require at

least (d/3t ) iterations to make the potential function 0, a state in which all the factors

are small.

Since every expansion via (3.3.2) introduces at least (log3 t ) non-trivial factors, it

would then follow that every summand at the end has 1
(3 log3)

d
t log t > 1

10
d
t log t non-

trivial factors.
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Constant Depth Arithmetic Circuit Lower

Bounds
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4
Lower bounds for depth four circuits of bounded fan-in: unified

analysis

Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can

be computed by a depth-4 circuit of size 2O(
p

n log n) [Tav15]. So, to prove VP 6= VNP it

is sufficient to show that an explicit polynomial in VNP of degree n requires 2ω(
p

n log n)

size depth-4 circuits. Soon after Tavenas’ result, for two different explicit polynomi-

als, depth-4 circuit size lower bounds of 2Ω(
p

n log n) have been proved (see [KSS14] and

[FLMS14]). In particular, using combinatorial design Kayal et al. [KSS14] construct an

explicit polynomial in VNP that requires depth-4 circuits of size 2Ω(
p

n log n) and Fournier

et al. [FLMS14] show that the iterated matrix multiplication polynomial (which is inVP)

also requires 2Ω(
p

n log n) size depth-4 circuits. In this chapter, we identify a simple combi-

natorial property such that any polynomial f that satisfies this property would achieve

a similar depth-4 circuit size lower bound. In particular, it does not matter whether f is

in VP or in VNP. As a result, we get a simple unified lower bound analysis for the above

mentioned polynomials.

4.1. Introduction

In a surprising result, Agrawal and Vinay [AV08] showed that proving exponential cir-

cuit size lower bounds for depth four circuits implies exponential circuit size lower

bounds for general arithmetic circuits. In particular, given a polynomial (or sub-
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exponential) sized general arithmetic circuit, it can be transformed into a depth four

circuit of sub-exponential size. This initiated the effort to prove exponential lower

bounds for depth four circuits (cf. the survey by Saptharishi [Sap15] for a series of re-

lated results). Koiran [Koi12] and Tavenas [Tav15] carefully analyzed the chasm shown

in [AV08] and came up with an improved depth reduction.

Theorem 4.1.1 ([AV08, Koi12, Tav15]). Let f be a polynomial of degree d over n variables

and is computed by an arithmetic circuit C of size s . Then, for any 0< t ≤ d , f can also be

computed by a homogeneous ΣΠ[O(d/t )]ΣΠ[t ] circuit of top fan-in s O(d/t ) and size s O(t+d/t ).

The above theorem tells us that proving a size lower bound of nω(d/t ) against the

ΣΠ[O(d/t )]ΣΠ[t ] would imply super polynomial circuit size lower bounds against gen-

eral circuits. Towards proving such lower bounds Gupta et al. [GKKS14] proved a lower

bound of 2Ω(n/t ) against ΣΠ[O(d/t )]ΣΠ[t ] circuits computing the determinant or the per-

manent polynomial over a n× n matrix. They used the dimension of the shifted partial

derivate space as the complexity measure. Kayal [Kay12] introduced this measure to

prove exponential circuit size lower bounds against the depth four circuits of the form

of sums of powers of constant degree homogeneous polynomials, which compute the

monomial x1x2 . . . xn. Kayal, Saha and Saptharishi [KSS14] pushed the bound of Gupta

et al. [GKKS14] to NΩ(d/t ) for ΣΠ[O(d/t )]ΣΠ[t ] circuits computing an explicit polyno-

mial in VNP of degree d over N variables. This candidate polynomial is based on the

combinatorial designs of Nisan and Wigderson [NW94].

This gives us two avenues to explore further.

1. Improve the depth reduction analysis of Tavenas [Tav15].

2. Prove better size lower bounds of the order of nω(d/t ) for ΣΠ[O(d/t )]ΣΠ[t ] circuits

computing explicit polynomials in VNP of degree d over nO(1)-variables.

In another surprising result Fournier et al. [FLMS14] proved that a matching bound

could also be obtained for a polynomial in VP, the iterated matrix multiplication poly-

nomial. This tells us that the bound of Tavenas is tight (up to a constant in the exponent)
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and thus rules out the approach 1. However, it is important to note that the constant in

the exponent of the bound proved by Kayal, Saha and Saptharishi [KSS14] or the one

by Fournier et al., is weaker than the constant in the bound of Tavenas [Tav15].

One of the main motivations of our study comes from this tantalizing fact that two

seemingly different polynomials NWn,r ∈ VNP and IMMn,n ∈ VP behave very similarly

as far as the 2Ω(
p

n log n)-size lower bound for ΣΠ[O(
p

n)]ΣΠ[
p

n] circuits are concerned. In

this chapter we seek a conceptual reason for this behaviour. We identify a simple com-

binatorial property such that any nO(1)-variate polynomial of degree d that satisfies it

would require 2Ω(
p

d log n) size ΣΠ[O(
p

d )]ΣΠ[
p

d ] circuits. We call this the Leading Mono-

mial Distance Property. In particular, it does not matter whether the polynomial is easy

(i.e. in VP) or hard (i.e. the polynomial is in VNP but not known to be in VP). As a result

of this abstraction we present a simple unified analysis of the bounded fan-in depth four

circuit size lower bounds for the NWn,r and IMMn,d polynomials. Formally, we prove

the following.

Theorem 4.1.2. Let f be a nO(1)-variate polynomial of degree n. Let there be s ≥ nδk (δ

is any constant > 0) different polynomials in 〈∂ =k( f )〉 for k = ε
p

n such that any two of

their leading monomials have pair-wise distance of at least ∆ ≥ n
c for any constant c > 1,

and 0< ε< 1
40c . Then any depth-4 ΣΠ[O(

p
n)]ΣΠ[

p
n] circuit that computes f must be of size

eΩδ,c (
p

n ln n).

It is now well understood that the current known techniques can not help with ap-

proach 2. However, some very interesting lower bounds were proved in the recent past

over some related models (cf. [Sap15]).

4.2. Preliminaries

In this section we shall recall the notion of shifted partial derivatives from [Kay12,

GKKS14, KSS14] and define the combinatorial property that is that crux to our argu-

ments.
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4. Lower bounds for depth four circuits of bounded fan-in: unified analysis

Shifted partial derivatives

For a monomial xi = x i1
1 x i2

2 . . . x in
n , let ∂ i f be the partial derivative of f with respect to the

monomial xi. The degree of the monomial is denoted by |i|where |i|= (i1+ i2+· · ·+ in).

We recall the following definition of shifted partial derivatives from [GKKS14].

Definition 4.2.1. Let f (X ) ∈ F[X ] be a multivariate polynomial. The span of the `-shifted

k-th order derivatives of f , denoted by 〈∂ =k f 〉≤`, is defined as

〈∂ =k f 〉≤` = F-span{xi · (∂ j f ) : i, j ∈Zn
≥0 with |i| ≤ ` and |j|= k}

We denote by dim(〈∂ =k f 〉≤`) the dimension of the vector space 〈∂ =k f 〉≤`. ◊

Let � be any admissible monomial ordering. The leading monomial of a polynomial

f (X ) ∈ F[X ], denoted by LM( f ) is the largest monomial xi ∈ f (X ) under the order �.

The next lemma follows directly from Proposition 11 and Corollary 12 of [GKKS14].

Lemma 4.2.2. For any multivariate polynomial f (X ) ∈ F[X ],

dim(〈∂ =k f 〉≤`)≥ #{xi · LM(g ) : i, j ∈Zn
≥0 with |i| ≤ `, |j|= k , and g ∈ F-span{∂ j f }}

In [KSS14], the following upper bound on the dimension of the shifted partial deriva-

tive space of the polynomials computed by ΣΠ[D]ΣΠ[t ] circuits was shown.

Lemma 4.2.3 (Lemma 4, [KSS14]). If C =
∑s ′

i=1 Qi1Qi2 . . .Qi D where each Qi j ∈ F[X ]

is a polynomial of degree bounded by t . Then for any k ≤D,

dim(〈∂ =k(C )〉≤`)≤ s ′
�

D
k

��

N + `+ k(t − 1)
N

�

Leading monomial distance property

To define the Leading Monomial Distance Property, we first define the notion of dis-

tance between two monomials.

Definition 4.2.4. Let m1, m2 be two monomials over a set of variables. Let S1 and S2 be
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4.3. Unified analysis

the (multi)-sets of variables corresponding to the monomials m1 and m2 respectively. The

distance dist(m1, m2) between the monomials m1 and m2 is the min{|S1| − |S1 ∩ S2|, |S2| −

|S1 ∩ S2|} where the cardinalities are the order of the (multi)-sets. ◊

We say that a nO(1)-variate and n-degree polynomial has the Leading Monomial Dis-

tance Property, if the leading monomials of a large subset (≈ nδk ) of its span of the

derivatives (of order ≈ k) have good pair-wise distance for a suitable parameter k.

4.3. Unified analysis

In this section, we first prove a simple combinatorial lemma which we believe is the crux

of the best known bounded fan-in depth four circuit size lower bound results. In fact,

the lower bounds on the size of ΣΠ[O(
p

n)]ΣΠ[
p

n] circuits computing the polynomials

NWn,r and IMMn,n follow easily from this lemma by suitably setting the parameters.

Lemma 4.3.1. Let m1, m2, . . . , ms be the monomials over N variables such that

dist(mi , m j ) ≥ ∆ for all i 6= j . Let M be the set of monomials of the form mi m′ where

1≤ i ≤ s and m′ is a monomial of length at most ` over the same set of N variables. Then,

the cardinality of M is at least
�

sB − s 2
�N+`−∆

N

�

�

where B =
�N+`

N

�

.

Proof. Let Bi be the set of all monomials mi m′ where m′ is a monomial of length at

most `. It is easy to see that |Bi | =
�N+`

N

�

. We would like to estimate | ∪i Bi |. Using the

principle of inclusion and exclusion, we get |∪s
i=1 Bi | ≥

∑

i∈[s] |Bi |−
∑

i , j∈[s],i 6= j |Bi ∩B j |.

Now we estimate the upper bound for |Bi ∩B j | such that i 6= j . Consider the mono-

mials mi and m j in Bi and B j respectively. For mi and m j to match, mi should con-

tain at least ∆ variables from m j and similarly m j should contain at least ∆ variables

from mi . The rest of the at most (`−∆) degree monomials should be identical in mi

and m j . The number of such monomials over N variables is at most
�N+`−∆

N

�

. Thus,

|Bi ∩B j | ≤
�N+`−∆

N

�

.

Then the total number of monomials of the form mi m′ for all i ∈ [s] where m′ is a

33



4. Lower bounds for depth four circuits of bounded fan-in: unified analysis

monomial of length at most ` is lower bounded as follows.

|∪s
i=1Bi | ≥ sB − s 2

�

N + `−∆
N

�

= sB
�

1− s
B

�

N + `−∆
N

��

We use the above lemma to prove Theorem 4.1.2 of this chapter. Even though we prove

the bounds againstΣΠ[O(
p

n)]ΣΠ[
p

n] circuits computing nO(1)-variate polynomials of de-

gree n, we state the following theorem with some generality in terms of the parameter

t .

Theorem 4.3.2. Let f be a N = d O(1)-variate polynomial of degree d . Let there be at least

dδk (δ is any constant > 0) different polynomials in 〈∂ =k( f )〉 for k = ε d
t such that any

two of their leading monomials have a distance of at least ∆ ≥ d
c for any constant c > 1,

and 0< ε < 1
40c . Then any depth-4 ΣΠ[O(d/t )]ΣΠ[t ] circuit that computes f must be of size

eΩδ,c (
d
t lnN ).

Proof. Consider a set of s = dδk polynomials f1, f2, . . . , fs ∈ 〈∂ =k( f )〉 such that

dist(LM( fi ),LM( f j ))≥ d/c for all i 6= j . We denote by mi , the leading monomial LM( fi ).

We now invoke Lemma 4.3.1 with the parameters s = dδk ,∆= d/c . Let N be the num-

ber of variables in f . From Lemma 4.3.1, we know that | ∪s
i=1 Bi | ≥ sB

�

1− s
B

�N+`−∆
N

�

�

.

To get a good lower bound for | ∪s
i=1 Bi |, we need to upper bound s

B

�N+`−∆
N

�

. Let us

bound it by an inverse polynomial in n by suitably choosing `. We set
s(N+`−∆N )
(N+`N )

≤ 1
p(d )

where p(d ) is a polynomial in d .

After simplification, we get s (N+`−∆)!(N+`)!
`!

(`−∆)! ≤
1

p(d ) . Using Lemma 2.2.1 we tightly

estimate the subsequent computations. In particular, we always choose the parameter `

such that ∆2 = o(N + `). This also shows that the error term given by Lemma 2.2.1 is

always asymptotically zero and we need not worry about it.

We now apply Lemma 2.2.1 to derive s
�

`
N+`

�∆
≤ 1

p(d ) or equivalently s
�

1

1+N
`

�∆

≤ 1
p(d ) .

We use the inequality 1+ x > e x/2 for 0< x < 1 to lower bound
�

1+ N
`

�∆
by e

N∆
2l . Thus,

it is enough to choose ` in a way that s · p(d ) ≤ e
N∆
2` or equivalently ` ≤ N∆

2 ln(s ·p(d )) . By
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4.4. Lower bounds for explicit polynomials

fixing p(d ) = d 2 and substituting for the parameters k and∆ , we get `≤ N t
4cδε ln d . From

Lemma 4.2.2, we get that the dimension of 〈∂ =k f 〉≤` ≥ (1−
1

d 2 ) s
�N+`

N

�

.

Combining this with Lemma 4.2.3, we get s ′ ≥ (
1− 1

d2 )s(N+l
N )

(Dk )(N+l+k(t−1)
N )

. Suppose we choose `

such that (k t − k)2 = o(`). Then, by applying Lemma 2.2.1 we can easily show the

following.

s ′ ≥
s
�

1− 1
d 2

�

�D
k

�

(1+ N
l )
(k t−k)

≥
dδk

�

1− 1
d 2

�

�D
k

�

e
N
` k t

Since D = O(d/t ) and k = εd/t , we can estimate
�D

k

�

to be eOε( d
t ) by Shannon’s

entropy estimate for binomial coefficients. To get the required lower bound it is suf-

ficient to choose ` such that N k t
` < (0.1)δk ln d . By comparing the lower and upper

bounds of `, we can fix ε such that ε < 1
40c . Since ε depends only on c , we can infer that

s ′ = eΩδ,c( d
t ln d) = eΩδ,c( d

t lnN).

The above proof clearly goes through even if we set N k t
` <µδk ln d for any 0<µ< 1,

and choose ε < µ
4c .

4.4. Lower bounds for explicit polynomials

In this section we shall apply Theorem 4.3.2 to two explicit polynomials, NWn,r which

is a polynomial in VNP and IMMn,d which is a polynomial in VP, to derive exponential

lower bounds against the depth-4 ΣΠ[O(
p

n)]ΣΠ[
p

n] circuits computing them.

4.4.1. Nisan Wigderson polynomial

Now we derive the depth-4 circuit size lower bound for NWn,r polynomial by a simple

application of Theorem 4.3.2 where d = n and t =
p

n.

Corollary 4.4.1. For 0 < ε < 1/80, any ΣΠ[O(
p

n)]ΣΠ[
p

n] circuit computing the polyno-

mial NWn,r (X )must be of size 2Ω(
p

n log n) where r = ε
p

n.
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4. Lower bounds for depth four circuits of bounded fan-in: unified analysis

Proof. Recall that NWn,ε(X ) =
∑

a(z)∈F[z] x1a(1)x2a(2) . . . xna(n) where F is a finite field of

size n and a(z) is a univariate polynomial of degree ≤ r − 1 where r = ε
p

n. Notice

that any two monomials can intersect in at most r − 1 variables.

We differentiate the polynomial NWn,r (X ) with respect to the first k = r = ε
p

n

variables of each monomial. After differentiation, we get nk monomials of length (n−k)

each. Since they are constructed from the image of univariate polynomials of degree at

most (k−1), the distance∆ between any two monomials≥ n−2k > n/2. So to get the

required lower bound we invoke Theorem 4.3.2 with δ = 1 and c = 2.

4.4.2. Iterated matrix multiplication polynomial

Next we derive the lower bound on the size of the depth-4 circuit computing IMMn,n.

Corollary 4.4.2. Any depth-4 ΣΠ[O(
p

n)]ΣΠ[
p

n] circuit computing the IMMn,n(X ) polyno-

mial must be of size 2Ω(
p

n log n).

Proof. Recall that IMMn,n(X ) =
∑

i1,i2,...,in−1∈[n] x (1)1i1
x (2)i1i2

. . . x (n−1)
i(n−2)i(n−1)

x (n)i(n−1)1
. It is a polyno-

mial over (n− 2)n2+ 2n variables. We fix the following lexicographic ordering on the

variables of the set of matrices {X1,X2, . . . ,Xn} as follows: X1 �X2 �X3 � . . .�Xn and

in any Xi the ordering is x (i)11 � x (i)12 � . . .� x (i)1n � . . .� x (i)n1 . . .� x (i)nn.

Choose a prime p such that n
2 ≤ p ≤ n. Consider the set of univariate polynomials

a(z) ∈ Fp[z] of degree at most (k − 1) for k = ε
p

n where ε is a small constant to be

fixed later in the analysis. Consider a set of 2k of the matrices X2,X3+ n
4k

, . . . ,X2k+1+ (2k−1)n
4k

such that they are n/4k distance apart. Clearly 2k+1+ (2k−1)n
4k < n. For each univariate

polynomial a of degree at most (k−1), define a set Sa = {x
(2)
1,a(1), x

(3+ n
4k )

2,a(2) , . . . , x
(2k+1+ (2k−1)n

4k )
2k ,a(2k) }.

Number of such sets is at least
� n

2

�k and |Sa ∩ Sb | < k for a 6= b . Now we consider a

polynomial f (X ) which is a restriction of the polynomial IMMn,n(X ). By restriction,

we simply mean that a few variables of IMMn,n(X ) are fixed to some elements from the

field and the rest of the variables are left untouched. We define the restriction as follows.

x (q)i j = 0 if r +
(r − 2)n

4k
< q < (r + 1)+

(r − 1)n
4k

− 1 for 2≤ r ≤ 2k and i 6= j .
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4.4. Lower bounds for explicit polynomials

The rest of the variables are left untouched. Next we differentiate the polynomial f (X )

with respect to the sets of variables Sa indexed by the polynomials a(z) ∈ F[z]. Consider

the leading monomial of the derivatives with respect to the sets Sa for all a(z) ∈ F[z].

Since |Sa ∩ Sb | < k, it is straightforward to observe that the distance between any two

leading monomials is at least k · n
4k =

n
4 . The intuitive justification is that whenever there

is a difference in Sa and Sb , that difference can be stretched to a distance n
4k because of

the restriction that eliminates the non diagonal entries.

Now we prove the lower bound for the polynomial f (X ) by applying Theorem 4.3.2.

Notice that f (X ) is a nO(1)-variate polynomial of degree n such that there are at least

(n/2)k > n
1
4 (2k) different polynomials in 〈∂ =2k( f )〉 such that any two of their leading

monomials have distance∆≥ n/4. So we set the parameters δ = 1/4 and c = 4 in The-

orem 4.3.2. A simple calculation shows that the parameter ε can be fixed to something

< 1/320.

Since f (X ) is a restriction of IMMn,n(X ), any lower bound for f (X ) is a lower bound

for IMMn,n(X ) too. Otherwise, if IMMn,n(X ) has a 2o(
p

n log n) sized ΣΠ[O(
p

n)]ΣΠ[
p

n] cir-

cuit, then we get a 2o(
p

n log n) sized ΣΠ[O(
p

n)]ΣΠ[
p

n] circuit for f (X ) by substituting for

the variables according to the restriction.
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5
On the limits of depth reduction to depth three over small

finite fields

In this chapter, for an explicit polynomial in VP (over fixed-size finite fields), we prove

that any depth-3 circuit computing it must be of size 2Ω(n log n). The explicit polynomial

that we consider is the iterated matrix multiplication polynomial of n generic matrices

of size n× n. The importance of this result is that over fixed-size fields there is no depth

reduction technique that can be used to compute all the nO(1)-variate and n-degree poly-

nomials in VP by depth 3 circuits of size 2o(n log n). The result of Grigoriev and Karpinski

[GK98] can only rule out such a possibility for depth-3 circuits of size 2o(n).

We also give an example of an explicit polynomial (NWn,ε(X )) in VNP (which is not

known to be in VP), for which any depth-3 circuit computing it (over fixed-size fields)

must be of size 2Ω(n log n).

5.1. Introduction

In a recent breakthrough, Gupta et al. [GKKS14] have proved that over Q (or fields

of large characteristic), if an nO(1)-variate polynomial of degree d is computable by an

arithmetic circuit of size s , then it can also be computed by a depth three ΣΠΣ circuit

of size 2O
�p

d log(d s) log n
�

. Through this, they prove the existence of a ΣΠΣ circuit of size

2O(
p

n log n) computing the determinant polynomial of an n× n matrix (over Q). Before

this result, no depth three circuit for Determinant of size smaller than 2O(n log n) was
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5. On the limits of depth reduction to depth three over small finite fields

known (over any field of characteristic 6= 2).

The situation is very different over fixed-size finite fields. Grigoriev and Karpinski

proved that over fixed-size finite fields, any depth three circuit for the determinant poly-

nomial of a n×n matrix must be of size 2Ω(n) [GK98]. This does rule out depth reduction

to depth three to a circuit of size 2O
�p

d log(d s) log n
�

(rather 2o(n)) for a polynomial of de-

gree n over nO(1) variables. Although Grigoriev and Karpinski proved the lower bound

result only for the determinant polynomial, it is now a folklore result that a modifica-

tion of their argument can show a similar depth three circuit size lower bound for the

permanent polynomial as well (cf. [Sap15]). Over any field, Ryser’s formula for Perma-

nent gives a ΣΠΣ circuit of size 2O(n) [Rys63]. Thus, for the permanent polynomial the

depth three complexity (over fixed-size finite fields) is essentially 2Θ(n).

The result of [GKKS14] is obtained through an ingenious depth reduction technique

but their technique is tailored to the fields of zero characteristic. In particular, the main

technical ingredients of their proof are the well-known monomial formula of Fischer

[Fis94] and the duality trick of Saxena [Sax08]. These techniques do not work over

finite fields. Looking at the contrasting situation over Q and the fixed-size finite fields,

a natural question is to ask whether one can find a new depth reduction technique over

fixed-size finite fields such that any nO(1)-variate and degree n polynomial in VP can also

be computed by a ΣΠΣ circuit of size 2o(n log n).

Question 5.1.1. Over any fixed-size finite fieldFq , is it possible to compute any nO(1)-variate

and n-degree polynomial in VP by a ΣΠΣ circuit of size 2o(n ln n) ?

Note that any nO(1)-variate and n-degree polynomial can be trivially computed by a

ΣΠΣ circuit of size 2O(n log n) by writing it explicitly as a sum of all nO(n) possible mono-

mials. We give a negative answer to the aforementioned question by showing that over

fixed-size finite fields, any ΣΠΣ circuit computing the iterated matrix multiplication

polynomial (which is in VP for any field) must be of size 2Ω(n log n). More precisely, we

prove that anyΣΠΣ circuit computing the iterated matrix multiplication polynomial of

n generic n× n matrices (denoted by IMMn,n(X )), must be of size 2Ω(n log n).

Previously, Nisan and Wigderson [NW97] proved a size lower bound of Ω(nd−1/d !)
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5.1. Introduction

for any homogeneous ΣΠΣ circuit computing the iterated matrix multiplication poly-

nomial over d generic n× n matrices. Kumar et al. [KMN13] improved the bound to

Ω(nd−1/2d ). These results work over any field. Over fields of zero characteristic, Sh-

pilka and Wigderson proved a near quadratic lower bound for the size of depth three

circuits computing the trace of the iterated matrix multiplication polynomial [SW01].

Recently, Kayal et al. [KST16] and Balaji et al. [BLS16] proved near-cubic circuit size

lower bounds for Θ(n)-variate, Θ(n)-degree polynomials in VNP and VP respectively.

Similar to the situation at depth 4, we also give an example of an explicit n2-variate and

n-degree polynomial in VNP (which is not known to be in VP), the Nisan Wigderson

polynomial such that over fixed-size finite fields, any depth three ΣΠΣ circuit comput-

ing it must be of size 2Ω(n log n). In fact, from our proof idea it will be clear that the strong

depth three size lower bound results that we show for NWn,εn(X ) and IMMn,n(X ) poly-

nomials are not really influenced by the fact that the polynomials are either in VNP or

VP. Rather, the bounds are determined by a combinatorial property of the subspaces

generated by a carefully chosen set of derivatives. Further, this bound holds for any poly-

nomial f such that a subspace of its partial derivative space satisfies the combinatorial

property we describe in this chapter. Our main theorem of this chapter is the following.

Theorem 5.1.2. Over any fixed-size finite field Fq , any depth threeΣΠΣ circuit computing

the polynomials NWn,εn or IMMn,n must be of size at least 2δn log n , where the parameters δ

and ε(< 1/2) are in (0,1) and depend only on q.

We shall fix the values of δ and ε suitably later. As an important consequence of the

above theorem, we have the following corollary.

Corollary 5.1.3. Over any fixed-size finite field Fq , there is no depth reduction technique

that can be used to compute all the nO(1)-variate and n-degree polynomials in VP by depth

three circuits of size 2o(n log n).

The result of [GK98] only says that over fixed-size finite fields, not all the nO(1)-variate

and n-degree polynomials in VP can be computed by ΣΠΣ circuits of size 2o(n). Our

41



5. On the limits of depth reduction to depth three over small finite fields

main theorem (Theorem 5.1.2) can also be viewed as the first quantitative improvement

over the result of [GK98].

Proof Idea

Our proof technique is quite simple and it borrows ideas mostly from the proof tech-

nique of Grigoriev and Karpinski [GK98]. A recurring notion in many papers related

to ΣΠΣ circuits is the notion of rank of a product gate. Let T = L1L2 . . . Ld be a prod-

uct gate such that each Li is an affine linear polynomial over the underlying field. By

rank of T , one simply means the maximum rank of the homogeneous linear system

corresponding to set of affine linear polynomials {L1, L2, . . . , Ld}.

Over fixed-size finite fields, ΣΠΣ circuits enjoy a nice property that the derivatives of

the high rank product gates can be eliminated except for a few erroneous points (denoted

by E ). This property was first observed by Grigoriev and Karpinski in [GK98]. The

intuition is simple. If a product gate has many linearly independent functions, then it is

likely that a large number of linear functions will be set to zero if we randomly substitute

the variables with elements from the field. Then the derivatives (of relatively low order)

of the polynomial obtained from the product gate will disappear on a random point

with very high probability.

To quantify the notion of high rank, Grigoriev and Karpinski fixed a threshold for

the rank of the product gates. Since they were looking for a 2Ω(n) lower bound for the

Determinant of a n× n matrix and the rank of the entire derivative space of of the de-

terminant polynomial is 2O(n), it was natural for them to fix the threshold to be Θ(n).

Since the dimension of the derivative spaces of the polynomial families {NWn,εn}n>0 and

{IMMn,n}n>0 is 2Ω(n log n), it is possible for us to choose the threshold for the rank of the

product gates to be Θ(n log n). This allows us to bound the size of the error set mean-

ingfully.
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An overview of the result of Grigoriev and Karpinski

We now give a high level description of the proof technique in [GK98] to motivate our

proof strategy. Roughly speaking, they consider the space H spanned by Θ(n) order

derivatives of the determinant. From the rank analysis on the circuit side, they get that

the dimension of the space of functions that may not be zero outside the error set E is

bounded. Grigoriev and Karpinski then considered the group of invertible matrices G

of order n× n over Fq . For any g ∈G, they define a Fq -linear operator Tg : H →H by

the formula (Tg ( f ))(a) = f (ga). The fact that the derivative space of the determinant

polynomial of a n × n matrix is invariant under GLn(Fq) action was crucially used in

defining the map. They then prove that the full invertible group G can be covered by

taking only a few translates of G \ E from G. This was done by appealing to a graph

theoretic lemma of Lovász [Lov75]. Now, they observe that we can the bound the di-

mension of functions that are not zero over all of GLn(Fq) to a quantity smaller than

dim(H ). This shows us that there exists a nonzero function in H that evaluates to zero

on the entire group G if the determinant polynomial is computed by the depth three cir-

cuit. Since the elements in H are only multilinear polynomials, they finally prove that

it is impossible to have such a function in H by showing that no nonzero multilinear

polynomial can vanish over the entire group G.

An overview of our result

The group symmetry based argument of [GK98] is tailored to the determinant polyno-

mial and it can not be directly applied to the polynomials that we consider. The main

technical contribution of this work is to replace the group symmetry based argument

by a new argument that makes the proof strategy robust enough to handle the families

of polynomials that we consider. We carefully choose a subspace H (of sufficiently large

dimension) of the derivative spaces of these polynomials which have an additional struc-

ture. The subspace H is spanned by a downward closed set of monomials. Let Fq be the

finite field and N be the number of the variables in the polynomial under consideration.

The basic idea is to prove that the dimension of the space H is strictly more than the
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5. On the limits of depth reduction to depth three over small finite fields

dimension of the set of functions in H which do not evaluate to zero over the entire

space FN
q when the polynomial considered is computed by any depth three circuit.

To implement this, we define a linear map Tu : H →H such that Tu( f (X )) = f (X−u)

for any function f : FN
q → Fq and u ∈ FN

q . The map is well-defined by the downward

closed structure of the generating set for H . Also the map Tu is one to one for any u ∈ FN
q .

Then from the structure of the depth three circuits, we observe that the dimension of the

functions that are non zero over Fq \ E is small. The argument so far for the derivative

space of depth three circuits is not over the entire spaceFN
q where as the argument for the

polynomial is over FN
q . Similar to the argument in [GK98], we use the graph theoretic

lemma of Lovász [Lov75] to prove that the entire space FN
q can be covered by only a few

translates of FN
q \E . Then it is simple to observe that the dimension of the functions that

are not zero over all of Fq is small compared to the dimension of H . As a consequence

we get that there is a nonzero multilinear polynomial in H must evaluate to zero over

FN
q , which is not possible by the combinatorial nullstellensatz [Alo99].

5.2. Preliminaries

We will first recall the following theorem from [Alo99].

Theorem 5.2.1. Let f (x1, x2, . . . , xn) be a polynomial in n variables over an arbitrary field

F. Suppose that the degree of f as a polynomial in xi is at most ti , for 1 ≤ i ≤ n and let

Si ⊆ F such that |Si | ≥ ti + 1. If f (a1,a2, . . . ,an) = 0 for all n-tuples in S1× S2× · · · × Sn ,

then f = 0.

We use the following combinatorial property to carefully chose a subspace of the par-

tial derivative space of the polynomials of interest.

Definition 5.2.2. A set of multilinear monomials M is said to be downward closed if the

following property holds. If m(X ) ∈ M and a multilinear monomial m′(X ) is such that

var(m′(X ))⊆ var(m(X )), then m′(X ) ∈M . ◊

Let us now consider a downward closed set of monomials M over N variables. These

monomials can be viewed as functions from FN
q to Fq . W.l.o.g, we assume that the con-
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stant function is also in M (constant function corresponds to a monomial with an empty

set of variables). Let H be the subspace spanned by these functions in M .

Lemma 5.2.3. Let m1(X ), m2(X ), . . . , mk(X ) be any set of k distinct multilinear mono-

mials in Fq[x1, x2, . . . , xN ]. For 1 ≤ i ≤ k, let fi : FN
q → Fq be the function corresponding

to the monomial mi (X ), i.e. fi (X ) = mi (X ). Then, fi s are linearly independent in the qN

dimensional vector space over Fq .

Proof. If fi s are not linearly independent then
∑k

i=1λi fi = 0 for λ̄ = (λ1,λ2, . . . ,λk) ∈

Fk
q \{0̄}. Then, the nonzero multilinear polynomial

∑k
i=1λi mi (X ) evaluates to zero on

FN
q , which contradicts Theorem 5.2.1.

For any u ∈ FN
q , define an operator Tu such that (Tu( f ))(X ) = f (X − u) for any

function f : FN
q → Fq . The following proposition is simple to prove.

Proposition 5.2.4. Let H be the subspace spanned by a downward closed set of monomials

M over the set of variables {x1, x2, . . . , xN}. Then for any u ∈ FN
q , Tu is a linear map from

H to H . Moreover, the map Tu is one-to-one for any u ∈ FN
q .

Proof. Let g (X ) be an arbitrary function in H which can be expressed as follows:

g (X ) =
∑

i≥1 ci mi (X ) where mi (X ) ∈M , and ci ∈ Fq for all i ≥ 1.

(Tu(g ))(X ) = g (X − u) =
∑

i≥1

ci mi (X − u).

It is sufficient to prove that m(X − u) ∈H where m(X ) ∈M . We can express m(X − u)

as follows.

m(X − u) =
∑

S⊆ var(m(X ))

cS

∏

xr∈S

xr .

where cS ∈ Fq . For every S ⊆ var(m(X )),
∏

xr∈S xr ∈M because M is downward closed.

Since the choice of S was arbitrary, m(X − u) ∈H . It is obvious that Tu is a linear map.

To see that Tu is a one-to-one map, it is just enough to observe that Tu ◦ T−u = T0

where T0 is an identity map.
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5. On the limits of depth reduction to depth three over small finite fields

5.3. The Derivative Space of ΣΠΣ Circuits Over Small Fields

In this section we fix the fieldF to be a fixed-size finite fieldFq . Let C be aΣΠΣ circuit of

top fan-in s computing a N = nO(1)-variate polynomial of degree n. Consider a Π gate

T = L1L2 . . . Ld in C . Let r be the rank of the (homogeneous)-linear system over Fq

corresponding to {L1, L2, . . . , Ld} by viewing each Li as a vector in FN+1
q . Fix a threshold

for the rank of the system of linear functions r0 = βn ln n, where β > 0 is a constant

to be fixed later in the analysis. In our application, the parameter N is at least n2, so the

threshold for the rank is meaningful. W.l.o.g, let {L1, L2, . . . , Lr } be a set of affine linear

forms in {L1, L2, . . . , Ld} whose homogeneous system forms a maximal independent set

of linear functions. The following analysis has been reworked from [GK98] to fix the

parameters. It shows that the derivative space of a ΣΠΣ circuit can be approximated by

just the derivative space of the low rank product gates of the circuit over a large subset

of FN
q .

Low rank gates : r ≤ r0

Over the finite field Fq , we know that aq = a for any a ∈ Fq (due to Fermat). We express

T : FN
q → Fq as a linear combination of {Le1

1 Le2
2 . . . Ler

r : ei < q for all i ∈ [r ]}. Since,

the derivatives of all orders lie in the same space, the dimension of the set of partial

derivatives of T of all orders is bounded by q r ≤ q r0 .

High rank gates : r > r0

Let the rank of a high rank gate T be yβn ln n where y ≥ 1.

We assign values to the variables uniformly at random fromFq and compute the prob-

ability that at most n linearly independent functions evaluate to zero. Let Xa be the event

that at most n linearly independent functions evaluate to zero at a.

Pra∈FN
q
[Xa]≤

n
∑

i=0

�

r
i

��

1
q

�i �

1− 1
q

�r−i

≤ n
�

r
n

��

1
q

�n �

1− 1
q

�r−n

.
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5.3. The Derivative Space of ΣΠΣ Circuits Over Small Fields

The above inequality follows from the fact that r > 2n and thus the binomial terms

under the summation are monotonically increasing. Hence, if we differentiate T with

respect to any set of variables of size at most n and restrict all the variables to values from

Fq , the gate T may not vanish over a set of points ET whose size is estimated below.

|ET | ≤ n
�

r
n

��

1
q

�n �

1− 1
q

�r−n

qN .

Over all the gates, let E be the set of points over which some of the product gates with

large rank may not evaluate to zero. Then by a union bound, we get that |E | ≤ s |ET |.

|E | ≤ s · n
�

r
n

��

1
q

�n �

1− 1
q

�r−n

qN

≤ s · n
� e r

n

�n
e−

r−n
q qN

= qN s · en+n ln r
n+ln n− r−n

q

= qN s · en+n ln yβn ln n
n +ln n− yβn ln n−n

q .

To bound the above estimate meaningfully, we need ln s
n ln n to be strictly less than

yβn
q ln n− n ln y. That is, for some constant ν > 0, we want the following to hold true.

ln s
n ln n

−
yβ
q
+

ln y
ln n
+ ν < 0. (5.3.1)

Once we satisfy the relation given by the inequality (5.3.1), we can upper bound the

size of E as |E | < qNµn ln n for some suitably fixed constant µ = e−ν and µ is between

0 and 1. Now it is clear that over FN
q \ E , the derivative space is spanned just by the

derivatives of the low rank gates. We summarize it in the following lemma.

Lemma 5.3.2. Let Fq be a fixed-size finite field. Then there exist constants 0<β(q), ν(q)<

1 such that the following is true. Let C be a ΣΠΣ circuit of top fan-in s computing a N =

nO(1)-variate and n-degree polynomial f (X ) over the finite field Fq . Further, s ,β(q), ν(q)
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5. On the limits of depth reduction to depth three over small finite fields

satisfy the inequality 5.3.1. Then, there exists a set E ⊂ FN
q of size at most qNµn ln n such that

the dimension of the space spanned by the derivatives of order ≤ n of C restricted to FN
q \E

is ≤ s qβn ln n where µ= e−ν .

It is worth (re)-emphasizing that, when we consider the derivatives, what we really

mean is the formal derivatives of C as polynomials. In the above lemma we view the

derivatives as functions from FN
q → Fq . Then it follows from the above analysis that

the dimension of the space spanned by the functions corresponding to the derivatives of

order≤ n of C restricted to FN
q \E is≤ s qβn ln n. This way of viewing derivatives either

as formal polynomials or as functions is implicit in the work of [GK98]. We shall fix the

parameters δ,β, and µ later such that they depend only on the field size q .

A Covering Argument

In this section, we adapt the covering argument of [GK98]where the covering argument

was given over the set of invertible matrices. Here we adapt their argument suitably over

the entire space FN
q .

Let H be the derivative space of any polynomial f (X )which is computed by anyΣΠΣ

circuit of size s . Define the subspace Ha := { f ∈ H : f (a) = 0} for a ∈ FN
q . Let us recall

that E is the set of points over which some of the product gates with large rank may not

evaluate to zero. Let the set of points FN
q \ E be denoted by A. Then Lemma 5.3.2 says

that in H , we get that the dimension of all the functions that are not all zero over all of A

is at most s q r0 . Formally, codim(
⋂

a∈A Ha)< s q r0 . Let us recall that or any u ∈ FN
q , we

defined an operator Tu such that (Tu( f ))(X ) = f (X − u) for any function f : FN
q → Fq .

Proposition 5.3.3. For any u,a ∈ FN
q , we have that Tu(Ha) =Hu+a .

Proof. Let us recall that the map Tu is one-to-one. That is, T−u ◦Tu = T0 where T0 is an

identity map. It is easy to observe that T−u(Hu+a) =Ha.

Let P =
⋂

a∈A Ha. Let S ⊂ FN
q be a set such that we can cover the entire space FN

q by
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5.3. The Derivative Space of ΣΠΣ Circuits Over Small Fields

the shifts of A with the elements from S.

⋃

u∈S

u +A= FN
q .

Now by applying the map Tu to P which is one-to-one, we get the following.

Tu(P ) =
⋂

a∈A

Tu(Ha) =
⋂

b∈u+A

Hb .

By a further intersection over S, we get the following.

⋂

u∈S

Tu(P ) =
⋂

u∈S

⋂

b∈u+A

Hb =
⋂

b∈FN
q

Hb . (5.3.4)

From (5.3.4), we get the following estimate.

codim





⋂

b∈FN
q

Hb



= codim

�

⋂

u∈S

Tu(P )
�

≤ |S | codim(P )≤ |S | s q r0 . (5.3.5)

The codim
�

⋂

b∈FN
q

Hb

�

refers to the dimension of the set of functions in H which do

not evaluate to zero over all the points in FN
q . Next, we show an upper-bound estimate

for the size of the set S. This follows from a simple adaptation of the dominating set

based argument given in [GK98].

Upper bound on the size of the set S

Consider the directed graph G = (V , R) defined as follows. The points in FN
q are the

vertices of the graph. For u1, u2 ∈ FN
q , the edge u1 → u2 is in R iff u2 = u1+ b for any

b ∈ A. Clearly the in-degree and out-degree of any vertex are equal to |A|. Now, we

recall Lemma 2 of [GK98] to estimate the size of S.

Lemma 5.3.6 (Lovász, [Lov75]). Let G = (V , R) be a directed (regular) graph with |V |=

m vertices and with the in-degree and the out-degree of each vertex both equal to d . Then

there exists a subset U ⊂V of size O(m
d log(d + 1)) such that for any vertex v ∈V there is
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5. On the limits of depth reduction to depth three over small finite fields

a vertex u ∈U forming an edge (u, v) ∈ R.

Let c0 be the constant fixed by the lemma in its O() notation. By Lemma 5.3.6, we

get the following estimate.

|S | ≤ c0

|FN
q |
|A|

log(|A|+ 1)

≤ c0
qN

qN − |E |
log(qN − |E |+ 1)

≤ c0(log q) N
qN

qN − |E |

=O(N ). (for fixed q)

The last equation follows from the estimate for |E | from the previous discussions. The

following lemma summarizes the content of this section.

Lemma 5.3.7. Let H be the space of partial derivatives of order at most n, of any N-variate

polynomial computed by a ΣΠΣ circuit of size s . Then for a suitable parameter r0, the

dimension of the set of functions in H that do not evaluate to zero over all points in FN
q is

upper bounded by O(N s q r0).

5.4. Derivative Spaces of the Polynomial Families

In this section, we study the derivative spaces ofNWn,εn and IMMn,n polynomials. Instead

of considering the full derivative spaces, we focus on a set of carefully chosen derivatives

and consider the subspaces spanned by them.

The derivative space of {NWn,εn}n>0 polynomial family

A set of variables D = {xi1 j1
, xi2 j2

, . . . , xit jt
} is called an admissible set if the iks (for 1 ≤

k ≤ t ) are all distinct and t ∈ [εn, n]. Let H be the subspace spanned by the set of the

partial derivatives of the polynomial NWn,εn(X ) with respect to the admissible sets of
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5.4. Derivative Spaces of the Polynomial Families

variables. More formally,

H := Fq -span
�

∂ NWn,εn(X )
∂ D

: D is an admissible set of variables
�

.

Since the monomials of the NWn,εn(X ) polynomial are defined by the univariate poly-

nomials of degree < εn, each partial derivative with respect to such a set D yields a

multilinear monomial. If we choose ε such that n − εn > εn (i.e. ε < 1/2), then after

the differentiation, all the monomials of length n − εn are distinct. This follows from

the fact that the monomials are generated from the image of the univariate polynomials

of degree < εn.

Let us treat these monomials as functions from Fn2

q → Fq . The Lemma 5.2.3 that the

functions corresponding to any set of distinct monomials are linearly independent.

Consider the derivatives of NWn,εn(X ) corresponding to the sets

{x1a(1), x2a(2), . . . , xεna(εn)} for all univariate polynomials a of degree < εn. From

Lemma 5.2.3, it follows that dim(H ) ≥ nεn = eεn ln n. We can notice that the constant

function 1 : Fn2

q → Fq given by ∀x,1(x) = 1 is also in H . This corresponds to the

derivatives of order n.

The derivative space of {IMMn,n}n>0 polynomial family

For our application, we consider all those n such that n = 2m where m ranges over

the positive integers. Consider the set of matrices X (1),X (3), . . . ,X (2m−1) corresponding

to the odd places. Let S be any set of m variables chosen as follows. Choose any vari-

able from the first row of X (1) and choose any one variable from each of the matrices

X (3), . . . ,X (2m−1). We call such a set S an admissible set.

If we differentiate IMMn,n(X )with respect to two different admissible sets of variables

S and S ′, then we get two different monomials of length m each. This follows from the

structure of the monomials in the IMMn,n(X ) polynomial, whenever we fix two vari-

ables from X (i−1) and X (i+1), the variable from X (i) gets fixed. So the number of such

monomials after differentiation is exactly n2m−1 = e (n−1) ln n.
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5. On the limits of depth reduction to depth three over small finite fields

Let mS be the monomial obtained after differentiating IMMn,n(X ) by the set of vari-

ables in S and var(mS) be the set of variables in mS . Consider the derivatives of

IMMn,n(X ) with respect to the following sets of variables {S ∪T : T ⊆ var(mS)} where

S ranges over all admissible sets.

Let H be the subspace spanned by these derivatives. More formally,

H := Fq -span
�

∂ IMMn,n(X )
∂ D

: D = S ∪T ;T ⊆ var(mS); S is an admissible set
�

.

As before, we can notice that the constant function 1 is in H . From Lemma 5.2.3,

we know that dim(H ) ≥ e (n−1) ln n. Now to unify the arguments for NWn,εn(X ) and

IMMn,n(X ) polynomials, we introduce the following notion.

We can easily observe that the derivative spaces that we select for NWn,εn(X ) and

IMMn,n(X ) are spanned by downward closed sets of monomials (Definition 5.2.2).

Lemma 5.4.1. The generator sets for the derivative subspaces H for NWn,εn(X ) and

IMMn,n(X ) polynomials are downward closed.

Proof. Let us consider the NWn,εn(X ) polynomial first. Let m ∈ H be any monomial

and D be the admissible set such that m = ∂ NWn,εn(X )
∂ D . Let m′ be any monomial such that

var(m′)⊆ var(m). Then m′ = ∂ NWn,εn(X )
∂ D ′ where D ′ =D ∪ (var(m) \ var(m′)).

Similarly for the IMMn,n(X ) polynomial, consider any m ∈ H . Then m = ∂ IMMn,n(X )
∂ D

and D = S ∪ T for an admissible set S and T ⊆ var(mS). If m′ is any monomial such

that var(m′) ⊆ var(m), then m′ = ∂ IMMn,n(X )
∂ D ′ where D ′ = S ∪ (T ∪ (var(m) \ var(m′))).

Clearly T ∪ (var(m) \ var(m′))⊆ var(mS).

5.4.1. Obtaining the circuit size lower bound

In this section, based on the discussion above, we obtain a lower bound on the size of

any ΣΠΣ circuit computing the NWn,εn(X ) and IMMn,n(X ) polynomials. We show that

the dimension of the set of non zero functions in the derivative space of the polynomial

computed by anyΣΠΣ circuit of size at most 2δn log n, is smaller than dimension of the set

of the chosen derivative space of the polynomials we consider. If the depth three circuit
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computes the polynomial under consideration, there exists a function f in the derivative

space of the polynomial such that it evaluates to zero over all points in FN
q which is not

possible as per Theorem 5.2.1. Thus, we infer that any ΣΠΣ circuit computing the

NWn,εn(X ) and IMMn,d (X )must be of size greater than 2δn log n, for a suitable parameter

δ.

Fixing the parameters

Consider the inequality 5.3.1 which is l ns
n ln n + ν <

yβ
q −

ln y
ln n . For a parameter δ, fix

s = exp(δn ln n). Fix the values forβ,δ, and ν as follows. Setβ= 1
10 ln q ,δ = 1

20q ln q , ν =
3δ
4 , and µ = e−ν . Consider the function g (y) = y − 10q ln q

ln n ln y − 0.75. Since g (y) is

a monotonically increasing function (for n appropriately larger than a threshold value

depending on q) which takes the value of 0.25 at y = 1, g (y)> 0 for y ≥ 1 and thus for

the chosen values of β and δ, yβ
q −

ln y
ln n −δ > ν and thus |E | ≤ qNµn ln n.

Let us consider that the ΣΠΣ circuit computes the NWn,ε(X ). From Section 5.4,

we know that the dimension of the subspace formed by set of chosen derivatives for

NWn,εn(X ) is at least eεn ln n. Consider the upper bound on codim
�

⋂

b∈FN
q

Hb

�

given by

the inequality 5.3.5. If we choose ε in such a way that eεn ln n > |S | s q r0 , then there will

be a multilinear polynomial f in the chosen derivative space of NWn,εn(X ) such that f

will evaluate to zero over all points in FN
q .

exp (εn ln n)> |S | s q r0 = exp (δn ln n+(β ln q)n ln n+ lnN ) .

Considering the terms of the order of n ln n in the exponent, it is enough to choose

ε(< 1/2) such that the following holds.

ε > δ +β ln q =
1

20q ln q
+

1
10

.

Since the dimension of the subspace formed by set of chosen derivatives for IMMn,n(X )

is ≥ e (n−1) ln n, the chosen values of β and δ clearly suffice.

Finally, we recall from Theorem 5.2.1 that no non-zero multilinear polynomial can
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be zero over FN
q . That is, f can not be zero over all points in FN

q . This contradicts our

assumption that the top fan-in of the ΣΠΣ circuit is less than 2δn log n. Thus, we get the

main theorem.

Theorem 5.4.2. For any fixed-size finite field Fq , any depth three ΣΠΣ circuit computing

the polynomials NWn,εn or IMMn,n must be of size at least 2δn log n where the parameters δ

and ε(< 1/2) are in (0,1) and depend only on q.

It is straightforward to observe that the lower bound analysis holds for any polyno-

mial for which we can find a subspace (of sufficiently large dimension) of its derivative

space spanned by a downward closed set of monomials.
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6
Exponential lower bounds for the depth five powering circuits

Depth five powering circuits are arithmetic circuits of the form Σ ∧ Σ ∧ Σ where ‘Σ’

and ‘∧’ represent gates that compute sum and power of their inputs respectively. Such

circuits compute polynomials of the form
∑t

i=1 Qαi
i , where each Qi is a sum of powers of

linear polynomials. These circuits are a natural generalization of the well known class of

depth three powering circuits (Σ∧Σ circuits). In this chapter, we study the complexity

of the monomial x1x2 · · · xn which is computed by some restricted classes of depth five

powering circuits.

6.1. Introduction

A power symmetric polynomial of degree d over the variables {y1, . . . , ym} is the poly-

nomial P d
m(y1, . . . , ym) = yd

1 + · · · + yd
m. For any integers d , n > 0, Ellison [Ell69]

showed that there exists an integer m for every polynomial of degree d over n variables

X = {x1, x2, . . . , xn} such that it can be written as a projection1 of P d
m. In other words,

there exists an integer m such that every polynomial can be expressed as the sum of d th

powers of m linear polynomials. For a polynomial f , the minimal such m is called the

Waring rank of the polynomial f and it is denoted by wrk( f ). Fischer [Fis94] showed

that wrk(x1x2 . . . xn) is at most 2n−1 by giving an explicit set of linear forms (cf. Propo-

sition 6.2.5). Using the technique of partial derivatives, Saxena [Sax08] showed that

1A polynomial f (x1, . . . , xn) is said to be a projection of the polynomial g (y1, . . . , ym) if there exist linear
polynomials {`1, . . . ,`m} over F [x1, . . . , xn] such that f = g (`1, . . . ,`m).
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6. Exponential lower bounds for the depth five powering circuits

wrk(x1x2 . . . xn) ≥ 2Ω(n) which is a linear factor away from the upper bound (cf. Chap-

ter 10 of [CKW11]). Ranestad and Schreyer [RS00] proved that the Waring rank of the

monomial is exactly 2n−1 using algebraic geometry. Recently, Balaji et al. [BLSS17] gave

an elegant proof of the same using basic linear algebraic techniques.

Let us now consider the arithmetic circuits that use just the addition gates and the

powering gates 2. The expression in the form of the sum of powers of linear polynomials

is a depth three powering circuit, a restriction of the general depth three circuits. Since

there exists a depth three powering circuit of size at most n2n−1 to compute a monomial,

the computational model is universal for polynomial computations. In fact, there is a

powering circuit of depth (d + 1) and size O
�

nd · 2d ·n
1
d

�

that computes x1x2 . . . xn. The

afore mentioned lower bounds on the Waring rank imply a size lower bound of 2Ω(n)

for any depth three powering circuit computing the monomial x1x2 . . . xn. In [CKW11]

Chen et al. posed the following open question.

Question 6.1.1 ([CKW11]). Can the monomial x1x2 . . . xn be efficiently computed by a

constant depth powering circuit?

This is the question that motivates the work presented in this chapter. We show that

there are at least two restricted classes of depth five powering circuits can not efficiently

compute the monomial.

Saptharishi3 [Sap15] observed that the monomial x1x2 . . . xn has non-trivial Σ∧Σ∧

and Σ∧Σ∧Σ circuits of size 2O(
p

n) (cf. Lemma 6.4.1). Ideally, we would like to prove

matching lower bounds but the current state of affairs is far away from that. But we,

along with the work of Engels et al. [ERS16]make partial progress.

Kayal [Kay12] using the technique of shifted partial derivatives proved an exponential

bound of 2Ω(
n
d ) against any Σ∧Σ[hom]Π[d ] computing the monomial x1x2 . . . xn. If there

is a Σ∧ΣΠ[d ] circuit of size s then there is a Σ∧Σ[m]∧[d ]Σ[hom] circuit of size m · s where

m = 2d ·
�n+d

n

�

. Thus, Kayal’s bound implies an exponential size lower bound for the

Σ∧Σ[hom, m]∧[d ]Σ[hom] computing the monomial when d ≤
q

n
log n and m = 2d ·

�n+d
n

�

.

2A powering gate takes in the tuple ( f , d ) as the input and output the polynomial f d . It is denoted by
∧.

3Saptharishi attributes the observation to Forbes.
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6.1. Introduction

Our results

Engels et al. [ERS16] consider the depth five powering circuits which compute the poly-

nomials of the form g =
∑s

i=1 f αi
i where fi = (`

d
1 + · · ·+ `d

n + ci ), `i s are homogeneous

linear polynomials, ci s are non-zero elements, and d is at least 21. They use the dimen-

sion of projected multilinear derivatives as the complexity measure to prove such a result.

Theorem 6.1.2 ([ERS16]). Let g =
∑s

i=1 f αi
i where fi = P di

n (`i1, . . . ,`i n)+βi , either di =

1 or di ≥ 21 and `i1, . . . ,`i n are homogeneous linear forms for every i . If g = x1x2 . . . xn

then s = 2Ω(n).

They get the following corollary.

Corollary 6.1.3 ([ERS16]). Let g =
∑s

i=1 f αi where fi = P di
n (`i1, . . . ,`iN ) +βi ,

p
n ≤

di ≤ n, N < 20.001
p

n and `i1, . . . ,`i n are homogeneous linear forms for every i . If g =

x1x2 . . . xn then s = 2Ω(n).

When d = 1, it reduces to the case of depth three powering circuits. Other-

wise, we improve upon the result of [ERS16] by using a simpler complexity mea-

sure and do a tighter analysis. We further extend the model to accomodate the case

where the degrees to which the linear forms are raised to, are not necessarily uni-

form. Formally, we consider the polynomials of the form g =
∑s

i=1 f αi
i where

fi = (`
di1
1 + · · · + `

di m
m + ci ), `i s are homogeneous linear polynomials over F[X ] and

ci ∈ F. The analysis of Engels et al. holds only when max
¦

di j : (i , j ) ∈ [s]× [m]
©

≤
1.02

d 20.489d where d =min
¦

di j : (i , j ) ∈ [s]× [m]
©

. We get rid of that constraint on the

max
¦

di j : (i , j ) ∈ [s]× [m]
©

and we just need the minimum of those degrees to be at

least 8. We summarize this result in the following theorem.

Theorem 6.1.4. Let g =
∑s

i=1 f αi
i where fi = (`

di1
1 + · · · + `

di m
m + ci ), `i s are ho-

mogeneous linear polynomials over F[X ] and ci ∈ F∗. Let d be the minimum of
¦

di j : (i , j ) ∈ [s]× [m]
©

. If g ≡ x1x2 . . . xn then for m = n and d ≥ 8, s = 2Ω(n).

Further, we also observe that such a bound also holds for larger values of m. That

helps us arrive at the following corollary.

57



6. Exponential lower bounds for the depth five powering circuits

Corollary 6.1.5. For any integer n, the monomial x1x2 . . . xn can be computed by a

Σ∧Σ[hom, 2
p

n]∧[=
p

n]Σ[hom] circuit of size 2O(
p

n) but any Σ∧Σ[20.955
p

n]∧[≥
p

n]Σ[hom] comput-

ing it must be of size at least 2Ω(n).

We also consider the depth five powering circuits of the form g =
∑s

i=1 f αi
i where

fi = (`
d
1 + · · ·+ `d

m + ci ) where `i s are homogeneous linear polynomials, ci s are non-

zero field elements, and `i s form a low rank subspace. Formally, we prove the following

theorem.

Theorem 6.1.6. Let g =
∑s

i=1 f αi
i be such that fi = (`

d
1+· · ·+`d

m+ci ), `i s are homogeneous

linear polynomials over F[X ] and ci ∈ F∗. Let r < εd be the rank of the linear forms

{`1,`2, . . . ,`m} for a parameter ε < 1. If g ≡ x1x2 . . . xn then there exists a suitable value

for the parameter ε such that s = 2Ω(n).

This gives us the following insight.

Corollary 6.1.7. For any integer n, the monomial x1x2 . . . xn can be computed by a

Σ∧Σ∧[hom, =
p

n]Σ[hom,{=pn}] circuit of size 2O(
p

n) but any Σ∧Σ∧[=
p

n]Σ[hom, {≤εpn}] com-

puting it must be of size at least 2Ω(n).

6.2. Preliminaries

First, we shall present the definition of the powering circuits again, for the sake of com-

pleteness.

Definition 6.2.1 (Powering circuits). A powering circuit is an arithmetic circuit where the

internal nodes are either addition (+) or the powering gates (∧). ◊

In this work, we shall work with two specific restrictions of powering circuits of depth

five.

Definition 6.2.2 (Depth five powering circuits). A depth five powering circuit computes

the sum of powers of sums of powers of linear forms. Formally, a Σ∧Σ∧Σ circuit computes
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6.2. Preliminaries

the polynomials of the form

s
∑

i=1

 

m
∑

j=1

`
di j

i j + ci

!αi

where `i s are linear forms over F[x1, x2, . . . , xn]. ◊

Here are the following two restrictions of the depth five powering circuits that we

consider.

• A Σ∧Σ[m]∧[≥d ]Σ[hom] circuit computes the polynomials of the form

s
∑

i=1

 

m
∑

j=1

`
di j

i j + ci

!αi

such that, for any i ∈ [s], the linear forms
¦

`i j : (i , j ) ∈ [s]× [m
©

are homoge-

neous linear polynomials and d =min
¦

di j : (i , j ) ∈ [s]× [m]
©

.

• A Σ∧Σ∧[=d ]Σ[hom,{r }] circuit computes the polynomials of the form

s
∑

i=1

 

m
∑

j=1

`d
i j + ci

!αi

such that, m is unbounded and for any i ∈ [s], the linear forms
¦

`i j : (i , j ) ∈ [s]× [m
©

are homogeneous linear polynomials and for every i , the

rank of the linear system
¦

`i j : j ∈ [m]
©

is at most r .

Complexity measure: Multilinear derivatives

Let us define our complexity measure as follows.

Definition 6.2.3. For an integer k > 0, we define the dimension of the multilinear deriva-

tives of order k (denoted by Γk ) as follows.

Γk( f ) = dim(F-span{πm(∂
=k

ML f )})
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6. Exponential lower bounds for the depth five powering circuits

where ∂ =k
ML f is the space of partial derivatives of order k with respect to the multilinear

monomials and πm projects the polynomial to its multilinear component. ◊

Since the polynomial we consider is a multilinear polynomial, it is sufficient to con-

sider the derivatives with respect to multilinear monomials and multilinear projec-

tions. This measure is a restriction of the measure introduced by Nisan and Wigderson

[NW97] and is a stripped down version of Projected multilinear derivatives 4 which was

introduced by Engels et al. [ERS16]. It is easy to see that the measure is sub-additive.

We crucially use that property in our proof.

Proposition 6.2.4. The measure, the dimension of the multilinear derivatives is sub-

additive. Formally, Γk( f1+ f2)≤ Γk( f1)+ Γk( f2).

We shall now mention the result of Fischer [Fis94] where he showed that

wrk(x1x2 . . . xn) is at most 2n−1 by giving an explicit set of linear forms.

Proposition 6.2.5 ([Fis94]). For any n, the monomial x1 . . . xn can be expressed as a linear

combination of 2n−1 powers of linear forms as following.

2n−1 · n! · x1 . . . xn =
∑

(r2,r3,...,rn)∈{±1}n−1

(−1)wt(r) · (x1+
n
∑

j=1

ri xi )
n

where wt(r) = |{i : ri =−1}|.

The following property is true about the binary entropy function.

Claim 6.2.6. For positive real numbers
¦

a1,a2, . . . ,ap , u1, u2, . . . , up

©

, each of which is in

[0,1], such that u1+ u2+ · · ·+ up = 1,

p
∑

i=1

ui H (ai )≤H

� p
∑

i=1

ui ai

�

where H (q) is the binary entropy function.

4The dimension of the projected multilinear derivatives in [ERS16] is defined as
dim(F-span{σS (πm(∂ML f ))}) where σS sets the variables in S to zero. They need the extra
projection to take care of the depth four powering circuits that they consider. We observe that it is
not necessary in the case of depth five powering circuits.
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6.3. Depth five powering circuit for the monomial

The proof of this claim follows easily from the fact that the binary entropy function

is a concave function over (0,1).

6.3. Depth five powering circuit for the monomial

In this section we shall construct a depth five powering circuit of size 2Ω(
p

n) that com-

putes x1x2 . . . xn.

Proposition 6.3.1. There is a Σ∧Σhom, [2
p

n−1]∧[
p

n]Σ[
p

n] formula of size 2
p

n computing

the monomial x1x2 . . . xn .

Proof. Let the monomial x1x2 . . . xn be expressed as m1m2 . . . mpn where

mi = x((i−1)
p

n+1)x((i−1)
p

n+2) . . . x(ipn) ∀ i ∈ [
p

n].

Invoking Proposition 6.2.5 with m1, m2, . . . , mpn as the variables, we get a depth three

powering circuit of size
p

n·2
p

n−1 overF
�

m1, m2, . . . , mpn

�

. Furthermore, using Propo-

sition 6.2.5, each of these mi s can be expressed as depth three powering circuits of size
p

n · 2
p

n−1 over F
�

x(i−1)
p

n+1, x(i−1)
p

n+2, . . . , xi
p

n

�

. The Σ∧Σhom, [2
p

n−1]∧[
p

n]Σ[
p

n] cir-

cuit thus obtained is of size at most n · 22
p

n−2.

Saptharishi [Sap15] gives an elegant construction of a depth four powering circuit of

size 2O(
p

n) using Ellison’s lemma/Newton identities in the first step and the Fisher’s

identity in the second step.

6.4. Hardness of the monomial under this measure

Lemma 6.4.1. For any integer k < n,

Γk(x1x2 . . . xn) =
�

n
k

�

.
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6. Exponential lower bounds for the depth five powering circuits

Proof. The derivative space of the monomial x1x2 . . . xn, of order k is spanned by the

multilinear monomials of degree exactly n− k over F[X ]. Thus,

Γk(x1x2 . . . xn) =
�

n
n− k

�

=
�

n
n− (n− k)

�

=
�

n
k

�

.

6.5. Weakness of the Σ∧Σ[m]∧[≥d ]Σ[hom] circuits under this

measure

In this section, we show thatΣ∧Σ[m]∧[≥d ]Σ[hom] circuits of polynomial size cannot com-

pute the monomial x1x2 · · · xn. We start by showing that the dimension of the multilinear

derivative space for any polynomial computed by this model is low.

Lemma 6.5.1. Let k and t > n
2 be some parameters. Let f = (`di

1 + · · ·+ `
dm
m + c) where

`i s are homogeneous linear polynomials over F[X ] and c is a non-zero field element. Then

for any positive integer α,

Γk( f
α)≤ k

��

m+ p
p

��

k
p

�

+
n
2

�

n
t

��

where d =min{d1, d2, . . . , dm} and p < t+k
d .

Proof. Let us note that the space of partial derivatives of order k, of f lies in

F-span{`di−k
i : i ∈ [m]}. Extending this, we obtain the following.

∂ k f α ⊆ F-span{ f α−p · ∂ k1 f · . . .∂ kp f : p ∈ [k]& k1+ · · ·+ kp = k}

⊆ F-span{ f α−p : p ∈ [k]}⊗F-span{∂ k1 f · . . .∂ kp f : p ∈ [k]& k1+ · · ·+ kp = k}.

The dimension of F-span{ f α−p : p ∈ [k]} is trivially upper bounded by k. Let W be the
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6.5. Weakness of the Σ∧Σ[m]∧[≥d ]Σ[hom] circuits under this measure

vector space F-span{∂ k1 f · · · · · ∂ kp f : k1+ · · ·+ kp = k}. Then, Γk( f
α)≤ k · Γk(W ).

W = F-span{∂ k1 f · · · · · ∂ kp f : k1+ · · ·+ kp = k}

⊆ F-span{`
di1
−k1

i1
· · · · · `

di p
−kp

ip
: ī = (i1, . . . , ip) ∈ [m]

p & k1+ · · ·+ kp = k}.

If the degree of any term Tī = `
di1
−k1

i1
· · · · · `

di p
−kp

ip
is greater than n then its contribution

to Γk(W ) is zero. Let us now consider all the other terms in W whose degree is at most

n. Let t be a degree threshold such that t > n
2 .

• Let us consider the terms Tī such that their degree is in [t , n]. There are at most
∑

j∈[t ,n]

�n
j

�

≤
�n

t

�

· (n− t +1)many multilinear monomials over F[X ] of degree at

least t and at most n. Their contribution to Γk(W ) is at most n
2

�n
t

�

.

• Otherwise, the degree of any other term Tī is at most t − 1.

di1
− k1+ di2

− k2+ · · ·+ dip
− kp < t

p ·min
¦

di1
, di2

, . . . , dip

©

− (k1+ k2+ · · ·+ kp)< t

=⇒ p <
t + k

d

since d ≤min
¦

di1
, di2

, . . . , dip

©

. The number of terms {Tī}ī∈[m]p of degree at most

t − 1 can be counted as follows. We can choose the indices (i1, i2, . . . , ip) in
�m+p

m

�

ways, and choose k1, k2, . . . , kp in at most
�k

p

�

ways such that k1+k2+ · · ·+kp = k.

Thus,

Γk( f
α)≤ k · Γk(W )≤ k

��

k
p

��

m+ p
p

�

+
n
2

�

n
t

��

.

Putting it all together

Theorem 6.5.2. Let g =
∑s

i=1 f αi
i be such that fi = (`

di1
1 + · · ·+ `

di m
m + ci ) such that `i s

are homogeneous linear polynomials over F[X ] and ci ∈ F∗. Let d be the minimum of
¦

di j : (i , j ) ∈ [s]× [m]
©

. If g ≡ x1x2 . . . xn then for m = n and d ≥ 8, s = 2Ω(n).
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6. Exponential lower bounds for the depth five powering circuits

Proof. Since g =
∑s

i=1 f αi
i and from Proposition 6.2.4 we can infer the following.

Γk(g )≤ s ·max
i∈[s]
(Γk( f

αi
i )).

From Lemma 6.4.1 and the fact that g ≡ x1x2 . . . xn, we can infer that Γk(g ) =
�n

k

�

. By

invoking Lemma 6.5.1 we can get an upper bound on maxi∈[s](Γk( f
αi

i )). Thus,

s · k ·
��

k
p

��

m+ p
p

�

+
�

n
t

��

≥
�

n
k

�

=⇒ s ≥
�n

k

�

k
�

�k
p

��m+p
p

�

+ n
2

�n
t

�

� .

Let us fix the value of k to 0.5n so as to maximize the numerator.

•
�n

k

�

= 2n.

•
�k

p

��m+p
p

�

= 2k·H( p
k )+(m+p)·H( p

m+p ) = 2n·(0.5H( p
k )+ m+p

n H( p
m+p )).

•
�n

t

�

= 2n·H( t
n ).

log(s k)≥ n ·
�

1−max
�

0.5H
� p

k

�

+
m+ p

n
H
�

p
m+ p

�

, H
� t

n

�

��

.

We will set the value of t to a value which is away from 0.5n on the greater side so that
�n

t

�

is the non dominant term. Let us fix the parameters as follows: k = 0.5n, t = 0.545n

and m = n. This setting of parameters forces the criterion that d must at least be 8 and

thus p < 0.13n. By substituting the values, we get
�k

p

��m+p
p

�

= 20.99815n and
�n

t

�

= 20.99415n.

Thus, s ≥ 20.00184n.

Theorem 6.5.3. AnyΣ∧Σ[m]∧[≥d ]Σ[hom] circuit computing the monomial x1x2 . . . xn must

be of size 2Ω(n) where m ≤ 0.29n
d 2 · 20.955d .
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6.6. Weakness of the Σ∧Σ∧[=d ]Σ[hom, {r }] circuits under this measure

Proof. From the proof of Theorem 6.5.2, we get that

s ≥
�n

k

�

k
�

�k
p

��m+p
p

�

+
�n

t

�

�

and the value of p is at most t+k
d . Let us fix the value of k to 0.5n again so as to maximize

the numerator and we will set the value of t to a value of 0.545n which is away from

0.5n on the greater side so that
�n

t

�

is the non dominant term.

Then we would want the other term in the denominator to be exponentially smaller

than 2nH( k
n ) (say by 2γn where γ = 0.998) at its maximum.

max
��

k
p

��

m+ p
p

��

≤ 2γn =⇒
e2k(m+ p)

p2
≤ 2

γn
p

(m+ p)≤
�

p2

e2k

�

· 2
γn
p =⇒ m ≤

�

p2

e2k

�

· 2
γn
p − p <

�

(t + k)2

e2d 2k

�

· 2
γn
p

m <
(1.045)2n
0.5e2d 2

· 2
γd

1.045 =
0.29n

d 2
· 20.955d .

This completes the proof.

In particular, we infer the following by setting d to
p

n.

Corollary 6.5.4. For any integer n, the monomial x1x2 . . . xn can be computed by a

Σ∧Σ[hom, 2
p

n]∧[=
p

n]Σ[hom] circuit of size 2O(
p

n) but any Σ∧Σ[20.955
p

n]∧[≥
p

n]Σ[hom] comput-

ing it must be of size at least 2Ω(n).

6.6. Weakness of the Σ∧Σ∧[=d ]Σ[hom, {r }] circuits under this

measure

In this section, we show thatΣ∧Σ∧[=d ]Σ[hom, {r }] circuits of polynomial size cannot com-

pute the monomial x1x2 · · · xn. We start by showing that the dimension of the multilinear
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6. Exponential lower bounds for the depth five powering circuits

derivative space for any polynomial computed by this model is low.

Lemma 6.6.1. Let k and t > n
2 be some parameters. Let f = (`d

1 + · · ·+`d
m+ c) where `i s

are homogeneous linear polynomials over F[X ] such that the rank of {`1,`2, . . . ,`m} is at

most r and c is a non-zero field element. Then for any positive integer α,

Γk( f
α)≤ k

��

k
p

�

· 2(p(d+r )−k)·H
� r p

p(d+r )−k

�

+
n
2

�

n
t

��

where p < t+k
d .

Proof. Similar to the proof of Lemma 6.5.1, we have the following.

∂ k f α ⊆ F-span{ f α−p · ∂ k1 f · . . .∂ kp f : p ∈ [k]& k1+ · · ·+ kp = k}

⊆ F-span{ f α−p : p ∈ [k]}⊗F-span{∂ k1 f · . . .∂ kp f : p ∈ [k]& k1+ · · ·+ kp = k}.

The dimension of F-span{ f α−p : p ∈ [k]} is trivially upper bounded by k. Let W be the

vector space F-span{∂ k1 f · · · · · ∂ kp f : k1+ · · ·+ kp = k}. Thus, Γk( f
α)≤ k · Γk(W ).

W = F-span{∂ k1 f · · · · · ∂ kp f : k1+ · · ·+ kp = k}

⊆ F-span{`d−k1
i1
· · · · · `d−kp

ip
: ī = (i1, . . . , ip) ∈ [m]

p & k1+ · · ·+ kp = k}

⊆ F-span
¦

`d−k1
i1

: i1 ∈ [m]
©

⊗ · · ·⊗F-span
n

`
d−kp

ip
: ip ∈ [m]

o

; k1+ · · ·+ kp = k .

If the degree of any term Tī = `
d−k1
i1
· · · · ·`d−kp

ip
is greater than n then its contribution to

Γk(W ) is zero. Let us now consider all the other terms in W whose degree is at most n.

Let t > n
2 be a degree threshold that we shall fix later. Let us consider the terms Tī whose

degree lies in [t , n]. There are at most
�n

t

�

· (n− t+1)many multilinear monomials over

F[X ] of degree at least t and at most n. Otherwise, the degree of Tī is at most t − 1.

d − k1+ d − k2+ · · ·+ d − kp < t

p · d − (k1+ k2+ · · ·+ kp)< t

=⇒ p <
t + k

d
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6.6. Weakness of the Σ∧Σ∧[=d ]Σ[hom, {r }] circuits under this measure

Without loss of generality, let us suppose that the set {`1,`2, . . . ,`r } forms the linear

basis for {`1,`2, . . . ,`m}. Thus, `i1
can be written as a linear combination of the basis

elements. Also,

∂ ki f ⊆ F-span
¦

`d−ki
j : j ∈ [m]

©

⊆ F-span
�

`a1
1 `

a2
2 . . .`ar

r : a1+ a2+ · · ·+ ar = d − ki

	

.

The number of integral solutions to the equation a1+a2+ · · ·+ar = d − ki is at most
�d−ki+r

r

�

. Thus for a fixed (k1, k2, . . . , kp) such that k1+ k2+ · · ·+ kp = k,

dim
�

⊗ j∈[p]F-span
n

`
d−k j

i j
: i j ∈ [m]

o�

≤
p
∏

i=1

�

d − ki + r
r

�

.

The number of ways of choosing (k1, k2, . . . , kp) is at most
�k

p

�

.

=⇒ dim(W )≤
�

k
p

�

·
p
∏

i=1

�

d − ki + r
r

�

≤
�

k
p

�

· 2
∑p

i=1(d−ki+r )·H
�

r
d−ki+r

�

=
�

k
p

�

· 2(p(d+r )−k)
∑p

i=1
(d−ki+r )
p(d+r )−k ·H

�

r
d−ki+r

�

and by using Claim 6.2.6 we get that

2(d m+r m−k)
∑p

i=1
(d−ki+r )
p(d+r )−k ·H

�

r
d−ki+r

�

≤ 2(p(d+r )−k)·H
�

∑p
i=1

(d−ki+r )
p(d+r )−k ·

r
d−ki+r

�

= 2(p(d+r )−k)·H
� p r

p(d+r )−k

�

.

Thus,

Γk( f
α)≤ k · Γk(W )≤ k

��

k
p

�

2(p(d+r )−k)·H
� p r

p(d+r )−k

�

+
n
2

�

n
t

��

.
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6. Exponential lower bounds for the depth five powering circuits

Putting it all together

Theorem 6.6.2. Let g =
∑s

i=1 f αi
i be such that fi = (`

d
1+· · ·+`d

m+ci ), `i s are homogeneous

linear polynomials over F[X ] and ci ∈ F. Let r < εd be the rank of the linear forms

{`i : i ∈ [m]} for a parameter ε < 1. If g ≡ x1x2 . . . xn then there exists a setting for the

parameter ε such that s = 2Ω(n).

Proof. From Proposition 6.2.4,

Γk(g )≤ s ·max
i∈[s]
(Γk( f

αi
i )).

From Lemma 6.4.1 and the fact that g ≡ x1x2 . . . xn, we can infer that Γk(g ) =
�n

k

�

. By

invoking Lemma 6.6.1 we can get an upper bound on maxi∈[s](Γk( f
αi

i )). Thus,

s · k ·
��

k
p

�

· 2(p(d+r )−k)·H
� r p

p(d+r )−k

�

+
n
2

�

n
t

��

≥
�

n
k

�

=⇒ s ≥
�n

k

�

k ·
h

�k
p

�

· 2(p(d+r )−k)·H
� r p

p(d+r )−k

�

+ n
2

�n
t

�

i

As before, let us fix the value of k to 0.5n so as to maximize the numerator and we

will set the value of t to 0.545n, a value which is away from 0.5n on the greater side so

that
�n

t

�

is the non dominant term.

log
��

k
p

�

· 2(p(d+r )−k)·H
� r p

p(d+r )−k

�

�

= p log
�

ek
p

�

+(p(d + r )− k) ·H
�

r p
p(d + r )− k

�

≤
(t + k)

d
log

�

ek
p

�

+
(t + k)(d + r )− kd

d
·H

�

ε(t + k)
(d + r )(t + k)− kd

�

=
1.045n

d
log

� ed
1.045

�

+(0.545+ 1.045ε)n ·H
�

1.045ε
(0.545+ 1.045ε)

�

.
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6.6. Weakness of the Σ∧Σ∧[=d ]Σ[hom, {r }] circuits under this measure

For a constant value of d ≥ 8, the value of ε can be set to 0.1. Also, the value of ε can

be raised to 0.4 when d ≥ 200. For a reasonably large value of d = ω(1), the second

summand dominates the first. For a value of ε = 0.44001, the second summand would

compute to a value of 0.9996n. This gives us a size lower bound of at least 20.0004n.

Again, by setting the value of d to
p

n, we get the following corollary.

Corollary 6.6.3. For any integer n, the monomial x1x2 . . . xn can be computed by a

Σ∧Σ[hom]∧[=
p

n]Σ[hom, {=pn}] circuit of size 2O(
p

n) but anyΣ∧Σ∧[=
p

n]Σ[hom, {≤εpn}] com-

puting it must be of size at least 2Ω(n).
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Part III.

Determinantal Complexity
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7
Determinantal complexity of Iterated matrix multiplication

polynomial

One of the goals in this study is to compare our current knowledge of the depth-4 circuit

size lower bounds and the determinantal complexity lower bounds. Currently the best

known determinantal complexity lower bound isΩ(n2) for Permanent of a n×n matrix

(which is a n2-variate and degree n polynomial) [MR04, CCL08, Yab15]. We prove that

the determinantal complexity of the iterated matrix multiplication polynomial isΩ(d n)

where d is the number of matrices and n is the dimension of the matrices. So for d =

n, we get that the iterated matrix multiplication polynomial achieves the current best

known lower bounds in both fronts: depth-4 circuit size and determinantal complexity.

Our result also settles the determinantal complexity of the iterated matrix multiplication

polynomial to Θ(d n).

To the best of our knowledge, a Θ(n) bound for the determinantal complexity for

the iterated matrix multiplication polynomial was known only for any constant d > 1

[Jan11].

7.1. Introduction

Let us recall that a multivariate polynomial family { fn(X ) ∈ F[x1, x2, . . . , xn] : n ≥ 1} is

in the class VP if fn has degree of at most poly(n) and can be computed by an arithmetic
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7. Determinantal complexity of Iterated matrix multiplication polynomial

circuit of size poly(n). It is in VNP if it can be expressed as

fn(X ) =
∑

Y∈{0,1}m
gn+m(X ,Y )

where m = |Y | = poly(n) and gn+m is a polynomial family in VP. Permanent poly-

nomial characterizes the class VNP over the fields of all characteristics except 2 and the

determinant polynomial characterizes the class VP with respect to the quasi-polynomial

projections.

Definition 7.1.1. The determinantal complexity of a polynomial f , over n variables, is the

minimum m such that there are affine linear polynomials Ak ,`, 1 ≤ k ,` ≤ m defined over

the same set of variables and f = det((Ak ,`)1≤k ,`≤m). It is denoted by DetComp( f ). ◊

To resolve Valiant’s hypothesis, proving DetComp(Permn) = nω(log n) is sufficient.

Von zur Gathen [vzG86] proved that DetComp(Permn) ≥
q

8
7 n. Later Cai [Cai90],

Babai and Seress [vzG87], and Meshulam [Mes89] independently improved the lower

bound to
p

2n. In 2004, Mignon and Ressayre [MR04] proved that DetComp(Permn)≥
n2

2 over the fields of characteristic zero, using algebraic geometry. Subsequently, Cai et

al. [CCL08] extended the result of Mignon and Ressayre [MR04] to all fields of charac-

teristic 6= 2. They also provided a simpler analysis.

For any polynomial f , Valiant [Val79] proved that DetComp( f )≤ 2(F ( f )+1)where

F ( f ) is the arithmetic formula complexity of f . Later, Nisan [Nis91] proved that

DetComp( f ) = O(B( f )) where B( f ) is the arithmetic branching program complexity

of f .

The main result of this chapter is a lower bound on the determinantal complexity of

the iterated matrix multiplication polynomial.

Theorem 7.1.2. For any integers n and d > 1, the determinantal complexity of the iterated

matrix multiplication polynomial IMMn,d is 0.5d n.

Since IMMn,d (X ) has an algebraic branching program of size O(d n) [Nis91], from the

above theorem it follows that DetComp(IMMn,d (X )) =Θ(d n). This improves upon the
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7.2. Lower bounds via the partial derivatives

earlier bound of Θ(n) for the determinantal complexity of the iterated matrix multipli-

cation polynomial for any constant d > 1 [Jan11]. Similar to the approach of [CCL08]

and [MR04], we also use the the rank of Hessian matrix as our main technical tool.

As mentioned before, the current best known determinantal complexity (DetComp)

lower bound for an explicit polynomial in VNP is only quadratic, for the permanent

polynomial [MR04]. Before the result of Mignon and Ressayre, the best known de-

terminantal complexity lower bound for the n × n permanent polynomial was
p

2n

[Cai90, vzG87]. These results were proved using nontrivial algebraic-geometric con-

cepts. Of course, one can prove that VP 6= VNP by proving a super-quasi-polynomial

determinantal complexity lower bound for any other explicit polynomial in VNP. One

such polynomial that we consider is the Nisan Wigderson polynomial.

Here we first show that DetComp(NWn,εn(X ))≥Ω(n1.5) using elementary ideas. This

is in contrast to the results of Cai and von zur Gathen [Cai90, vzG87]. We will also prove

a lower bound on the determinantal complexity of IMMn,d using the partial derivatives

in Section 7.2.

7.2. Lower bounds via the partial derivatives

Let us recall the following definition for the sake of completeness.

Definition 7.2.1. The dimension of the space of partial derivatives of a polynomial f with

respect to a parameter k is defined as Γk( f ) := dim
�

∂ =k f
�

. ◊

If a polynomial f = Detm(A(X )) then we need Γk(Det(A(X ))) must be at least Γk( f ).

Let us first obtain a lower bound on the derivative space of Detm(A(X )).

Derivative space of Detm polynomial

We will now lower bound the derivative space of Detm(A(X )) polynomial where A(X )

is a m ×m matrix whose entries are linear polynomials over F[X ]. Now consider the

polynomial Detm(Y ) over F[Y ] where Y = {y11, . . . , ymm}. By the chain rule of deriva-
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7. Determinantal complexity of Iterated matrix multiplication polynomial

tives,

∂ Detm(A(X ))
∂ xi , j

=
∑

s ,t∈[m]

∂ Detm(Y )
∂ ys ,t

�

�

�

�

Y←A(X )
·
∂ (A(X ))s ,t

∂ xi , j

.

Since the entries of A(X ) are linear polynomials, ∂ (A(X ))s ,t

∂ xi , j
is a constant. Generalizing

this, we get that

∂ =k Detm(A(X ))
∂ xi1, j1

. . .∂ xik , jk

=
∑

sp ,tp∈[m]: p∈[k]

∂ =k Detm(Y )
∂ ys1,t1

. . .∂ ysk ,tk

�

�

�

�

Y←A(X )
·
∂ (A(X ))s1,t1

∂ xi1, j1

. . .
∂ (A(X ))sk ,tk

∂ xik , jk

.

This implies that the span of the partial derivative space of Detm(A(X )), of order k,

is a subset of the span of the kth order partial derivative space (with respect to Y ) of

Detm(Y ). More formally,

F-span
�

∂ =k Detm(A(X ))
	

⊆ F-span
¦

(∂S Detm(Y ))|yi j=Ai j ;i , j∈[m] : S ⊆ Y & |S |= k
©

.

We note the following simple property of the derivative space of the determinant

polynomial. This follows from the fact that a kth order derivative corresponds to a

minor of the order (n − k) and any two distinct minors do not share a monomial in

common1.

Proposition 7.2.2. For any k, Γk(Detm(Y )) =
�m

k

�2.

Invoking the Proposition 7.2.2 and from the discussion above, we get that

Γk (Detm(A(X )))≤ Γk (Detm(Y )) =
�

m
k

�2

.

Derivative space of Nisan-Wigderson polynomial

Let us recall that NWn,εn(X ) =
∑

a(z)∈F[z] x1a(1)x2a(2) . . . xna(n) where F is a finite field of

size n and a(z) is a univariate polynomial of degree< εn where ε ∈ (0,0.5). Notice that

1A much stronger statement about the determinantal ideal can be found in (Theorem 22) [GKKS14] and
the references therein.
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7.2. Lower bounds via the partial derivatives

any two of its monomials can intersect in at most εn−1 variables. We now differentiate

the polynomial NWn,εn(X )with respect to the first k = εn variables of every monomial.

After the differentiation, we get nεn distinct monomials each of which is of length (1−

ε)n. Thus, Γk
�

NWn,εn

�

≥ nεn.

Theorem 7.2.3. For any ε ∈ (0,0.5), it is true that DetComp(NWn,εn) ≥ Ω(n1.5). This

holds over any field.

Proof. If the dimension of the partial derivative space of the Detm(A(X )) is less than

the dimension of the partial derivative space of the NWn,εn(X ) polynomial, then

NWn,εn(X ) = Detm(A(X )) can not hold true. Thus for k = εn,

�

m
k

�2

≤ nεn

� e ·m
k

�2k
≥ nεn

m ≥ εn ·
p

n
e

=Ω(n1.5)

Thus m has to be at least Ω(n1.5) for the NWn,εn(X ) polynomial to be written as the

affine projection of the Detm polynomial, that is as Detm(Ak ,`) where Ak ,`, 1≤ k ,`≤ m

are linear polynomials in F[X ].

Derivative space of the iterated matrix multiplication polynomial

The iterated matrix multiplication polynomial is defined over the disjoint sets of vari-

ables X1,X2, . . . ,Xd .

IMMn,d (X ) =
∑

i1,i2,...,in−1∈[n]
x (1)1i1

x (2)i1i2
. . . x (d−1)

i(d−2)i(d−1)
x (d )i(d−1)1

.

We will lower bound Γk(IMMn,d (X )) by the dimension of a specific subspace of the

derivative space of IMMn,d (X ). That is dimension of the entire derivative space is lower

bounded by the dimension of the subspace that we will now consider. For some distinct

elements J = { j1, j2, . . . , jk} such that | js − jt | > 2 for any distinct s , t ∈ [k], consider
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7. Determinantal complexity of Iterated matrix multiplication polynomial

the sets of variables X j1
,X j2

, . . . ,X jk
. Let us consider the set of monomials M of degree

k such that for any monomial m ∈M ,
�

�

�var(m)∩X jt

�

�

�= 1 for all t ∈ [k], and all suitable

sets J . It is easy to see that the partial derivatives with respect to the monomials in M are

pairwise distinct. The number of ways of picking such a suitable set J is
�d−k+1

k

�

. The

number of monomials of degree k in M corresponding to a particular set J is n2k . Thus,

Γk(IMMn,d (X ))≥
�

d − k + 1
k

�

· n2k .

We need that Γk(IMMn,d (X )) ≤ Γk(Detm(A(X ))). Thus for k = δd for a suitable δ ∈

(0,1),

�

m
k

�2

≥
�

d − k + 1
k

�

· n2k

� e ·m
k

�2k
≥
�d − k + 1

k

�k

· n2k

e ·m
k
≥

√

√

√d − k + 1
k

· n

m ≥ e−1n ·
Æ

k(d − k + 1) =Ω(d n).

We will improve on this result by a constant factor in Section 7.3.

7.3. Lower bounds via the Hessian

Approach of Mignon and Ressayre

We start by recalling a few facts from [CCL08]. Let f be the target polynomial over N

variables. Let Ak ,`(X ), 1≤ k ,`≤ m be the affine linear polynomials overF[X ] such that

f (X ) = det((Ak ,`(X ))1≤k ,`≤m). Consider a point X0 ∈ FN such that f (X0) = 0. The affine

linear functions Ak ,`(X ) can be expressed as Lk ,`(X−X0)+yk ,` where Lk ,` is a linear form

and yk ,` is a constant from the field. Thus, (Ak ,`(X ))1≤k ,`≤m = (Lk ,`(X−X0))1≤k ,`≤m+Y0.

If f (X0) = 0 then det(Y0) = 0. LetC and D be two non-singular matrices such thatCY0D

is a diagonal matrix.
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7.3. Lower bounds via the Hessian

CY0D=





0 0

0 Is





Since det(Y0) = 0, s < m. It is enough to assume that s = m−1. Since the first row and

the first column of CY0D are zero, we may multiply CY0D by diag(det(C)−1, 1, . . . , 1)

and diag(det(D)−1, 1, . . . , 1) on the left and the right side. Without loss of generality, we

may assume that det(C) = det(D) = 1. By multiplying with C and D on the left and the

right and by suitably renaming (Lk ,`(X −X0))1≤k ,`≤m and Y0 we get that

f (X ) = det((Lk ,`(X −X0)1≤k ,`≤m +Y0))

where Y0 = diag(0,1, . . . , 1).

We use Hess f (X ) to denote the Hessian matrix of the polynomial f and is defined as

follows.

Hess f (X ) = (Hs ;i j ,t ;k`(X ))1≤i , j≤n,1≤s ,t≤d such that Hs ;i j ,t ;k`(X ) =
∂ 2 f (X )

∂ x (s)i j ∂ x (t )k`

where x (s)i j and x (t )k` denote the (i , j )th and (k ,`)th entries of the variable sets Xs and Xt

respectively.

By taking second order derivatives and evaluating the Hessian matrices of f (X ) and

det((Ak ,`(X ))1≤k ,`≤m) at X0, we obtain Hess f (X0) = LHessdet(Y0)L
T where L is a N×m2

matrix with entries from the field. It follows that rank(Hess f (X0))≤ rank(Hessdet(Y0)).

It was observed in the earlier work of [MR04] and [CCL08] that it is relatively easy to

get an upper bound for rank(Hessdet(Y0)). The main task is to construct a point X0 such

that f (X0) = 0, yet the rank of Hess f (X0) is high.
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7. Determinantal complexity of Iterated matrix multiplication polynomial

Determinantal complexity of IMMn,d

We shall fix our target polynomial to be IMMn,d where N = n2d . We give an explicit

construction of a point X0 ∈ Fn2d such that IMMn,d (X0) = 0 and rank(HessIMMn,d
(X0))≥

d (n−1). First for the sake of completeness, we briefly recall the upper bound argument

for the rank of Hessdet(Y0) from Section 2.1 of [CCL08].

Upper bound for the rank of Hessdet(Y0)

When we take a partial derivative of the determinant polynomial with respect to the

variable xi j , the result is a minor that is obtained by striking out the row i and column j .

The second order derivative of det(Y)with respect to the variables yi j and yk` eliminates

the rows {i , k} and the columns { j ,`}. Considering the form of Y0, the non-zero entries

in HessDet(Y0) are obtained only if 1 ∈ {i , k} and 1 ∈ { j ,`} and thus (i j , k`) are of the

form (11, t t ) or (t1,1t ) or (1t , t1) for any t > 1. Thus, rank(Hessdet(Y0)) = 2m.

Lower bound for the rank of HessIMMn,d
(X0)

In this section, we shall prove Theorem 7.1.2. In particular, we give a polyno-

mial time algorithm to construct a point X0 explicitly such that IMMn,d (X0) =

0 and rank(HessIMMn,d
(X0)) ≥ d (n − 1). Since rank(Hessdet(Y0)) = 2m and

rank(HessIMMn,d
(X0))≤ rank(Hessdet(Y0)), we get that m = d (n−1)/2. As mentioned in

Section 7.1, the determinantal complexity of IMMn,d (X ) is O(d n). Together, it implies

that m =Θ(d n).

Theorem 7.3.1. For any integers n, d > 1, there is a point X0 ∈ Fn2d such that

IMMn,d (X0) = 0 and rank(HessIMMn,d
(X0)) ≥ d (n − 1). Moreover, the point X0 can be

constructed explicitly in polynomial time.

Proof. We prove the theorem by induction on d , the degree of the polynomial.

For the purpose of induction, we maintain that the entries indexed by the indices

(1,2), (1,3), . . . , (1, n) of the matrix obtained after multiplying the first (d − 1) matrices

are not all zero at X0.
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We first prove the base case for d = 2. The corresponding polynomial is IMMn,2(X ) =
n
∑

i=1

x (1)1i x (2)i1 . It is easy to observe that the rank of the corresponding Hessian matrix is

2n > 2(n− 1) at any point since each non-zero entry of the Hessian matrix is 1 and the

structure of the Hessian matrix is the following:

HessIMMn,2
(X ) =





0 B12

B21 0





where B21 = BT
12 and the matrix B12 is formally described as

(B12)x(1)i j x(2)
k l
=











1 if i = l = 1 and j = k

0 otherwise.

We set the values of the variables as follows: x (1)11 = 0, x (2)11 = 1, x (2)21 = x (2)31 = · · ·= x (2)n1 =

0 and x (1)12 , x (1)13 , . . . , x (1)1n to arbitrary values but not all to zero. The point thus obtained

(say X0) is clearly a zero of the polynomial IMMn,2(X ).

For induction hypothesis, assume that the statement of the theorem is true for the

case where the number of matrices being multiplied is ≤ d . Consider the polynomial

IMMn,(d+1)(X ).

IMMn,(d+1)(X ) =
∑

i1,i2,...,id−1,id∈[n]
x (1)1i1

x (2)i1i2
. . . x (d−1)

i(d−2)i(d−1)
x (d )i(d−1)id

x (d+1)
id 1

Let the matrix obtained after multiplying the first d matrices be (Pk`)(k ,`)∈[n]×[n] where

Pk`(X ) =
∑

i1,i2,...,id−1∈[n]
x (1)ki1

x (2)i1i2
. . . x (d−1)

i(d−2)i(d−1)
x (d )i(d−1)`

for 1≤ k , l ≤ n.

Thus, we have the following expression.

IMMn,(d+1)(X ) = P11(X )x
(d+1)
11 + P12(X )x

(d+1)
21 + · · ·+ P1n(X )x

(d+1)
n1

81



7. Determinantal complexity of Iterated matrix multiplication polynomial

Now consider the Hessian matrix HessIMMn,d+1
(X ) which is a (d + 1)n2 × (d + 1)n2

sized matrix.

HessIMMn,d+1
(X ) =

































0 B1,2 B1,3 B1,4 · · · B1,(d+1)

B2,1 0 B2,3 B2,4 · · · B2,(d+1)

B3,1 B3,2 0 B3,4 · · · B3,(d+1)
...

...
... . . . ...

...
...

...
...

... . . . ...

B(d+1),1 B(d+1),2 · · · · · · B(d+1),d 0

































Each Bi , j is a block of size n2 × n2 and is indexed by the variables sets Xi and

X j respectively. Consider the block B(d+1),d which is indexed by the variable sets

Xd+1 and Xd . The only non-zero rows in B(d+1),d are indexed by the variables

x (d+1)
11 , x (d+1)

21 , . . . , x (d+1)
n1 . The potential non-zero entries for the row x (d+1)

11 are indexed

by the columns x (d )11 , x (d )21 , . . . , x (d )n1 . Similarly the potential non-zero entries for the row

x (d+1)
21 are indexed by the columns x (d )12 , x (d )22 , . . . , x (d )n2 and so on.

Consider the entries corresponding to the indices

(x (d+1)
11 , x (d )11 ), (x

(d+1)
11 , x (d )21 ), . . . , (x

(d+1)
11 , x (d )n1 ), say Q1,Q2, . . . ,Qn respectively where

Q j =
∑

i1,i2,...,id−2∈[n]
x (1)1i1

x (2)i1i2
. . . x (d−1)

i(d−2) j
for 1≤ j ≤ n.

For the other rows indexed by the variables x (d+1)
21 , x (d+1)

31 , . . . , x (d+1)
n1 , the sequence of

potential non-zero entries is the same (Q1,Q2, . . . ,Qn) but their positions are shifted by

a column compared to the previous non-zero row. Formally,

(B(d+1),d )x(d+1)
i j x(d )

k l
=











Qk if j = 1, l = i , and i , k ∈ [n]

0 otherwise.

Q1,Q2, . . . ,Qn are also the entries indexed by the indices (1,1), (1,2), . . . , (1, n) of the
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matrix obtained after multiplying the first (d − 1) matrices. By induction hypothesis,

we know that the entries indexed by the indices (1,2), . . . , (1, n) are not all zero at the

point X0, the zero of the polynomial IMMn,d (X ). This also makes the rows indexed by

the variables x (d+1)
11 , x (d+1)

21 , . . . , x (d+1)
n1 linearly independent. It is important to note that

P11(X ) = IMMn,d (X ).

Now, let us define a point such that it is a zero of the polynomial IMMn,(d+1)(X ). Let

X0 be the zero of the polynomial P11(X ) = IMMn,d (X ). Now to construct the new point,

we inductively fix the variables appearing in P11(X ) by the values assigned by X0. We

set x (d+1)
11 = 1 and x (d+1)

21 = x (d+1)
31 = · · ·= x (d+1)

n1 = 0. We will fix the rest of the variables

later. We call the new point which is a zero of the polynomial IMMn,(d+1)(X ), as X0 as

well.

Now, consider the first d × d blocks of the Hessian matrix HessIMMn,(d+1)
(X0). It pre-

cisely represents the Hessian matrix of P11(X ) which is also the Hessian matrix of the

polynomial IMMn,d (X ) at the point X0. This can be easily seen from the setting of the

variables x (d+1)
11 = 1 and x (d+1)

21 = x (d+1)
31 = · · · = x (d+1)

n1 = 0. By induction hypothe-

sis, the rank of this minor of HessIMMn,(d+1)
(X0) is at least d (n − 1). The only non-zero

entries in the columns indexed by the variable set X (d ) are indexed by the variables

x (d )11 , x (d )21 , . . . , x (d )n1 . This is because the other variables of Xd do not appear in IMMn,d (X ).

The row in B(d+1)d indexed by x (d+1)
11 is the only row that interferes with any of the rows

of B1d ,B2d , . . . ,Bd d . The rows indexed by the variables x (d+1)
21 , x (d+1)

31 , . . . , x (d+1)
n1 in B(d+1)d

are linearly independent of the rows of B1d ,B2d , . . . ,Bd d . Hence the rank of HessIMMn,(d+1)

at the point described is ≥ (d + 1)(n− 1).

For the purpose of induction, we must verify that the entries indexed by the indices

(1,2), (1,3), . . . , (1, n) of the matrix obtained after multiplying the first d matrices are

not all zero at X0. These entries are the polynomials P12, P13, . . . , P1n. We shall express

each of the polynomials in terms of Q1,Q2, . . . ,Qn as follows.

P1 j =Q1x (d )1 j +Q2x (d )2 j + · · ·+Qn x (d )n j for 2≤ j ≤ n.
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By induction hypothesis, we already know that Q2,Q3, . . . ,Qn are not all zero at X0.

Notice that the variables in X (d )\{x (d )11 , x (d )21 , . . . , x (d )n1 }were never set in the previous steps

of induction. This is because of the fact that they do not appear in the polynomial P11.

Therefore, we can fix these variables suitably such that P12, P13, . . . , P1n are not all zero

when evaluated at the point X0 (in fact, we can make all of them non-zero). It is clear

that we construct the point X0 in polynomial time. This completes the proof.

7.4. Formula size lower bound for IMMn,d

In general, a strong enough lower bound on the determinantal complexity of a polyno-

mial also implies a lower bound on the formula complexity. But here, in the case of the

iterated matrix multiplication, the best bound on the determinantal complexity that we

can get is O(d n) for it has an algebraic branching program of that size. This does not

imply any non trivial bound on the formula complexity of the polynomial.

In this section, we shall prove a super-linear but subquadratic lower bound on the

size of any formula that computes the IMMn,d polynomial. The following proof is an

adaptation of the proof strategy of Kalorkoti [Kal85]. Let us first recall the notion of

algebraic independence and transcendence degree.

Definition 7.4.1. A set of polynomials f1, f2, . . . , fm ∈ F[X ] are said to be algebraically

independent if the only polynomial F ∈ F[y1, y2, . . . , ym] satisfying F ( f1, f2, . . . , fm) ≡ 0 is

the zero polynomial.

The transcendental degree of the polynomials f1, f2, . . . , fm ∈ F[X ], denoted by

trdeg( f1, f2, . . . , fm), is the maximal size of the subset S of [m] such that { fi}i∈S are alge-

braically independent. ◊

We shall now define the notion of transcendental degree of a polynomial with respect

to a subset of its variables.

Definition 7.4.2. Let f ∈ F[X ] be a polynomial and X ′ ⊂ X a set of variables. Let f

be expressed as
∑

m∈M fm ·m where M is set of all monomials over the variables in X ′ and

degree at most deg( f ). The complexity measure trdegX ′( f ) is defined as the transcendental
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degree of { fm}m∈M . ◊

The following lemma is the key to the formula size lower bound in [Kal85] (cf.

[Sap15]).

Lemma 7.4.3. Let f ∈ F[X ] and X1,X2, . . . ,Xt be a partition of X . Then every arithmetic

formula for f must be of size Ω(
∑

i∈[t ] trdegXi
( f )).

Theorem 7.4.4. For all integers n, d > 0, any arithmetic formula computing the

IMMn,d (X ) polynomial must be of size Ω(d n3).

Proof. The main idea is to find a suitable partition of the input variables. For simplicity

we assume that d is a multiple of four. Let M1, M2, . . . , Md be the generic n× n matrices

being multiplied in IMMn,d (X ) polynomial. For all i such that i is of the form 4t +1 or

4t +2, t ∈ [0, d/4−1] , partition the variables in the matrices Mi and Mi+2 by grouping

j th row of Mi and j th column of Mi+2 together, for all j ∈ [n]. We shall denote such

a set by Xi j = {x
(i)
j ,1, . . . , x (i)j ,n, x (i+2)

1, j , . . . , x (i+2)
n, j }. The final partition of the variables is as

follows.

X = ti∈{4t+1,4t+2:t∈[0,d/4−1]} t1≤ j≤n Xi j .

Now we express the polynomial IMMn,d (X ) w.r.t the set of variables Xi j as explained

in the definition 7.4.2.

IMMn,d (X ) =
∑

k ,`∈[n]
(x (i+1)

k ,l P1) · x
(i)
j ,k x (i+2)

`, j + P2.

The first summand in the above expression is the summation of all monomials that con-

tain the variables x (i)j ,k and x (i+2)
`, j for all k ,` ∈ [n] and P2 is the summation of the rest of

the monomials. Formally,

P1(X ) =
∑

at∈[n]
x (1)1,a1

. . . x (i−1)
ai−2, j x

(i+3)
j ,ai+3

. . . x (d )ad−1,1.

Now, trdegXi j
(IMMn,d (X )) is at least the transcendental degree of the set of polyno-
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mialP = {P1 · x
(i+1)
k ,` }k ,`∈[n]. Notice that |P |= n2. Let us introduce new variables Y =

{y1, . . . , yn2} to lexicographically correspond to polynomials in P = {P1 · x
(i+1)
k ,` }k ,`∈[n].

To prove their algebraic independence, we need to prove that there is no non-zero poly-

nomial over F[Y ] such that substitution for yi with the corresponding polynomials in

P makes it a zero polynomial over F[X ].

For the sake of contradiction, let us assume that there is a polynomial g ∈ F[Y ] that

annihilates the polynomials inP . Consider two distinct monomials m1 = yα1
1 yα2

2 . . . yαn2

n2

and m2 = yβ1
1 yβ2

2 . . . yβn2

n2 in g such that ᾱ 6= β̄. Consider m′1 = m1|yi←Pi∈P and m′2 =

m2|yi←Pi∈P . We can see that m′1 = P
(∑r∈[n2] αr )
1

�

x (i+1)
1,1

�α1
�

x (i+1)
1,2

�α2 . . .
�

x (i+1)
n,n

�αn2
and m′2 =

P
(
∑

r∈[n2]βr )
1

�

x (i+1)
1,1

�β1
�

x (i+1)
1,2

�β2 . . .
�

x (i+1)
n,n

�βn2
.

W.l.o.g, let us assume that α1 >β1. The overall degree of x (i)1,1 in m′1 is equal to α1 and

similarly the overall degree of the variable x (i)1,1 in m′2 is equal toβ1, and hence the mono-

mials in m′1 and m′2 are distinct. So, one can conclude that no two distinct monomials in

g can share a monomial after the substitution. Hence, the polynomial g can not anni-

hilate the polynomials inP . From Lemma 7.4.3, we get that the size of any arithmetic

formula computing IMMn,d (X ) is of size at least
∑

i , j trdegXi , j
(IMMn,d (X )) =Ω(d n3).
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8
Arithmetic formula size lower bounds from the tensor rank

Raz [Raz10] showed that for any n and d , such that ω(1)≤ d ≤O
�

log n
log log n

�

, construct-

ing explicit tensors T : [n]d → F of high enough rank would imply superpolynomial

lower bounds for arithmetic formulas over the field F. Using the additional structure we

obtain from the depth reduction for arithmetic formulas (Chapter 3), we give a new and

arguably simpler proof of this connection. We also extend this result for homogeneous

formulas to show that, in fact, the connection holds for any d such thatω(1)≤ d ≤ no(1).

8.1. Introduction

Proving size lower bounds for arithmetic formulas computing explicit polynomials has

been a tough task. Kalorkoti [Kal85] proved a quadratic lower bound using transcendence

degree as a complexity measure. This measure does not yield lower bounds better than

quadratic.

In an apriori surprising result, Raz [Raz10] showed that for any n and d , such that

ω(1)≤ d ≤O
�

log n
log log n

�

, constructing explicit tensors T : [n]d → F of high enough rank

would imply super-polynomial lower bounds for arithmetic formulas over the field F.

Using the additional structure we obtain from our proof of the depth reduction for

arithmetic formulas (cf. Chapter 3), we give a new and arguably a simpler proof of this

connection. We also extend the result to show that, in fact, such connection holds in the

case of homogeneous formulas for any d such thatω(1)≤ d ≤ no(1).

In [Raz10] Raz showed us that an arithmetic formula can be homogenized efficiently
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when d =O(log n). Combining this fact with our extended result we show that, for any

n and d , such that ω(1) ≤ d ≤O (log n), constructing explicit tensors T : [n]d → F of

high enough rank would imply super-polynomial lower bounds for arithmetic formulas

over the field F. This improves upon the range of parameters of Raz [Raz10].

8.2. Background

Tensors

Given two vector spaces U and V over F, we can define a linear map φ : U →V . This

map can be represented as a matrix. Similarly for the vector spaces {V1,V2, . . . ,Vd} of

dimension {m1, m2, . . . , md} respectively, we can define a mapφ′ : V1×V2×· · ·×Vd−1→

Vd . This map can be represented as a natural higher dimensional analogue of a matrix.

We refer to that as a tensor. Formally, we have the following definition.

Definition 8.2.1 (Tensor). A tensor T is a map of the form

T : V1× · · ·×Vd −→ F

where each Vi is a vector space over F, of dimension say mi . The parameter d is called the

order of the tensor, and we say that the shape of T is [m1]× · · ·× [md ]. ◊

A tensor T is linear in every coordinate. That is,

T (v1, . . . ,αvi +βv′i , . . . ,vd ) = αT (v1, . . . ,vi , . . . ,vd )+βT (v1, . . . ,v
′
i , . . . ,vd ).

So a tensor can indeed be thought of as filling up a d -dimensional array of shape [m1]×

· · ·×[md ] by field elements, the same way an m×n matrix is specified by an m×n array

filled up with field elements. Indeed, a matrix is nothing but an order-2 tensor.

It would sometimes be useful to switch between the two notions of thinking of a

tensor as a multilinear map from V1 × · · · ×Vd to F and thinking of a tensor as just a

map from [m1]× · · ·× [md ] to F.

90



8.2. Background

Tensors as polynomials

In this setting, it would be useful to think of tensors as a restricted form of multilinear

polynomials that are called set-multilinear polynomials.

Definition 8.2.2 (Set-multilinear polynomials). Let X = X1 t · · · tXd be a partition of

variables and let |Xi |= mi . A polynomial f (X ) is said to be set-multilinear with respect to

the above partition if every monomial M in f satisfies |var(M )∩Xi | ≤ 1 for all i ∈ [d ]. A

set-multilinear formula is an arithmetic formula where the polynomial computed at every

node is a set-multilinear polynomial. ◊

In other words, each monomial in f picks up at most one variable from each part in

the partition. It is easy to see that many natural polynomials that we consider in this

thesis such as Det, IMM, NW and Perm are all set-multilinear for an appropriate partition

of variables.

Observation 8.2.3. For any tensor T of shape [m1]× · · · × [md ], we can associate a set-

multilinear polynomial f (X ) where X =X1t· · ·tXd and Xi =
¦

xi1, . . . , xi mi

©

as follows.

f (X ) =
∑

1≤i j≤m j
∀ j∈[d ]

T (i1, . . . , id ) · x1i1
· · · xd id

. (8.2.4)

The same also holds in the other direction where we can interpret any set-multilinear

polynomial as an appropriate tensor.

Rank of a tensor

The notion of the rank of a tensor is a generalization of the notion of the rank of a matrix.

Definition 8.2.5 (Elementary tensors, and tensor rank). For any vectors v1,v2, . . . ,vd in

V1,V2, · · · ,Vd respectively, we define the tensor v1⊗ v2⊗ · · · ⊗ vd to be the tensor E given

by E[ j1, . . . , jd ] = (v1) j1(v2) j2 · · · (vd ) jd . ◊

We shall call such tensors as elementary tensors or rank-1 tensors. For an arbitrary tensor
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8. Arithmetic formula size lower bounds from the tensor rank

T , the tensor rank of T , denoted by TensorRank(T ), is the smallest r such that T can be

expressed as a sum of r elementary tensors.

Let us consider the set-multilinear polynomial setting as in (8.2.4). It is easy to see

that a rank-1 tensor is precisely a set-multilinear product of linear forms such as `1(X1) ·

`2(X2) · . . . · `d (Xd ) where each `i (Xi ) is a linear polynomial over the variables in Xi .

Properties of tensor rank

The following are a couple of basic properties that follow almost immediately from the

definitions.

Lemma 8.2.6 (Sub-additivity of tensor rank). Let T1 and T2 be two tensors of the same

shape and order. Then, if T = T1 + T2, then TensorRank(T ) ≤ TensorRank(T1) +

TensorRank(T2).

Lemma 8.2.7 (Sub-multiplicativity of tensor rank). Let T1 : V1× · · ·×Vd1
→ F and T2 :

W1×· · ·×Wd2
→ F be two tensors. Then if T = T1⊗T2 given by T [i1, . . . , id1

, j1, . . . , jd2
] =

T1[i1, . . . , id1
] ·T2[ j1, . . . , jd2

], then TensorRank(T )≤TensorRank(T1) ·TensorRank(T2).

The following is a trivial upper bound on the tensor rank of set-multilinear polyno-

mial f of degree d over X =X1 t · · · tXd .

Lemma 8.2.8. Let f be a set-multilinear polynomial with respect to the partition X =

X1 t · · · tXd and say ni = |Xi |. Then, TensorRank( f ) ≤
∏d

i=1 ni

maxi ni
. In particular, if ni = n

for all i ∈ [d ], then TensorRank( f )≤ nd−1.

A counting argument would imply that there do exist tensors of rank at least nd−1/d .

This is due to the fact that each elementary tensor has nd degrees of freedom and an

arbitrary tensor has nd degrees of freedom.1

So, it is a natural question to understand if we can construct explicit tensors of high

rank? Raz [Raz10] showed that in certain regimes of parameters involved, an answer

to the above question would yield size lower bounds for arithmetic formulas. We shall

now elaborate on this.
1One might think that the above upper bound of nd−1 should be tight. Bizarrely, it is not! For example

(cf. [Pam85]), the maximum rank of any tensor of shape 2× 2× 2 is 3 and not 4 as one might expect!
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8.3. Tensor rank of small formulas

Henceforth, the variables in X are partitioned as X =X1t · · · tXd with |Xi |= n for all

i ∈ [d ].

8.3.1. Overview of Raz’s proof

The main motivating question of Raz [Raz10] was the following:

If f is a set-multilinear polynomial that is computed by a small formula,

then what can one say about its tensor rank?

Raz gave a partial2 answer to this question by showing the following result.

Theorem 8.3.1. Let Φ be a formula of size s ≤ nc computing a set-multilinear polynomial

f (X ) with respect to the partition X = X1 t · · · t Xd . If d = O(log n/ log log n), then

TensorRank( f )≤ nd (1−1/exp(O(c))).

To prove Theorem 8.3.1, Raz [Raz10] first showed that when d is small compared

to n (specifically, d = O(log n/ log log n)), any small formula can be homogenized and

then be converted to a set-multilinear formula with just a polynomial over-head. This is

interesting and surprising in its own right 3.

Theorem 8.3.2 ([Raz10]). Let Φ be a formula of size s computing an n-variate homoge-

neous polynomial f of degree d . Then, there is a homogeneous formula Φ′ that also com-

putes f of size at most poly
�

s ,
�d+log s

d

�

�

. In particular, if d = O(log n) and n = poly(n)

then we have size(Φ′) = poly(n) as well.

Theorem 8.3.3 ([Raz10]). Suppose d =O
�

log n
log log n

�

. If Φ is a formula of size s = poly(n)

that computes a set-multilinear polynomial f (X1, · · · ,Xd ), then there is a set-multilinear

formula of poly(s) size that computes f as well.

2Partial in the sense that we do not know if the bound is tight.
3It was believed that transforming a formula into a homogeneous formula would cause a super-

polynomial blow up in its size if the degree of the polynomial computed by the formula is growing
with n [NW97].
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He then proceeds to show that set-multilinear formulas of polynomial size can only

compute polynomials with tensor rank non-trivially far from the upper bound of nd−1.

More formally, he shows the following theorem.

Theorem 8.3.4 ([Raz10]). Let Φ be a set-multilinear formula of size s ≤ nc computing a

polynomial f (X1, · · · ,Xd ). Then TensorRank( f )< nd

nd/exp(O(c)) .

It is immediately clear that Theorem 8.3.3 and Theorem 8.3.4 imply Theorem 8.3.14.

We shall now present a simpler proof of Theorem 8.3.4 using Theorem 3.3.3.

8.3.2. Our proof

Crux of our arguments:

Let f be a set-multilinear polynomial over X1t· · ·tXd such that |Xi |= n for all i . The

tensor rank is at most nd−1. But if also know that f = f1× f2 where the product respects

set-multilinearity, then

TensorRank( f )≤TensorRank( f1) ·TensorRank( f2)≤ nd1−1 · nd−d1−1 = nd−2

where d1 is the degree of f1.

If a set multilinear polynomial that corresponds to an explicit tensor can be expressed

as a summation over a few summands each of which has large number of factors, then

we can get non-trivial bounds on the tensor rank.

Proof of Theorem 8.3.4. We shall start with the set-multilinear formula Φ of size nc and

reduce it to a depth-4 circuit via Theorem 3.3.3 for a bottom degree parameter t that we

shall fix shortly. It is fairly straightforward to observe that the depth reduction preserves

multilinearity and set-multilinearity as well. Therefore we now have a set-multilinear

expression of the form

f = T1+ · · ·+Ts ′

4We refer the reader to Raz’s paper [Raz10] or a survey by Saptharishi [Sap15] for a full proof of Theo-
rem 8.3.2 and Theorem 8.3.3.
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where s ′ ≤ s 10(d/t ) = n10c(d/t ) and each Ti =Qi1 · · ·Qiai
is a set-multilinear product. Let

us fix one such term T = Q1 · · ·Qa and we know that this is a set-multilinear product

with a ≥ d log t
10t non-trivial factors (by Theorem 3.3.3). Let di = deg(Qi ). By the sub-

multiplicativity of tensor rank (Lemma 8.2.7) and the trivial upper bound (Lemma 8.2.8)

we have

TensorRank(T )≤ nd1−1 · · ·nda−1

=⇒ TensorRank( f )≤ s ′ · nd−a (Lemma 8.2.6)

≤ nd

na−10c(d/t )
.

Let us focus on the exponent of n in the denominator. Using the lower bound on a from

Theorem 3.3.3, we get

a− 10c(d/t ) >
d log t

10t
− 10c

d
t
=

d
t

� log t
10
− 10c

�

.

If we set log t
10 = 11c , then we get a− 10c(d/t ) > cd/t = d/exp(O(c)). Hence,

TensorRank( f ) <
nd

nd/exp(O(c))
.

We would like to remark that, in spirit, a tensor rank upper bound for formulas is

essentially a form of non-trivial reduction to set-multilinear depth three circuits. In this

sense, this connection between tensor rank upper bound and reduction to depth four is

perhaps not too un-natural.

Remark 8.3.5. If instead of a general set-multilinear formula, had we started with a con-

stant depth set-multilinear formula, we would have obtained a slightly better upper bound

(better dependence on c) on the tensor rank of f . (cf. [CKSV16, Sap15]). ◊
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8.4. Tensor rank upper bound for homogeneous formulas

The result of Raz [Raz10] required d to be O(log n/ log log n) to be able to set-

multilinearize the formula without much overhead. However, we show that via the

improved depth reduction, we can delay the set-multilinearization until a later stage and

thus get the same upper bound on the tensor rank for much larger d , provided that the

formula we started with was homogeneous.

Theorem 8.4.1. Let f be a set-multilinear polynomial with respect to X = X1 t · · · tXd

that is computed by a homogeneous formula (not necessarily set-multilinear) Φ of size s = nc .

If d is sub-polynomial in n, that is log d = o(log n), then TensorRank( f )< nd

nd/exp(O(c)) .

Proof. As earlier, we shall start with the formula Φ of size nc and reduce it to a ΣΠΣΠ[t ]

formula Φ′ of size n10c(d/t ) (using Theorem 3.3.3) for a t that shall be chosen shortly.

Again, Φ′ is a sum of terms of the form T = Q1 · · ·Qa, a product of a ≥ d log t
10t non-

trivial factors. The difference here is that this is not necessarily a set-multilinear product.

Let di = deg(Qi ). Among the monomials in Qi , there may be some that are divisible

by two or more variables from some part X j and others that are products of variables

from distinct parts. For any S ⊂ [d ] let Qi ,S be the sum of monomials of Qi that is

a product of exactly only variable from each X j for j ∈ S. Note that no monomials

of Qi that is a product of two or more variables from some X j can contribute to a set-

multilinear monomial of f . Thus, if SML(T ) is the restriction of T to just the set-

multilinear monomials of T , then

SML(T ) =
∑

S1t···tSa=[d ]
|Si |=di

Q1,S1
· · ·Qa,Sa

.

We can observe that the tensor rank of each summand is upper bounded by

nd1−1nd2−1 · · ·nda−1 and the number of summands is at most
� d

d1

��d−d1
d2

�

· · ·
�d−

∑a−1
i=1 di

da

�

. Us-
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ing Lemma 8.2.6 and Lemma 8.2.7, we get the following.

TensorRank(SML(T )) ≤ nd

na
·
�

d
d1 d2 · · · da

�

≤ nd−a · d d

= nd−a · nd log d/ log n

=⇒ TensorRank( f ) ≤ nd/na−10c(d/t )−d log d/ log n.

Again, let us focus on the exponent in the denominator

a− 10c · d
t
−

d log d
log n

>
d
t

�

log t
10
− 10c −

t log d
log n

�

.

Once again we shall set t = 2O(c) so that log t
10 − 10c = c and since log d = o(log n) it

follows that

d
t

�

log t
10
− 10c −

t log d
log n

�

>
d

exp(O(c))
.

Hence,

TensorRank( f ) <
nd

nd/exp(O(c))
.

An improvement

Further, we observe that we can improve upon the range of parameters in Theorem 8.3.1.

Corollary 8.4.2. Let Φ be a formula of size s ≤ nc computing a set-multilinear polyno-

mial f (X ) with respect to X = X1 t · · · tXd . If d = O(log n), then TensorRank( f ) ≤

nd (1−1/exp(O(c))).

The proof of this follows directly from Theorem 8.3.2 and Theorem 8.4.1.
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Conclusion

In Chapter 4 we have proved exponential lower bounds againstΣΠ[O(
p

n)]ΣΠ[
p

n] circuits

computing explicit polynomials (NWn,r and IMMn,n) using the method of shifted partial

derivatives. But it is now well understood that this technique will not help us cross the

chasm and obtain the lower bounds of the order of nω(d/t ) to prove Valiant’s hypothesis

[GKKS14]. We do need a new set of techniques to cross the chasm. On the other hand,

we still do not have better bounds for the determinant and the permanent polynomials.

A natural question to ask here is to see if we can improve the lower bound against the

ΣΠ[O(
p

n)]ΣΠ[
p

n] circuits computing either the determinant or the permanent polyno-

mial to 2ω(
p

n).

In Chapter 5, over fixed size finite fields, we showed tight lower bounds against ΣΠΣ

circuits computing two explicit polynomials, NWn,r and IMMn,n. This was done by im-

proving upon and adapting the work of Grigoriev and Karpinski [GK98]. It was indeed

very surprising to know that a polynomial in VP, the iterated matrix multiplication

polynomial, is harder than the permanent polynomial at depth three over fixed size fi-

nite fields. Keeping this in mind and because of the non-existence of the chasm over small

finite fields over depth three, it is conceivable to expect a 2ω(n) lower bound againstΣΠΣ

circuits computing the Detn polynomial.

In Chapter 6, we showed exponential size lower bounds against two classes of depth

five powering circuits. It is now understood that extending the exponential size lower

bounds to other classes of powering circuits would also need new techniques. How-

ever, we believe that slight modification of our current measure would yield results with
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9. Conclusion

some circuit models that are very closely related to those that we consider. Otherwise,

because of the range of parameters involved, neither the method of projected shifted par-

tial derivatives nor shifted projected partial derivatives could be helpful [KLSS14].

In Chapter 7, we proved a lower bound on the determinantal complexity of the iter-

ated matrix multiplication polynomial. The lower bound is away from the upper bound

by a factor of 0.5. It is important to note that this result is true over all fields. However,

it is conceivable that an adaptation of the argument of Yabe [Yab15] could yield a better

constant factor, overR. The question of proving a quadratic lower bound for the Nisan

Wigderson polynomial still lies open. We ask if the methods of projected shifted partials

or the shifted projected partials be of some help with this problem.

In Chapter 8, we extended the work of Raz [Raz10] and showed that the existence

of a stronger connection between the size of the homogeneous formulas computing set

multiliner polynomials and the rank of the corresponding tensor. Thus, for a range of

parameters, strong enough lower bounds on the tensor rank for explicit tensors would

imply (homogeneous) formula size lower bounds. It is also conceivable that such a con-

nection can be established for any circuit model that exhibits a combinatorial property

(as discussed in Chapter 8).

Apart from the questions and directions mentioned above, there are a lot of interesting

problems within the relevance of the topics mentioned in this thesis. We firmly believe

that the answer to some of these questions could be through a combination of techniques

from the existing knowledge base. For others, we need to discover newer techniques.
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