
Reachability in Timed Automata with

Diagonal Constraints and Updates

by

Sayan Mukherjee

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

to

Chennai Mathematical Institute

Submitted in November, 2021
Defended on March 30, 2022

Plot H1, SIPCOT IT Park, Siruseri,
Kelambakkam, Tamil Nadu 603103,

India

Supervisors

B. Srivathsan Chennai Mathematical Institute, India
Paul Gastin École Normale Supérieure Paris-Saclay, France

Doctoral Committee

Madhavan Mukund Chennai Mathematical Institute, India
Patricia Bouyer-Decitre École Normale Supérieure Paris-Saclay, France

Declaration

This thesis is a presentation of my original research work, carried out under the
guidance of Prof. B Srivathsan at Chennai Mathematical Institute and Prof. Paul
Gastin at École Normale Supérieure Paris-Saclay. This work has not formed the
basis for the award of any degree, diploma, associateship, fellowship or other titles
in Chennai Mathematical Institute or any other university or institution of higher
education.

Sayan Mukherjee
March 30, 2022

In my capacity as the supervisor of the candidate’s thesis, I certify that the above
statements are true to the best of my knowledge.

B. Srivathsan
March 30, 2022

Paul Gastin
March 30, 2022

iii

iv

Acknowledgements

Although this thesis presents me as the sole author, I must mention everyone who
made this possible – either by contributing to the content or by helping me be in a
state where I could do whatever was required to produce this thesis, or both.

First and foremost, I would like to thank my supervisors – Srivathsan and Paul;
without them I would not have been able to write this thesis. Having come from a
non-computer science background, I required time to get accustomed to the subject
first and then to research. I thank them for being patient and for always having time
for me whenever I required it. I have thoroughly enjoyed our numerous discussions
over these years. It is hard to summarize what all I have learnt from them, but,
surely, whatever research acumen I have today is almost all because of them.

I would like to thank Paul for his encouragements and his wise advices – be it
purely on the academic problem we were dealing with or in more general topics.
These advices will be helpful no matter which career I end up having. I look forward
to receiving more such advices in the years to come. I would also like to thank him
for hosting our visits to Paris. The discussions we had during those visits paved the
way for many results that constitute this thesis.

I have a lot to thank Srivathsan for. Firstly, for introducing me to the fields of
Formal Verification and Timed Automata through his courses. Second and more
importantly, for being a constant source of guidance for all these years. He always
found the right words – strong enough to make me overcome my inertia; gentle
enough to not knock me out – for me to overcome the obstacles that came along.

I would like to thank the reviewers for taking their time to read my thesis and
give valuable feedback. I also thank Prof. Madhavan Mukund and Prof. Patricia
Bouyer-Decitre for agreeing to be in my Doctoral Committee.

I am grateful to UMI ReLaX, Tata Consultancy Services - Innovation Labs
(Pune, India) and Infosys Foundation (India) for their generous fundings that I
have received during my PhD.

I would like to thank all the computer science faculties at CMI whose courses
I have attended during my time in CMI. A major part of what I know about
Theoretical Computer Science in general, is because of their teaching.

I could not have switched to Computer Science without the help of some of the
teachers I had during my Master’s at CMI. I would like to thank Sourish Das for
being of immense help during those two years. His encouragement and guidance

v

were instrumental in me navigating my Master’s and making my subsequent ca-
reer choices. I thank Madhavan Mukund, firstly for his great courses that I have
attended throughout my time at CMI, and secondly for the advices that he has
gladly provided whenever I asked for it. Finally, I would like to thank Srivathsan
for taking me as his student, had that not happened, most likely, I would not have
done a PhD.

I thank the administrative staffs at CMI, especially, Rajeshwari, Ranjini and
Sripathy – they made the administrative procedures extremely smooth and when-
ever I required anything they were always happy to help. I would also like to thank
the canteen staff at CMI, in particular, Barun da. He has been here for my entire
stay at CMI. I would fondly recall the great chats that we have had.

Coming to friends, I would first like to thank Govind for being a great friend
and also for reading this thesis at various points and giving several suggestions. I
cannot thank my flatmates Debodirna and Vishnu enough – it has been an absolute
joy to have them as friends, as my flatmates and also for being a massive source
of support during the initial months of lockdown. I would also like to thank the
friends I made during my PhD at CMI, including Aashish, Anjali, Krishnendu,
Malay, Pritthijit, Sayantani, Shanmugapriya and Sourav, among others. Having
coffee together at CMI, going for food, going to watch movies and endless chats –
their company made my stay at CMI a really enjoyable one.

Attending several conferences over the years have been a good experience be-
cause of the people I could attend these with – Adwitee, Keerthan, Sougata,
Soumyajit and Sparsa. I would also like to thank Abhishek, Anirban and Ranadeep
for helping me out during my visits to France.

I would like to thank the friends with whom I spent a major part of the initial
couple of years of my PhD – Avinandan, Chayan, Rajat, Sayantan and several
others. I will remember the great time that we spent together. Also the discussions
I used to have with some of them about the courses we were attending together
were of great help.

I thank the friends I was fortunate enough to make when I first came to CMI.
Aritra, Arpan da, Bineet, Chiranjit da, Dwaipayan and Prabal – they helped me
settle down in CMI and I will forever cherish the time we spent here.

I would also like to thank Neetal, Pranjal, Rajarshi, Ritam, Utsab and all other
friends that I made during my time in CMI, for making my stay here memorable.

I would like to thank my friends from St. Xavier’s College – Agnibesh, Arindam,
Avishek, Debarpan, Nilasis and Prerona, for being the friends that they have been
for all these years. I would also like to thank Arnab, for being a great friend and
a great travel companion for the three years of BSc and also for popping up at
Chennai – it has always been a pleasure to have him around.

Finally and most importantly, I would like to express my love and gratitude for
my parents. No words can ever be enough to thank all the sacrifices that they have
made over the years, to help me have the life that I have today. I would also like
to thank my grandparents, especially my grandmother, and all my close relatives,
for the unending affection that they have showered me with.

vi

Abstract

Introduced by Alur and Dill, Timed Automata have been a popular tool for mod-
elling real-time systems. Several syntactic extensions and restrictions of Timed
Automata have been studied and various problems have been considered over these
classes of automata. This thesis considers the classic reachability problem in Timed
Automata, when the guards of the automata are allowed to contain diagonal con-
straints, that are expressions comparing the difference between two clocks with a
non-negative integer, and also in the more general class called Updatable Timed
Automata – introduced by Bouyer, Dufourd, Fleury and Petit – that allow transi-
tions to set the values of clocks to arbitrary non-negative integers, or to the value
of a clock, or even to the sum of the value of a clock and some integer. In contrast,
Timed Automata only allow transitions to (re-)set values of clocks to 0. Diagonal
constraints in Timed Automata provide exponential succinctness, whereas, updates
increase the expressive power.

The aim of this thesis is to improve upon the existing algorithms for checking
reachability in these two classes of automata. The restricted class of diagonal-free
Timed Automata enjoys an efficient reachability algorithm, which is implemented
in several tools, such as UPPAAL, KRONOS, and the more recent TChecker. This
thesis aims to adapt this efficient algorithm to handle the larger classes as well.

In order to adapt the algorithm, two goals need to be achieved: (i) a suitable
simulation relation needs to be constructed, and (ii) an algorithm needs to be
devised for checking this relation between two zones.

This thesis discusses a new relation (vG), parameterized by a set G of atomic
constraints over clocks. Not all choices for the parameter makes the relation a
simulation relation. A fixpoint computation for constructing this parameter is pro-
posed that ensures the relation becomes a simulation relation for Updatable Timed
Automata and therefore for Timed Automata in particular, as well.

This thesis also describes an algorithm for checking vG between two zones, when
G is allowed to contain diagonals. In the diagonal-free case, this relation can be
checked with the same complexity as that of the popular LU simulation relation.
In the presence of diagonals, checking if this relation does not hold turns out to
be NP-complete. A prototype implementation of this algorithm has been done
inside TChecker. Some preliminary experiments performed using this prototype
are reported in the thesis and these show gains over existing methods for handling
diagonal constraints and updates.

vii

viii

List of publications

This thesis is based on the following publications.

• Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in Timed
Automata with Diagonal Constraints. In CONCUR 2018, volume 118 of
LIPIcs, pages 28:1 – 28:17. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

• Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast Algorithms for Han-
dling Diagonal Constraints in Timed Automata. In CAV 2019, volume 11561
of LNCS, pages 41 – 59, Springer.

• Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability for Updatable
Timed Automata Made Faster and More Effective. In FSTTCS 2020, volume
182 of LIPIcs, pages 47:1 – 47:17. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

ix

x

Contents

1 Introduction 1
1.1 Handling diagonal constraints and updates: existing methods 4
1.2 Contributions of this thesis . 7

2 Preliminaries 11
2.1 Timed Automata . 11
2.2 Updatable Timed Automata . 15
2.3 The Reachability problem . 17
2.4 Regions . 18
2.5 Zones . 21
2.6 Zone based reachability algorithm 23

2.6.1 Zone Graph . 23
2.6.2 Building the zone graph . 25
2.6.3 Simulation Relation . 27
2.6.4 Reachability algorithm: Overall framework 28

3 A new simulation relation 29
3.1 The relation vG . 31
3.2 Comparing vG with LU -preorder 32
3.3 Making vG a simulation relation . 37

3.3.1 Constructing an appropriate parameter: initial try 38
3.3.2 Constructing an appropriate parameter: better try 43

3.4 Termination of parameter computation 50
3.5 Discussion . 57

4 Algorithm for checking simulation 59
4.1 The relation vG is finite . 60
4.2 Checking Z vGnd Z

′ where Gnd is diagonal-free 67
4.2.1 Checking Z 6v{x/1c} Z ′ . 70
4.2.2 Checking Z 6v{d/2y} Z ′ . 72
4.2.3 Checking Z 6v{x/1c, d/2y} Z ′ 74
4.2.4 Algorithm for checking Z vGnd Z

′ 79
4.3 Checking Z vG Z

′ where G contains diagonals 81
4.4 Complexity of checking Z 6vG Z

′ . 83

xi

Contents

4.5 Discussion . 91

5 Applications of the simulation relation vG 93
5.1 Subclasses with decidable reachability 93
5.2 Timed Automata with Bounded Subtraction 95
5.3 Clock Bounded Reachability . 97
5.4 Discussion . 98

6 Implementation and experiments 101
6.1 Implementation . 102

6.1.1 A quick tour of TChecker 102
6.1.2 Constructing the parameters of vG 103
6.1.3 Implementing Z vG Z

′ . 104
6.1.4 Running TChecker with vG simulation 104

6.2 Job-Shop scheduling . 105
6.3 Preemptive scheduling . 106
6.4 Miscellaneous examples . 111
6.5 Discussion . 111

7 Conclusion 115

Bibliography 119

xii

Chapter 1

Introduction

A system is considered to be safe, if it can never exhibit an unexpected behaviour.
It is imperative to ensure safety of systems for which safety is critical, before these
are deployed. One way of checking safety of a system, is enumerating all possible
executions of the system and checking if any unexpected behaviour is possible.
However, in general, real-world systems are large and these have too many (possibly
infinitely many) possible executions. Therefore, enumerating all possible executions
of a system becomes too hard – possibly, impossible.

Model Checking [CES86], proposed by Clarke et al, is an automated technique
to address this problem. In this method, first a system is modelled as an automaton
and the desired property (for example, safety) is specified using a formula in some
suitable logic. Checking if the system is safe translates to checking reachability
in the product of the automaton modelling the system and the automaton corre-
sponding to the negation of the desired property. If reachable, the path to a target
state provides a sequence of behaviours of the system leading to a bad state (that
does not satisfy the desired property). Whereas, if unreachable, no execution of the
system violates the desired property and hence the system is safe.

Alur and Dill proposed Timed Automata [AD94] – that has been used to model
real-time systems. This model extends finite-state automata with clocks. Clocks
are non-negative real valued variables, measuring time. All clocks of a timed au-
tomaton start with the value 0 and then elapse at the same rate. The transitions in
Timed Automata consist of two components – guard and reset. A guard is either a
constraint of the form x ∼ c, comparing a clock x with a (non-negative) constant c,
or a constraint of the form x− y ∼ c comparing the difference between two clocks
with a (non-negative) constant or a conjunction of these. The automaton can take
a transition once the current values of the clocks satisfy the guard of the transition.
The automaton can also wait at a state. Once the automaton takes a transition,
every clock belonging to the reset (specified as a set of clocks) of the transition are
set back to 0 and start elapsing again.

Several properties of real-time systems can be verified when the system is mod-

1

Chapter 1. Introduction

elled using timed automata or using some extension of it. Various tools have been
developed for this purpose, such as, UPPAAL [LPY97], KRONOS [Yov97], HyTech
[HHW97], RED [Wan04], Romeo [LRST09], PAT [SLDP09], LTS-min [KLM+15],
TiAMo [BCM16], THETA [THV+17], IMITATOR [And21] and TChecker [HP].

Several extensions and restrictions of Timed Automata have been studied over
the years, for example, Parametric Timed Automata [AHV93], Hybrid Automata
[HKPV98], Updatable Timed Automata [BDFP00a], Timed Automata with ad-
ditive constraints [BD00], Weighted Timed Automata [ATP01, BFH+01], Proba-
bilistic Timed Automata [KNSS00], Pushdown Timed Automata [BER94], Timed
Pushdown Automata [AAS12], Event Clock Automata [AFH99].

Several problems have also been considered in Timed Automata, including,
reachability (or language emptiness) [AD94], liveness [TYB05, HSTW16], robust-
ness [BMS13], reachability relations [CJ99, FQSW20]. A list of several well-studied
decision problems can be found in [AM04]. This thesis deals with the classic reach-
ability problem in Timed Automata and in Updatable Timed Automata.

Apart from the technique that will be discussed throughout this thesis, vari-
ous different techniques have been studied for the reachability problem in Timed
Automata, such as the works in [BJLY98, NMA+02, GHSW19, RSM19].

When a real-time system is modelled as a timed automaton, the safety of the
system translates to checking reachability in the timed automaton modelling it.
The reachability problem asks: given a timed automaton A (modelling a given real-
time system) and a state q of the automaton (representing bad behaviour), can the
automaton, starting from an initial state, take a sequence of transitions and reach
the state q? This problem was shown to be PSPACE-complete [AD94]. The tools,
such as, UPPAAL [LPY97] and TChecker [HP], implement optimized algorithms
for the reachability problem.

Diagonal constraints are expressions of the form x−y ∼ c, where x, y are clocks,
∼ ∈ {<,≤,≥, >} and c ∈ N. Diagonal constraints do not add any expressive
power to Timed Automata [AD94], that is, every system that can be modelled
using Timed Automata (containing diagonal constraints) can also be modelled using
only diagonal-free Timed Automata. Given a timed automaton containing diagonal
constraints, the diagonal constraints can be removed from the automaton keeping
the timed language of the automaton unchanged. This implies, the reachability
problem in the original automaton can be reduced to another reachability problem
in the diagonal-free equivalent automaton.

Theorem 1.1 ([BDGP98]). For every timed automaton Ad containing diagonal
constraints, there exists a timed automaton And that does not contain diagonal
constraints and has the same timed language as Ad.

However, given a timed automaton with diagonal constraints, the systematic
removal of diagonal constraints as presented by Bérard et al. in [BDGP98] results
in an exponentially larger automaton without diagonal constraints. Moreover, it
was shown by Bouyer and Chevalier in [BC05], that there exists a timed automaton
with diagonal constraints Ad, of size O(n2. log n), for which, every timed automaton

2

Chapter 1. Introduction

without diagonal constraints having the same timed language, is of size at least
O(2n). This exponential blowup is therefore, unavoidable in the worst case.

Theorem 1.2 ([BC05]). Timed automata with diagonal constraints are exponen-
tially more succinct than timed automata without diagonal constraints.

Therefore, using diagonal constraints while modelling a system as a timed au-
tomaton, can yield exponentially smaller models.

Updates generalize resets. To recall, transitions in timed automata contain re-
sets. These are sets of clocks associated with transitions. Once a transition is
taken, every clock that belongs to its reset set is set back to 0. Instead of only
resetting clocks to 0, updates allow clocks to be set to arbitrary (non-negative) in-
tegers, or even to a sum of the current value of a clock and an integer. Introduced
by Bouyer et al. in [BDFP00a, BDFP00b, BDFP04], Updatable Timed Automata
(UTA) extend the class of Timed Automata, by allowing updates in place of resets
in its transitions. Checking reachability in UTA is undecidable in general. However,
several decidable subclasses of UTA have also been studied [BDFP04].

Fersman et al. have studied a subclass of UTA in [FKPY07] – called Timed
Automata with Bounded Subtraction – containing some of the updates as well as
diagonal constraints. They used this class to model preemptive scheduling. This
further highlights the importance of considering updates and diagonal constraints.

Using diagonal constraints and updates provide advantages while trying to model
a real-time system – the former by yielding smaller models and the latter by provid-
ing more expressive power. However, these have not been used in practice as much
as the restricted class of diagonal-free Timed Automata has been. This is perhaps
because diagonal-free Timed Automata enjoy an efficient reachability algorithm. A
brief overview of how reachability is checked in diagonal-free Timed Automata is
described below. This will help in reading the rest of this chapter.

The main hurdle in checking reachability in Timed Automata is the fact that
clocks range over (non-negative) real numbers – an uncountably infinite set. This
makes the configuration space of Timed Automata also uncountably infinite. There-
fore, enumerating the entire configuration space becomes impossible. In fact, the
problem lies with the number of valuations (these are functions associating values
to clocks). Working with individual valuations becomes impossible and therefore
a need arises to work with collections of valuations instead. Two such collections
exist – regions and zones. Since the number of regions is very large, region based
algorithm fails to become useful and hence a zone based algorithm is instead used in
practice. This algorithm, given a (diagonal-free) timed automaton, builds its zone
graph. The nodes of this graph are pairs of the form (q, Z) where q is a state of the
input automaton and Z is a zone. In order to build this graph, given a node (q, Z)
and a transition (outgoing from q) of the input automaton, a mechanism exists for
computing the successor of the node with respect to the transition. If this graph is
built only by continuously computing successors of every node – this method may

3

Chapter 1. Introduction

not terminate. To ensure termination, two operations have been studied – extrap-
olations and simulations – to decide which nodes’ successors need to be computed
and which nodes’ successors need not. An extrapolation operator, given a zone,
enlarges the zone. Whereas, simulation based methods keep the zones as they are,
but checks a relation between two zones and infers when a node of the zone graph
needs to be explored further and when not. Several extrapolation operators and
simulation relations exist for diagonal-free Timed Automata. More details about
regions, zones, extrapolations and simulations will be discussed in Chapter 2.

The aim of this thesis is to improve upon the existing algorithms for checking
reachability in these two classes of automata. The restricted class of diagonal-free
Timed Automata enjoys an efficient zone based reachability algorithm, which is
implemented in several tools, such as UPPAAL [LPY97], KRONOS [Yov97], and
the more recent TChecker [HP]. This thesis tries to adapt this efficient algorithm
to make it work in the presence of diagonal constraints and updates.

1.1 Handling diagonal constraints and updates:

existing methods

This section describes the available algorithms and tool support for checking reach-
ability in Timed Automata in the presence of diagonal constraints and updates.

In the presence of diagonals reachability is checked in one of the three methods
described below.

Remove the diagonals. Since diagonal constraints can always be removed (The-
orem 1.1), given a timed automaton with diagonal constraints, it is possible to
compute an equivalent timed automaton without diagonal constraints and then
use the reachability algorithm available for diagonal-free Timed Automata on that.
However, removing all the diagonals using the procedure of [BDGP98] results in a
systematic exponential blowup. Due to Theorem 1.2, for certain examples it indeed
may not even be possible to remove all the diagonals without having the expo-
nential blowup. Another option is to remove only active diagonals, in the spirit
of [DY96, BBFL03]. However, due to Theorem 1.2 it will still not be possible to
avoid the exponential blowup in the worst case. Therefore, it might be beneficial
to devise an algorithm that can avoid the need to remove the diagonals from the
input automaton.

To recall, valuations are maps associating (non-negative) real numbers to clocks.
Given a constraint ϕ and a valuation v, the valuation is said to satisfy the con-
straint, if when the clocks in ϕ are replaced with their values under v, the constraint
evaluates to true and the valuation is said to not satisfy the constraint otherwise.

4

1.1. Handling diagonal constraints and updates: existing methods

Zone splitting. Extrapolation of zones in the presence of diagonal constraints
can lead to unsound procedures [Bou03, Bou04]. It may so happen that for a
zone Z and a diagonal ϕ, there are no valuations in Z that satisfy ϕ, however the
extrapolated zone (Extra(Z)) contains valuations satisfying ϕ. This may make a
transition enabled from Extra(Z) which is not enabled from Z. In [BY03] Bengtsson
and Yi proposed a method to avoid this problem. The idea behind this method is
to ensure that no zones appearing in the reachability procedure, should contain two
valuations such that one valuation satisfies a diagonal whereas the other does not
satisfy the diagonal. In order to preserve this property, the algorithm splits every
zone (appearing in a successor of a node in the zone graph) based on each of the
diagonals present in the input automaton and then extrapolates each of them, using
a modified extrapolation operator (which is mentioned as a normalization operator).
This algorithm succeeds in avoiding the exponential blowup in the number of states,
which is faced while removing the diagonals, however, this suffers from a mandatory
exponential blowup in the number of nodes of the computed zone graph.

Refinement based reachability. This method was proposed by Bouyer et al.
in [BLR05]. In this method, the diagonal-free reachability algorithm is first run on
the automaton containing diagonal constraints. If one of the final states is found to
be reachable, it is checked whether the path leading to the final state is a spurious
one or not. If found to be spurious, then it is because of some diagonal that was
ignored. A method was proposed in the paper, to find these diagonals along the
path. An equivalent automaton is then computed by removing these particular
diagonal constraints. This ensures the spurious path is no longer possible and then
the algorithm for diagonal-free Timed Automata is rerun on this new automaton
(containing at least one less diagonal). This process is repeated until either the
diagonal-free algorithm returns that no final state is reachable, or, a path to some
final state is found and it is proved to be not a spurious one.

For checking reachability in a timed automaton containing diagonal constraints,
the first two methods each consists of a step with exponential (in the number of
diagonal constraints present in the automaton) cost – first one in the number of
states in the resulting diagonal-free automaton and the second one in the number
of zones computed. This is a drawback for adopting either of these methods in
practice. The third method tries to overcome this by using the idea that there are
only a few diagonals that makes the diagonal-free algorithm produce a spurious
trace. Therefore, the number of diagonals that need to be removed may turn out to
be small, resulting in only a sub-exponential blowup in the state space. However,
it is unclear if the number of such relevant diagonal constraints (that need to be
removed) are few in general. It is therefore desirable, to have an algorithm that
can check reachability without removing the diagonals first and also by possibly
avoiding adding exponentially many nodes in place of a single node in the zone
graph. This is the first goal that this thesis tries to achieve.

Goal 1. Devise an algorithm for checking reachability in the presence of diagonal
constraints that avoids the exponential blowup in both the number of states and
the number of zones computed.

5

Chapter 1. Introduction

Since the reachability algorithm used in the state-of-the-art tools perform well
for diagonal-free Timed Automata the aim is to make this algorithm suitable in the
presence of diagonals as well. In order to achieve this aim, a suitable extrapolation
operator or a simulation relation needs to be defined. Since Bouyer proved in
[Bou03] that no extrapolation operator will be correct when diagonal constraints
are present, the aim therefore is to design a simulation relation instead, that is
correct for checking reachability in the presence of diagonal constraints. Once such
a simulation relation is defined, in order to plug it into the reachability algorithm
framework, it is also necessary to devise an algorithm for checking this simulation
between two zones. This then will result in a reachability algorithm, as long as the
simulation relation is finite. Therefore, Goal 1 reduces to two sub-goals.

Goal 1.1. Find a simulation relation v that is “correct” for checking reachability
in the presence of diagonal constraints.

Goal 1.2. Devise an algorithm for checking Z v Z ′ for two zones Z,Z ′.

Tool support for diagonals. UPPAAL can check reachability in the presence
of diagonal constraints. The zone splitting algorithm described in [BY03] is used
to handle diagonals in UPPAAL. The refinement based algorithm has also been
implemented in UPPAAL by Reynier [Rey07]. TChecker cannot check reachability
in the presence of diagonal constraints.

Computing local parameters. Defining simulation relations in terms of local
parameters as proposed by Behrmann et al. in [BBFL03] is an important optimiza-
tion that speeds up the zone enumeration. This optimization has been studied for
diagonal-free Timed Automata, and for a restricted set of updates. It should how-
ever be noted that the local parameter computation was studied in the context of
region-based abstractions. Later, the more efficient LU abstractions were proposed
[BBLP06]. The extension of the local parameter computation in the context of
LU abstractions has not been studied in the presence of diagonal constraints or
updates. Current tools implement the combination of LU abstractions and local
parameters only for diagonal-free Timed Automata, along with a restricted set of
updates. While defining a simulation relation, the aim in thesis will be – (i) using
local parameters and (ii) devising a static analysis for computing the parameter.

Checking reachability in the presence of updates is undecidable in general.
Several syntactic subclasses of Updatable Timed Automata have been studied for
which reachability has been shown to be decidable. Moreover, the complexity of the
reachability problem in each such class has also been settled [BDFP00a, BDFP04].
Two kinds of algorithms exist for checking reachability in UTA.

Using regions. The decidability of reachability in the subclasses of UTA de-
scribed in [BDFP04] are shown using regions. Therefore, these regions can be used
to devise an algorithm for checking reachability. However, because regions are too
many, this method is not practical.

6

1.2. Contributions of this thesis

Using zones. Bouyer gave a zone based algorithm in [Bou04] that uses a Closure
operator – defined based on regions. Instead of adding a zone Z as it is, in the zone
graph, the algorithm adds Closure(Z). This algorithm was shown to be correct for
checking reachability for each of the decidable subclasses listed down in [BDFP04,
Bou04]. However, the problem with this approach is, Closure(Z) need not be convex.
Herbreteau et al. gave an algorithm in [HSW16] for checking Z1 ⊆ Closure(Z2), given
two zones Z1, Z2. This removes the necessity of storing Closure(Z) and therefore
avoiding the problem with non-convexity. Hence, in principle, this method can
be implemented. However, current Timed Automata tools use abstractions based
on lower-upper bounds, which are significantly more efficient than region based
abstractions. No such abstractions are known in the presence of updates, with or
without diagonal constraints. This sets up the second goal of the thesis.

Goal 2. Devise an efficient zone based reachability algorithm for Updatable Timed
Automata.

Similar to the case with diagonals, the aim is to adapt the efficient zone based
algorithm available for diagonal-free Timed Automata to the case with updates.
Again, the main hurdle towards achieving this aim is to be able to define a simulation
relation and an efficient algorithm for checking this simulation between two zones.
These constitute the other two sub-goals that this thesis tries to achieve.

Goal 2.1. Define a simulation relation for Updatable Timed Automata.

Goal 2.2. Devise an algorithm for checking the simulation relation between two
zones.

Tool support for updates. Both the tools UPPAAL and TChecker allow inputs
to contain updates of the form x := c, where c ∈ N and x := y, where y is a clock.
TChecker also allows update of the form x := y + d, where y is a clock and d ∈ N.
However, neither of these tools allow updates of the form x := y − d, where y is a
clock and d ∈ N. Updates of the form x := x−d are useful for modelling preemptive
scheduling, a central benchmark for the work to be presented in this thesis.

The next section provides an outline of the contributions of the thesis, along with
the organization of the chapters.

1.2 Contributions of this thesis

This thesis proposes a relation vG, parameterized by a set of constraints (G) of the
form x ∼ c and x− y ∼ c, where x, y are clocks and c is an integer. This relation is
first defined between two valuations and subsequently lifted to a relation between
two zones (these are collections of valuations). The aim is to make vG a simulation
relation. Not all choices of G make vG a simulation relation. A construction of this
parameter is proposed that ensures the relation becomes a simulation relation for
Updatable Timed Automata and therefore for Timed Automata in particular, as
well – achieving Goal 2.1, the first of the two goals of this thesis.

7

Chapter 1. Introduction

Chapter 3 defines the relation vG – initially between two valuations and subse-
quently between two zones. This chapter first shows that, when the set G does not
contain diagonal constraints, vG relates more valuations than the LU simulation
relation defined by Behrmann et al. in [BBLP06] for diagonal-free Timed Automata.
This further implies that vG can potentially relate more zones than LU .

Now, to ensure vG becomes a simulation relation for Updatable Timed Au-
tomata (and therefore for Timed Automata containing diagonal constraints as well)
the parameter needs to be computed carefully. In the spirit of state specific bounds
functions defined by Behrmann et al. in [BBFL03], instead of using a single set
G, a family of sets {G(q) | q is a state of the updatable timed automaton} is used
to define the relation. This chapter proposes a construction of these sets using a
fixpoint computation. This computation is not guaranteed to terminate for every
updatable timed automaton – Chapter 4 describes why this is expected and Chap-
ter 5 shows why this is not a drawback. The parameter construction presented
in this chapter is part of the publications [GMS19, GMS20]. Given an updatable
timed automaton, a procedure for checking if this fixpoint computation terminates
for that automaton is also provided in this chapter. It turns out, checking termina-
tion of this computation is PTIME if the constants in the automaton are encoded
in unary, whereas, it is PSPACE-complete if the constants are encoded in binary.
This termination checking procedure is described in the publication [GMS20].

Constructing the simulation relation achieves the first goal of the thesis, however,
another crucial goal (Goal 2.2) remains. In order to use this simulation relation in
the reachability algorithm, an algorithm needs to be devised that can check this
relation between two zones.

Chapter 4 starts with proving that whenever the fixpoint computation described
in Chapter 3 terminates, the resulting simulation relation is finite. A simulation
relation being finite means: in every infinite sequence of zones, there exist two
zones where one is simulated by the other. This implies, the reachability algorithm
is guaranteed to terminate when it uses a finite simulation relation. Therefore,
for every automaton, for which the fixpoint computation terminates, the resulting
simulation relation vG can be used to decide reachability. Since reachability is
undecidable in general for Updatable Timed Automata, it is expected that the
fixpoint computation does not terminate for all updatable timed automata.

This chapter then proceeds towards devising an algorithm for checking the rela-
tion vG between two zones, for every finite set of atomic constraints G, and there-
fore, in particular, for the G computed using the fixpoint computation of Chapter 3.

First, an algorithm is provided for the case when G does not contain diagonal
constraints – these sets occur when considering diagonal-free Timed Automata. It
turns out, in this restricted case, this relation can be checked in quadratic time
– this matches with the complexity of checking the highly efficient LU -simulation
relation, as proved by Herbreteau et al. in [HSW16].

This chapter builds on this algorithm to devise a recursive algorithm for check-
ing vG between two zones, when G is also allowed to contain diagonal constraints.
This algorithm (part of the publication [GMS19]) calls the algorithm developed for

8

1.2. Contributions of this thesis

the diagonal-free case (in this place, LU can also be used instead), at most expo-
nentially (in the number of diagonal constraints present in G) many times. Some
heuristics have been discussed that can help decide the relation with fewer diagonal-
free checks. However, it is proved that checking the (non-)simulation between two
zones is, in fact, NP-complete. This NP-hardness proof is adapted from a similar
proof presented in the publication [GMS18].

Chapter 5 proves that the fixpoint computation (for constructing the parameter
of the simulation relation vG) described in Chapter 3 terminates for every decid-
able subclass of Updatable Timed Automata discussed in [BDFP04]. This fixpoint
computation is also proved to terminate for the subclass of Updatable Timed Au-
tomata – called, Timed Automata with Bounded Subtraction – which was used by
Fersman et al. in [FKPY07] to model preemptive scheduling. Since whenever the
fixpoint computation terminates, the reachability algorithm with this simulation
relation vG also terminates (proved in Chapter 4), for all these classes of automata,
reachability can be checked with vG.

A final contribution of this thesis is a prototype implementation of vG and the
algorithm for checking this relation between two zones in the tool TChecker [HP].

Chapter 6 gives a brief overview of the existing structure of TChecker. It further
provides a description about the implementations of the simulation relation defined
in Chapter 3 and the algorithm devised in Chapter 4. This involved defining a new
data structure to represent the parameter of the simulation relation, implementing
the fixpoint computation and the algorithm for checking the relation between two
zones. The chapter reports some preliminary experiments that have been performed
using this implementation. These show improvements over the existing algorithms
for handling diagonal constraints and updates.

Chapter 7 concludes the thesis by summarizing the results obtained and a few
possible research directions to be explored in future.

9

Chapter 1. Introduction

10

Chapter 2

Preliminaries

This thesis considers the reachability problem in Timed Automata, described by
Alur and Dill in [AD90, AD94] and also in the extended class called Updatable
Timed Automata, introduced by Bouyer et al. in [BDFP00a, BDFP00b, BDFP04].
This chapter first recalls the syntax and semantics of these two models and then
discusses the algorithm to check reachability in Timed Automata without diagonal
constraints, used by the tools like UPPAAL [LPY97] and TChecker [HP].

Throughout this thesis, N will denote the set of all natural numbers (including
0), Z the set of all integers and R the set of all real numbers. Sometimes, subscripts
of the form ./ c where ./ ∈ {<,≤,≥, >} and c ∈ N will be used to denote subsets
of these three sets where every element belonging to the subset satisfies the bound
./ c. For example, R≥0 will denote the set of all real numbers that are non-negative.

2.1 Timed Automata

Timed Automata extend the model of finite-state automata with clocks. A clock
is a non-negative real valued variable, used to measure time quantitatively. Clocks
will be denoted using lowercase letters like x, y, . . . (possibly with subscripts). Up-
percase X will generally be used to denote a set of clocks.

Atomic Constraints are of two types – non-diagonal constraints and diagonal
constraints. A non-diagonal constraint is an expression bounding a single clock: it
is of the form x / c or c / x, where x is a clock, / ∈ {<,≤} and c ∈ N. That is,
x / c is either the expression x < c or x ≤ c.

A diagonal constraint bounds the difference of two clocks: it is an expression of
the form x− y / c or c / x− y, where x, y both are clocks, / ∈ {<,≤} and c ∈ N.

Two other kinds of trivial atomic constraints are also considered: > denotes the
expression true and ⊥ denotes the expression false.

11

Chapter 2. Preliminaries

Constraints. A constraint is either an atomic constraint or a conjunction of
atomic constraints. More formally, a constraint is an expression that gets generated
by the following grammar:

ϕ ::= > | ⊥ | x / c | c / x | x− y / c | c / x− y | ϕ ∧ ϕ (2.1)

where x, y are clocks, / ∈ {<,≤} and c ∈ N. Note that, only non-negative integers
appear in the constraints. This convention, however, does not result in any loss
of generality, since every constraint with a negative integer can be rewritten as an
equivalent constraint with a positive integer.

Given a set of clocks X, Φ(X) denotes the set of all constraints that can be
generated from the grammar in 2.1 using the clocks present in X.

Timed Automata contain finitely many states and transitions between them.
The transitions of timed automata are made up of two components:

guard: a guard is a constraint belonging to Φ(X). These are used to control the
movement of the automaton,

reset: every transition of a timed automaton can reset the values of some of the
clocks back to 0. A reset is represented using a set of clocks, once a transition
is taken the value of every clock belonging to its reset set is made 0.

Remark 1. The original Timed Automata model described by Alur and Dill in
[AD94] considered labelled transitions. These labels are not relevant for the problem
to be considered in this thesis. Therefore, to keep the syntax simple, labels on
transitions are ignored. In practice, these labels are called events (or, actions). A
transition is enabled only when the corresponding event happens. When considering
a network of timed automata, events are used to synchronize transitions of different
component automata of the network.

Definition 2.1 (Timed Automata [AD94]). A timed automaton A is defined by a
tuple (Q,X, q0, T, F), where Q is a finite set of states, X is a finite set of clocks, q0
is the starting state, T ⊆ Q×Φ(X)×2X×Q is a finite set of transitions and F ⊆ Q
is the set of all accepting states. Any transition t ∈ T is of the form (q, g, R, q′),
where q, q′ are called the source and the target state, respectively, g ∈ Φ(X) is the
guard of the transition and R ⊆ X is the reset set.

A diagonal-free timed automaton is a timed automaton where no diagonal con-
straint appears in a guard, that is, every guard of the automaton is either a non-
diagonal constraint or a conjunction of non-diagonal constraints.

All clocks of a timed automaton start at the same time with the value 0, and
then elapse at the same rate.

Example 2.1.1. Figure 2.1 depicts a timed automaton A1 = (Q,X, q0, T, F), with
Q = {q0, q1} being the set of all states, the set of all clocks X = {x, y}, two
transitions t1 = (q0, x = 1, {x}, q0) and t2 = (q0, y − x = 10, {}, q1) and F = {q1}. 1

1The equality constraints used in the guards are shorthands for conjunctions of two relevant
atomic constraints. For example, x = 1 is used to write the constraint x ≤ 1 ∧ 1 ≤ x.

12

2.1. Timed Automata

q0 q1
y − x = 10

{x}
x = 1

Figure 2.1: Example timed automaton A1

Valuations are maps assigning non-negative real values to clocks. More precisely,
a valuation is a function v : X → R≥0. Given a clock x and a valuation v, the
notation v(x) will be used to denote the value of the clock x under the valuation v.
Given a set of clocks X, RX

≥0 is the set of all valuations over X.

Given a valuation v ∈ RX
≥0, a constant δ ∈ R≥0 (called the delay) and a set of

clocks R (reset), two valuations (to be frequently used in this thesis) v + δ and
[R](v) are defined in the following way:

– for all x ∈ X, (v + δ)(x) = v(x) + δ

– for all x ∈ X, [R](v)(x) =

{
0 if x ∈ R
v(x) otherwise

Valuation satisfying a constraint. Given a valuation v and a constraint ϕ, the
boolean expression v(ϕ) is obtained by replacing the clocks present in ϕ with their
values under the valuation v. That is, v(ϕ) is defined as follows:

v(ϕ) =

v(x) / c if ϕ = x / c

c / v(x) if ϕ = c / x

v(x)− v(y) / c if ϕ = x− y / c
c / v(x)− v(y) if ϕ = c / x− y
v(ϕ1) ∧ v(ϕ2) if ϕ = ϕ1 ∧ ϕ2

(2.2)

A valuation v is said to satisfy a constraint ϕ, written as v |= ϕ, if the expression
v(ϕ) evaluates to true. Given a constraint ϕ, the notation [[ϕ]] will denote the set of
all valuations that satisfy ϕ. Every valuation satisfies the atomic constraint > and
no valuation satisfies ⊥, that is, [[>]] = RX

≥0 and [[⊥]] = ∅.

Configurations. A configuration of a timed automaton A = (Q,X, q0, T, F) is a
pair (q, v) where q ∈ Q is a state of A and v ∈ RX

≥0 is a valuation. The configuration
(q0,0) is called the initial configuration ofA, where 0 denotes the valuation mapping
every clock (in X) to 0, that is, 0(x) = 0 for all x ∈ X.

A timed automaton can take a transition from a configuration (q, v) if the val-
uation v satisfies the guard of the transition. In such a case, the transition is said
to be enabled from (q, v). For example, let v be a valuation with v(x) = 2 and
consider a transition t = (q, g, R, q′) where g = x ≤ 2, then t is enabled from the
configuration (q, v). However, if the transition t′ = (q, g′, R′, q′′) is considered with
the guard g′ = x > 2, then t′ is not enabled from (q, v).

13

Chapter 2. Preliminaries

Definition 2.2 (Semantics of a timed automaton). The semantics of a timed au-
tomaton A = (Q,X, q0, T, F) is specified using a transition system SA = (S, E)
where S is the set of all configurations of A. The transitions in E are of two types:

delay: for every configuration (q, v) of A and every constant δ ∈ R≥0, there exists
a delay transition (q, v)→δ (q, v + δ) in E,

action: for every transition t = (q, g, R, q′) ∈ T and every valuation v such that
v |= g, there is an action transition (q, v)→t (q′, v′), where v′ = [R](v).

Remark 2. Due to the fact that the clocks range over R≥0, the number of configu-
rations of every timed automaton is infinite and therefore the set S is also infinite.
Also, note that, because of the delay transitions defined above, from every (q, v) in
S there are infinitely many outgoing delay transitions.

Remark 3. Every sequence of transitions can be transformed into an equivalent se-
quence where the delay and action transitions alternate. This is because of two rea-
sons: (i) every consecutive delay transitions (q, v)→δ1 (q, v1) and (q, v1)→δ2 (q, v2)
can be replaced by the transition (q, v)→δ1+δ2 (q, v2) and (ii) every consecutive ac-
tion transitions can be modified by adding a zero delay transition in between, that
is, (q, v) →t1 (q1, v1) →t2 (q2, v2) is same as (q, v) →t1 (q1, v1) →0 (q1, v1 + 0) →t2

(q2, v2). Henceforth, it will be assumed that, in every sequence of transitions, delay
and action transitions alternate.

Two consecutive delay and action transitions (q, v)→δ (q, v+ δ)→t (q′, v′), will
sometimes be concisely denoted as (q, v)→δ,t (q′, v′).

Runs. A run of a timed automaton A = (Q,X, q0, T, F) is a sequence of (delay
and action) transitions starting from the initial configuration (q0,0):

(q0,0)→δ1,t1 (q1, v1)→δ2,t2 · · · →δn,tn (qn, vn)

A run of A is called an accepting run if it ends in a configuration that contains an
accepting state of A, that is, if qn ∈ F .

Example 2.1.2. Following is a run of the automaton A1 (depicted in Figure 2.1):

(q0, (0, 0))→1,t1 (q0, (0, 1))→1,t1 (q0, (0, 2))

Both of the transitions in this run consist first of a delay of 1 time unit and then
taking the self loop at q0, which sets the value of the clock x back to 0. Note that,
this is not an accepting run.

Example 2.1.3. The following is also a run of the automaton in Figure 2.1:

(q0, (0, 0))→1,t1 (q0, (0, 1))→1,t1 · · · →1,t1 (q0, (0, 10))→t2 (q1, (0, 10))

Every transition (except the last) is taken after a delay of 1 time unit and then
taking the self loop at the state q0. The last transition is due to the transition t2
present in the automaton. Since the final configuration in this run contains the
state q1 and it is an accepting state, this is an accepting run.

14

2.2. Updatable Timed Automata

Remark 4. For modelling convenience, sometimes, the states in Timed Automata
are equipped with invariants. An invariant in a state is a constraint and a timed
automaton can stay at a state only while the values of the clocks satisfy the invariant
of the state. Also, a transition can be taken by the automaton if the resulting
values of the clocks satisfy the invariant of the target state. However, as far as
the reachability problem is concerned, the invariants at states can be shifted to the
guards of suitable transitions. Therefore, for the sake of simplicity, invariants have
not been considered in the syntax.

2.2 Updatable Timed Automata

Bouyer et al. introduced the model of Updatable Timed Automata (from now on,
sometimes to be referred to as UTA) in [BDFP00a, BDFP00b]. This model extends
the model of Timed Automata, by replacing resets with updates.

Updates generalize resets by allowing the values of clocks to be set to other values
instead of only to 0. An update to a clock (written as upx) maps the value of x
to either a non-negative integer c, or to the value of a clock y (possibly x itself) or
even to the sum y+d (only when this value is non-negative), where y is a clock and
d is an integer 2. Given a set of clocks X, an update up maps the value of every
clock x in X to the value of its update upx. Therefore, an update up can be viewed
as the collection {upx | x ∈ X}. Note that, not updating a clock x can be expressed
as the update x := x. Therefore, henceforth, it will be assumed that every update
updates every clock. Given a set of clocks X, U(X) will be used to denote the set
of all possible updates over X.

Given a valuation v and a clock x ∈ X, up(v) assigns a value to x as follows:

up(v)(x) =

d if upx = d

v(x) if upx = x

v(y) + d if upx = y + d

Note that, updates are only partial functions. Given a valuation v and an update
up, up(v) need not be a valuation (as defined on Page 13). For example, consider the
valuation v where v(x) = 2, v(y) = 3 and an update up such that x := y − 4 ∈ up.
Then, up(v) is not a valuation, since up(v)(x) = 3− 4 = −1 < 0.

The syntax of Updatable Timed Automata is same as it is for Timed Automata
(Definition 2.1) with transitions having updates in place of resets.

Definition 2.3 (Updatable Timed Automata [BDFP04]). An updatable timed au-
tomaton A is a tuple (Q,X, q0, T, F) where Q is a finite set of states, X is a finite
set of clocks, q0 is the initial state, T ⊆ Q × Φ(X) × U(X) × Q is a finite set of
transitions and F ⊆ Q is the set of all accepting states.

2In the UTA model introduced by Bouyer et al. the authors also consider non-deterministic
updates, that are expressions of the form x :∼ y + d where ∼ ∈ {<, ≤, 6=, ≥, >}. However, this
thesis does not consider these updates and only considers the so-called deterministic updates.

15

Chapter 2. Preliminaries

Example 2.2.1. An updatable timed automaton A2 = (Q,X, q0, T, F) is depicted
in Figure 2.2, with Q = {q0, q1}, the set of all clocks X = {x, y}, two transitions
t1 = (q0, x = 1, y := x+ 10, q0) and t2 = (q0, y − x = 10, {}, q1) and F = {q1}.

q0 q1
y − x = 10

y := x+ 10

x = 1

Figure 2.2: Example updatable timed automaton A2

Remark 5. Updates of the form x := x are not depicted while drawing Updatable
Timed Automata.

The semantics of Updatable Timed Automata is also same as that of Timed
Automata (Definition 2.2) with only the action transitions being modified.

Definition 2.4 (Semantics of Updatable Timed Automata). The semantics of an
updatable timed automaton A = (Q,X, q0, T, F) is specified using a transition sys-
tem SA = (S, E) where S is the set of configurations (as defined on Page 13) of A.
The transitions present in E are of two types:

delay: for every configuration (q, v) of A and every constant δ ∈ R≥0 there is a
delay transition (q, v)→δ (q, v + δ),

action: for every transition t = (q, g, up, q′) ∈ T and every valuation v such that
(i) v |= g and (ii) up(v) is a valuation, there is an action transition (q, v)→t

(q′, v′), where v′ = up(v).

Example 2.2.2. The following is an accepting run of the updatable timed automa-
ton depicted in Figure 2.2:

(q0, (0, 0))→1 (q0, (1, 1))→t1 (q0, (1, 11))→t2 (q1, (1, 11))

The first transition in this run is a delay transition of 1 time unit. The next
transition is due to the self loop at q0. This transition could be taken because the
value of the clock x is 1. Now, this transition sets the value of the clock y to the
value of x plus 10, that is, it sets the value of y to 11. At this point the guard in
the transition q0 → q1 is satisfied and this is the final transition present in the run.

Remark 6. Timed Automata is a subclass of Updatable Timed Automata where
updates are restricted to be expressions only of the form x := 0 or x := x, with x
being a clock. This can be observed from the fact that the syntax (Definition 2.3)
and semantics (Definition 2.4) of Updatable Timed Automata extend the syntax
(Definition 2.1) and semantics (Definition 2.2) of Timed Automata.

16

2.3. The Reachability problem

2.3 The Reachability problem

This thesis deals with the problem of checking reachability. Given an updatable
timed automaton A = (Q,X, q0, T, F), a state q ∈ Q is said to be reachable, if there
exists a run ofA that ends in a configuration (q, v), for some valuation v ∈ RX

≥0. The
remaining part of this chapter recalls the general framework of solving reachability
in the restricted class of diagonal-free Timed Automata, that is used by the tools
like UPPAAL [LPY97] and TChecker [HP]. The state-of-the-art algorithms for
checking reachability in Timed Automata (when it contain diagonal constraints)
and in Updatable Timed Automata are also recalled in this chapter.

The reachability problem. Given an updatable timed automaton A and a state
q of A, the reachability problem asks: is q reachable in A?

The objective of this problem is therefore finding a configuration (q, v), with some
valuation v, that is reachable from the initial configuration (q0,0). The challenge
is, since valuations map clocks to non-negative real numbers, the set of all configu-
rations (and hence all possible runs) of the automaton A is infinite. Therefore, in
order to find if a configuration (q, v) is reachable in A, it is not feasible to enumerate
all configurations (or all possible runs) of A.

However, in order to conclude that a state q is unreachable in an automaton
A, it is indeed necessary to know the entire reachable set of configurations of A.
In [AD94], Alur and Dill proved that checking reachability is decidable in Timed
Automata. Moreover, it was proved that this problem is PSPACE-complete.

Theorem 2.5 ([AD94]). Given a timed automaton A and a state q, checking if q
is reachable in A is PSPACE-complete.

Bouyer et al. showed in [BDFP04] that reachability becomes undecidable when
considering the model of Updatable Timed Automata (Definition 2.3).

Theorem 2.6 ([BDFP04]). Given an updatable timed automaton A and a state q,
checking if q is reachable in A is undecidable.

However, the authors also listed down some of the subclasses of Updatable
Timed Automata for which checking reachability is decidable and also, in fact,
PSPACE-complete. The crux in deciding reachability lies in finding a finite repre-
sentation of SA (Definitions 2.2 and 2.4). The number of states in the automaton A
is finite, thus the infiniteness of S is in fact due to the number of valuations being
infinite. Therefore, to find a finite representation of S, it is necessary to work with
collections of valuations. Two kinds of collections of valuations have been proposed
in the literature – regions and zones, these are discussed in the next two sections.

Remark 7. In several works, including [AD94, BDFP04], the automata models
have been studied from a language theory perspective. The transitions of the au-
tomata contain letters. With each run of the automaton, a timed word can be
associated by concatenating the pairs consisting of the letters on the transitions

17

Chapter 2. Preliminaries

and the timestamps of each transition present in the run. An updatable timed au-
tomaton accepts a timed word if this word corresponds to an accepting run of the
automaton. The timed language of a timed automaton is the set of all timed words
accepted by it. The emptiness problem asks, given a timed automaton, whether
its timed language is empty or not. The reachability problem corresponds to this
emptiness problem. Given an automaton A and a state q, the reachability problem
(asking if q is reachable in A) is same as asking if the timed language of A (with
q being the only final state) is non-empty. As far as the reachability problem is
concerned, the letters on the transitions are not important and only the timestamps
matter. This is the reason why labels on transitions have been ignored in the syntax.

2.4 Regions

Introduced by Alur and Dill in [AD94] for Timed Automata, regions are collections
of “equivalent” valuations. Given a timed automaton, the regions corresponding to
this automaton collect valuations that are indistinguishable by all possible guards
of this automaton. Regions are the equivalence classes of an equivalence relation
parameterized by the following “bound function”.

For a set of clocks X, let M : X → N ∪ {−∞} be a bound function mapping
each clock in X to either a non-negative integer or −∞. Given a clock x ∈ X, let
Mx denote the constant associated to the clock x by the function M .

The following is a region equivalence, that gives rise to an algorithm for checking
reachability for the class of diagonal-free Timed Automata.

Definition 2.7 (Region equivalence 'M [AD94]). Given two valuations v, v′ and a
bounds function M , the relation v 'M v′ holds if for every pair of clocks x, y in X
–

1. v(x) > Mx iff v′(x) > Mx,

2. if v(x) ≤Mx then –

(a) bv(x)c = bv′(x)c,
(b) {v(x)} = 0 iff {v′(x)} = 0,

(c) if v(y) ≤My then {v(x)} ≤ {v(y)} iff {v′(x)} ≤ {v′(y)}.

In the definition above and the rest of the thesis, given a constant c ∈ R, the
notation bcc denotes the integral part of c and {c} denotes the fractional part of c.
For example, for the constant 2.3, b2.3c = 2 and {2.3} = 0.3.

Every equivalence class of 'M is called an M -region. Note that, the regions
are defined for every bounds function M . Let A = (Q,X, q0, T, F) be a timed
automaton without diagonal constraints. A bounds function (called the maximal
bounds) MA can be defined corresponding to this automaton A in the following
manner: MA maps every clock x to a constant Mx ∈ N, where Mx is the maximum
constant that is compared with the clock x, in a guard present in A. If a clock
x is not present in any of the guards of A then Mx is assigned to −∞. The
relation 'MA defined with respect to this function MA is the region equivalence

18

2.4. Regions

corresponding to the automaton A and each equivalence class of 'MA is called
a region corresponding to A. For example, the regions corresponding to a timed
automaton (without diagonal constraints) having two clocks {x, y} and for which
the maximal bound M is such that Mx = 3 and My = 2, are depicted in Figure 2.3.

0 1 2 3 x→

1

2

y ↑

Figure 2.3: Regions corresponding to every diagonal-free timed automata with
Mx = 3 and My = 2: each dot, each line segment and each shaded triangle and
rectangle are the individual regions

Note that, for every timed automata having the same maximal bounds, the set
of all regions are the same as well.

Region Automaton. Let A = (Q,X, q0, T, F) be a timed automaton without
diagonal constraints. Given A, the regions corresponding to A (as shown in Fig-
ure 2.3) can be constructed. With these regions, a new finite-state automaton
R(A) can be defined whose states are of the form (q,R) where q is a state of the
automaton A and R is a region of A. The region automaton contains a transi-
tion (q1,R1) →t (q2,R2) if there exists two valuations v1 ∈ R1 and v2 ∈ R2, such
that (q1, v1) →δ,t (q2, v2) is possible in A for some δ ∈ R≥0 and some transition t
of A. The initial state of this automaton is (q0, [0]) where [0] denotes the region
containing the initial valuation 0 : X → {0}. Every state (q,R) where q ∈ F is an
accepting state of this automaton R(A). Since the number of regions and the num-
ber of states of A are finite, the number of states of R(A) is also finite. Therefore,
the set of all runs in R(A) is finite and this captures the (uncountably infinite) set
of all possible runs of A, thus providing a finite abstraction of SA (Definition 2.2).

This provides an algorithm for checking reachability in diagonal-free Timed Au-
tomata. Given such an automaton A and a state q, construct the automaton R(A)
and check if (q, R) is reachable for some region R. Since R(A) is a finite state
automaton, this can be checked.

The equivalence relation in Definition 2.7 however fails when the underlying
automaton contains diagonal constraints. For example, let A be a timed automaton
with Mx = 3 and My = 2 and assume A contains a guard x− y ≤ 2. According to
the region construction depicted in Figure 2.3, the following two valuations belong
to the same region:

v1 =

{
x 7→ 3.5

y 7→ 1.8
and v2 =

{
x 7→ 3.5

y 7→ 1.2

19

Chapter 2. Preliminaries

However, note that v1 |= x − y ≤ 2 but v2 6|= x − y ≤ 2. Therefore, although the
two valuations equisatisfy every non-diagonal constraint with constants lesser than
the maximal constant, these do not equisatisfy every diagonal constraint, in partic-
ular, the diagonal x − y ≤ 2. Therefore, a finer partitioning is required when the
underlying automaton contains diagonal constraints. Bengtsson and Yi described
this partitioning in [BY03]. Given a timed automaton (containing diagonal con-
straints) the set of all regions consists of all the regions for diagonal-free Timed
Automata (Definition 2.7), with some of them being further divided based on each
of the diagonal constraints present in the automaton.

Definition 2.8 (Region equivalence 'dM [BY03]). Given two valuations v, v′, a
bound function M and a set of diagonal constraints G, the relation v 'dM v′ holds
if the following two conditions hold:

1. v 'M v′ (Definition 2.7),

2. for every ϕ ∈ G, v |= ϕ iff v′ |= ϕ.

To give an example of this modified region construction, consider a timed au-
tomaton A with Mx = 3 and My = 2. Additionally, assume that A contains two
diagonal constraints x − y ≤ 2 and y − x ≤ 1. The regions corresponding to A,
based on the equivalence relation in Definition 2.8, are depicted in Figure 2.4.

0 1 2 3 4 x→

1

2

3

y ↑

Figure 2.4: Regions corresponding to every timed automata with Mx = 3, My = 2
and two diagonal constraints x − y ≤ 2, y − x ≤ 1 present in some guard: each
dot, each line segment and each shaded triangle and rectangle are the individual
regions; the dots that are connected with line segments together form the region

Given a timed automaton A, a region automaton similar to the one discussed on
Page 19 can be constructed with respect to this finer equivalence relation 'dM . Call
this region automaton Rd(A). Similar to the diagonal-free case, this can again be
used to check reachability. Given a timed automaton A, now containing diagonal
constraints, whether a state q is reachable, can be checked by first constructing
Rd(A) and then checking if (q, R) is reachable for some region R.

Regions can be further modified to take into account some updates in the under-
lying automaton. Bouyer et al. provided region constructions for some subclasses
of Updatable Timed Automata in [BDFP04], while proving that reachability is de-
cidable in those classes. Although regions provide a finite representation of the

20

2.5. Zones

transition system SA (Definition 2.2) and therefore an algorithm for deciding reach-
ability, the downside of using regions is that the size of the region automaton is
exponential in the number of clocks present in A. This makes using regions imprac-
tical for checking reachability. However, regions are an important tool to provide
theoretical guarantees. A constructive definition of the regions with respect to the
equivalence relation in Definition 2.8, defined for timed automata when diagonal
constraints are present, will be discussed and subsequently used in Chapter 4.

2.5 Zones

Like regions, zones are also collections of valuations. However, unlike regions, zones
do not only collect “equivalent” valuations and therefore can be larger than regions.
Zones are defined by a set of atomic constraints.

Definition 2.9 (Zone [DT98]). A zone is a set of valuations, each of which satisfy
a set of atomic constraints, that is, constraints of the form x / c, c / x, x − y / c
or c / x− y, where x, y are clocks, c ∈ N and / ∈ {<,≤}.

Instead of viewing a zone as a set of valuations, zones can also be viewed as the
set of atomic constraints defining it. Every valuation that satisfies all of the atomic
constraints representing the zone, belongs to the zone.

Remark 8. The definition of a zone can be rephrased as follows: a zone Z is the
intersection of the sets [[ϕ]] (this notation has been defined on Page 13) for every
constraint ϕ defining the zone Z, that is, Z is the set

⋂
ϕ∈Z [[ϕ]]. From this definition,

it can be assumed that, zones do not contain redundant constraints. This means,
no zone contains two different constraints x /1 c1 and x /2 c2. This is because
one of these two constraints must imply the other, that is, [[x /1 c1]] ∩ [[x /2 c2]] is
either [[x /1 c1]] or [[x /2 c2]], therefore it is sufficient to only keep one of these two
constraints in a zone. Same argument holds for the atomic constraints of the form
c / x, x− y / c and c / x− y.

For notational convenience, a special constant x0, called the zero clock, is often
used. This constant is called a clock, albeit its value remains 0 forever. For every
valuation v ∈ RX

≥0, v(x0) = 0, assuming x0 ∈ X, and for every delay δ ∈ R≥0,
v(x0) + δ = 0. Zero clock helps write non-diagonal constraints also as diagonal
constraints, for example, the constraint x / c can be written as x − x0 / c. With
the help of zero clock and the above remark in place, it will now be assumed that
every zone Z contains only a single constraint y − x /xy zxy for every pair of clocks
x, y where either x or y can also be the zero clock. Given a zone Z, Zxy = (/xy, zxy)
represents the constraint y−x /xy zxy present in the zone Z, where x and y are two
distinct clocks (can be the zero clock), /xy∈ {<,≤} and zxy ∈ Z. Note that, Zxy
denotes the atomic constraint involving the difference y − x and not x − y. This
convention is chosen to align with a graph representation of zones described later.

Throughout this thesis, the following arithmetic will be used over the pairs (/, z)
where / ∈ {<,≤} and z ∈ Z: (≤, z1) + (≤, z2) = (≤, z1 + z2) and (<, z1) + (<, z2) =
(<, z1)+(≤, z2) = (≤, z1)+(<, z2) = (<, z1 +z2). Also, given two such pairs (/1, z1)

21

Chapter 2. Preliminaries

and (/2, z2), the inequality (/1, z1) < (/2, z2) holds if either z1 < z2, or, z1 = z2 and
/1 = < and /2 = ≤. Whereas, (/1, z1) = (/2, z2) if z1 = z2 and /1 = /2.

Definition 2.10 (Canonical Zone). A zone Z is said to be canonical if for every
three distinct clocks x, y and w, with one of these three clocks allowed to be the zero
clock, the inequality Zxy ≤ Zxw + Zwy holds.

Canonical zones enjoy an important property: for every constraint describing
such a zone, there exists a valuation in the zone for which the bound on the con-
straint is “tight”. The following proposition describes this property formally. This
proposition will be useful in a number of proofs that are part of Chapter 4.

Proposition 2.11. Given a non-empty canonical zone Z and two clocks x, y (one
of these clocks can be the zero clock), if Zxy contains the weak inequality, that is, if
Zxy is the pair (≤, zxy) then Z contains a valuation v such that v(y)− v(x) = zxy.
Whereas, if Zxy contains the strict inequality, that is, if Zxy is the pair (<, zxy) then
for every ε ∈ R>0, there exists v ∈ Z such that zxy − ε < v(y)− v(x) < zxy.

Distance graph.

A distance graph is a graph representing a set of atomic constraints. The vertices of
a distance graph represent clocks and each edge represents a constraint. A special
vertex 0 is used to represent the zero clock. The edge in Figure 2.5 encodes the
constraint x− y / c, where x, y are clocks with y being allowed to be the zero clock.

(/, c)

y x

Figure 2.5: Representation of the constraint x− y / c

The lower bound constraints are not represented as is. Consider the constraint
d / x − y, with y allowed to be zero clock. This constraint can be rewritten as
y − x / −d. This rewritten constraint is encoded using the edge in Figure 2.6.

(/,−d)
y x

Figure 2.6: Representation of the constraint d / x− y, that is, y − x / −d

For a distance graph G, the notation [[G]] will be used to denote the set of all
valuations that satisfy each of the constraints represented by G. Note that, every
set of atomic constraints has a unique distance graph representation.

Distance graphs provide a useful method of arguing whether a set of atomic
constraints is satisfiable or not. This is presented in the following lemma.

Lemma 2.12 ([HSW16]). Let G be a distance graph representing a set of atomic
constraints over some set of clocks. Then, [[G]] is empty iff G contains a negative
cycle.

22

2.6. Zone based reachability algorithm

Let G1 = (V,E1) and G2 = (V,E2) be two distance graphs representing two sets
of atomic constraints over the same set of clocks. Therefore, the vertex sets of G1

and G2 are the same set V . Given such G1,G2, define the graph min(G1,G2) = (V,E)

where E contains an edge x
min(w1,w2)−−−−−−→ y, where w1 is the weight of the edge x→ y

in G1 and w2 is the weight of the same edge in the graph G2.

Lemma 2.13. Let G1 and G2 be two graphs representing two sets of atomic con-
straints over the same set of clocks. Then, [[min(G1,G2)]] = [[G1]] ∩ [[G2]].

Since zones are finite sets of atomic constraints, zones can also be represented as
distance graphs. This representation of zones, along with the two results mentioned
for distance graphs, will be used in Chapter 4.

2.6 Zone based reachability algorithm

Since the region automaton is exponential in size, it is not used in practice to check
reachability. Instead, a zone based algorithm is used. This algorithm builds a graph,
called the zone graph, whose nodes are pairs of the form (q, Z) where q is a state of
the given automaton and Z is a zone. Once the required state appears in a node, the
algorithm declares the state to be reachable. If no such node appears in the entire
graph, the algorithm concludes that the state is unreachable. This section recalls
this standard zone based reachability algorithm for diagonal-free Timed Automata,
used by tools including UPPAAL [LPY97], KRONOS [Yov97] and TChecker [HP].

2.6.1 Zone Graph

Given a diagonal-free timed automaton A, the reachability algorithm builds the
zone graph corresponding to A. The vertices of the zone graph are pairs of the
form (q, Z) where q is a state of A and Z is a zone. The vertices of zone graph are
called nodes. The zone graph contains a node (q0, Z0), where q0 is the initial state
of A and Z0 is the following zone:

Z0 :=

(⋃
x∈X

{0 ≤ x}

)
∪

(⋃
x∈X,y∈X,x 6=y

{x− y ≤ 0}

)
(2.3)

This initial zone Z0 contains all the valuations that can be written as 0 + δ for
some δ ∈ R≥0, where 0 is the zero valuation mapping every clock to 0. For every
transition (q, g, R, q′) of A and every node (q, Z) present in the zone graph, there
exists an edge from (q, Z) to its successor (q′, Z ′), where Z ′ consists of the valuations
v′ such that there exists a valuation v ∈ Z with v |= g and v′ = [R]v + δ, for some
δ ∈ R≥0. The zone Z ′ is computed according to the following expression:

Z ′ =
−−−−−−−→
[R](Z ∧ g) (2.4)

On the above expression, Z ∧ g is the zone consisting of all the valuations from Z
that satisfy the guard g. If Z is viewed as the set of atomic constraints defining

23

Chapter 2. Preliminaries

it, then Z ∧ g is the set consisting of the atomic constraints defining Z and the
atomic constraints present in g. Computing this successor of a node in the zone
graph requires the following three operations to be performed on zones.

Intersection with a constraint. Given a zone Z and a constraint ϕ, Z∧ϕ is the
set {v′ | v′ ∈ Z and v′ |= ϕ}.

Reset. Given a zone Z and a set of clocks R, the reset of Z with respect to R,
written as [R](Z), is the set {v′ | v′ = [R](v) for some v ∈ Z}.

Time elapse. Given a zone Z, the time elapse operation produces the set of valu-

ations
−→
Z = {v′ | v′ = v + δ for some v ∈ Z and δ ∈ R≥0}. A zone Z is called

time-elapsed if Z =
−→
Z , in other words, for every valuation v ∈ Z and every

delay δ ∈ R≥0, the valuation v + δ ∈ Z.

Theorem 2.14 ([DT98]). Given a zone Z, a constraint ϕ and a set of clocks R,

each of the sets of valuations Z ∧ ϕ, [R](Z) and
−→
Z are zones as well.

Instead of Timed Automata, when considering Updatable Timed Automata, the
successor of a node (q, Z) in the zone graph with respect to a transition (q, g, up, q′)
can be computed according to the following expression:

Z ′ =
−−−−−−→
up(Z ∧ g) (2.5)

Starting from the initial node (q0, Z0), the zone graph can be built by repeatedly
computing successors (according to 2.4 or 2.5, depending on whether resets or up-
dates are present). However, this does not immediately produce an algorithm, since
this procedure is not guaranteed to terminate. For example, consider the automa-
ton A in Figure 2.7. The zone graph of this automaton is depicted in Figure 2.8
and is infinite. The self loop in the state q1 is the reason behind this infiniteness.

q0 q1{x, y}

{y}
y = 1

Figure 2.7: Timed automaton A with infinite zone graph

It turns out, as far as the reachability problem is concerned, there can be nodes in
the zone graph for which no successors need to be computed. Stopping explorations
from such nodes ensure that exploring only a finite portion of the zone graph is
sufficient for checking reachability. Two procedures exist for finding out (sufficiently
many) such nodes in the zone graphs of diagonal-free timed automata. These are
described in the next two sections.

24

2.6. Zone based reachability algorithm

(q0, Z0)

(q1, {0 ≤ x, 0 ≤ y, x− y = 0})

(q1, {0 ≤ x, 0 ≤ y, x− y = 1})

(q1, {0 ≤ x, 0 ≤ y, x− y = 2})

...

Figure 2.8: Zone graph of the automaton A in Figure 2.7; the constraints x− y = i
in the zones are actually the two constraints x− y ≤ i and i ≤ x− y, i ∈ N

2.6.2 Building the zone graph

Given a diagonal-free timed automaton A = (Q,X, q0, T, F), the reachability algo-
rithm builds the zone graph of A, starting with the initial node (q0, Z0) where q0 is
the initial state of A and Z0 is the zone described in (2.3), and then by computing
the successors (according to (2.4)) of the nodes present in the graph with respect
to the transitions of the underlying automaton A. Assuming q is the state of A for
which reachability is being checked, if q appears in a node of the zone graph then
q is indeed reachable in A, and conversely, if q is reachable in A, then q appears in
some node of the zone graph of A.

Theorem 2.15 ([DT98]). Zone graphs, even if infinite, are sound and complete for
control-state reachability.

While building the zone graph, a node is said to be discovered, when it becomes
the successor of some existing node in the graph. A node is termed explored when
each of its successors are computed. As illustrated in the previous section, like for
the automaton in Figure 2.7, the zone graphs are not always finite and therefore
continuous exploration of existing nodes may not terminate in general. Therefore,
a method is required to “safely truncate” the zone graph by stopping redundant
explorations. By “safely” it is meant that, if a state of the automaton A appears in
the original (possibly infinite) zone graph, then it should also appear in the trun-
cated zone graph and vice versa. This is achieved by using subsumption relations
between nodes. A state q′ is said to be reachable from a node (q, Z), if there exists
a path from (q, Z) in the zone graph reaching a node (q′, Z ′) with some zone Z ′. A
subsumption relation is a relation that ensures the following: if (q, Z ′′) is subsumed
by (q, Z) then every state that is reachable from (q, Z ′′) is also reachable from (q, Z).
This implies that, whenever (q, Z ′′) is subsumed by (q, Z), exploring (q, Z ′′) is re-
dundant when (q, Z) is already explored or is going to be explored. Note that, a
subsumption relation can only be defined between two nodes having the same state.

A pseudocode for the reachability algorithm with the optimization of not explor-
ing nodes that get subsumed by some other node, is described in Algorithm 1. Every
valid subsumption relation can be plugged in Line 11 in place of is subsumed by.

25

Chapter 2. Preliminaries

Input: A = (Q,X, q0, T, F)
Output: Yes : if some state in F is reachable; No: otherwise

1 passed = ∅, waiting = ∅ ;
2 waiting ← waiting ∪ {(q0, Z0)} ;
3 while waiting 6= ∅ do
4 (q, Z)← pop(waiting) ;
5 passed ← passed ∪ {(q, Z)} ;
6 forall outgoing transitions t = (q, g, R, q′) from q do
7 (q′, Z ′)← next((q, Z), t) ;
8 if q′ ∈ F then
9 return Yes ;

10 end
11 if ∃(q′, Z ′′) ∈ passed ∪ waiting s.t. (q′, Z ′) is subsumed by (q′, Z ′′)

then
12 go to the next iteration in line 5 ;
13 else
14 waiting ← waiting ∪ {(q′, Z ′)} ;
15 end

16 end

17 end
18 return No ;

Algorithm 1: Zone graph enumeration with arbitrary subsumption relation

One simple subsumption relation is the inclusion relation (⊆), which can be
defined between two nodes as: (q, Z) ⊆ (q, Z ′) if Z ⊆ Z ′. From this relation it
follows that whenever (q, Z) ⊆ (q, Z ′), every state reachable from (q, Z) is also
reachable from (q, Z ′), since Z ′ contains all the valuations present in Z. This
inclusion relation, however, fails to ensure termination of Algorithm 1 for certain
diagonal-free timed automata. For example, note that, this algorithm with the
inclusion relation will not terminate for the automaton in Figure 2.7. This is because
the infinitely many zones appearing in its zone graph (Figure 2.8) are all disjoint,
{0 ≤ x, 0 ≤ y, x−y = i}∩{0 ≤ x, 0 ≤ y, x−y = j} = ∅, for every i, j ∈ N, i 6= j.

Two stronger operators have been studied in the literature to prune redundant
explorations, guaranteeing termination of Algorithm 1 for timed automata without
diagonal constraints : (i) extrapolation and (ii) simulation relation. Since extrapo-
lation operators do not work in the presence of diagonal constraints [Bou03], these
are not discussed further. More details about extrapolation operators can be found
in [DT98, BBLP06]. The rest of the thesis only considers simulation relations as
the means for guaranteeing termination of the zone graph enumeration. Simulation
relations can be plugged into Line 11 of Algorithm 1 in place of is subsumed by.

In Algorithm 1, the function next computes the successor of a node with re-
spect to a transition according to 2.4 or 2.5 depending on whether in the input
automaton contains only resets or updates. This function uses the three operations
on zones discussed on Page 24. Also, every zone that appears in the zone graph

26

2.6. Zone based reachability algorithm

enumeration is canonicalized. In general, transforming a zone into a canonical zone
(Definition 2.10) takes O(n3) time, n being the number of clocks present in the
zone. This canonicalization can be done using the Floyd-Warshall’s shortest path
algorithm [BY03, CLRS09].

The simulation relations (to be discussed in the next section) are parameterized
by clock bounds functions. One such function the M bounds has been discussed on
Page 18 while defining regions. Another bound function LU has been introduced
in [BBLP06] distinguishing the lower and upper bound constraints present in the
guards. More details about the LU bounds will be discussed in Chapter 3.

2.6.3 Simulation Relation

Simulation relations provide a method for reducing “redundant” explorations of
the zone graph. Some simulation relations guarantee finiteness of the zone graph.
Simulation relations ensure: if (q, Z) is simulated by (q, Z ′), written as (q, Z) v
(q, Z ′), then every state reachable from (q, Z) is also reachable from (q, Z ′).

Simulation relations are defined between configurations of Timed Automata (or
Updatable Timed Automata, in general). These then naturally extend to a relation
between two nodes. When a configuration (q, v) is simulated by (q, v′), written as
(q, v) v (q, v′), it implies that every sequence of transitions that are possible from
(q, v) are also possible from (q, v′). Below is the definition of simulation relations.

Definition 2.16 (Simulation relation). Given an updatable timed automaton A =
(Q,X, q0, T, F), a reflexive and transitive relation v defined between two configura-
tions having the same state, say (q, v1) and (q, v2), is called a simulation relation
for A, if it satisfies the following two conditions:

1. for every δ ≥ 0 if (q, v1) v (q, v2) then (q, v1 + δ) v (q, v2 + δ),

2. for every transition t = (q, g, R, q′) of A, if (q, v1) v (q, v2) and if t is enabled
from (q, v1), that is, (q, v1) →t (q′, [R](v1)) then firstly t is also enabled from
(q, v2), that is, (q, v2)→t (q′, [R](v2)) and secondly (q′, [R](v1)) v (q′, [R](v2)).

The simulation relation defined above is actually called a strong-time simulation
relation. Another kind of simulation relation has been defined in the literature,
called time-abstract simulation relation. A time abstract simulation relation is a
relation vt.a. that follows the conditions of Definition 2.16, with the first condition
being modified into: if the relation (q, v1) vt.a. (q, v2) holds then for every δ ≥ 0
there exists some δ′ ≥ 0 such that the relation (q, v1 + δ) vt.a. (q, v2 + δ′) holds
as well. This thesis will only consider strong-time simulation relations and hence
“simulation relation” will always refer to “strong-time simulation relation”.

Simulation relations defined over configurations can be naturally lifted to relate
nodes of the zone graph, in order for it to be applicable in a reachability algorithm.
Given two nodes (q, Z) and (q, Z ′), the first node is said to be “simulated by” the
second, written as (q, Z) v (q, Z ′), if for every valuation v ∈ Z there exists v′ ∈ Z ′
such that (q, v) v (q, v′). Line 11 of Algorithm 1 can be modified in the following
way to incorporate simulation relation as the subsumption relation:

27

Chapter 2. Preliminaries

(q′, Z ′) is subsumed by (q′, Z ′′)
↓

(q′, Z ′) v (q′, Z ′′)
↓

Z ′ v Z ′′

The reachability algorithm (Algorithm 1) with a simulation relation as the sub-
sumption relation is sound and complete for checking reachability. By sound it
means that whenever the algorithm declares a state q to be reachable, the automa-
ton contains a run leading upto q. By complete it means that if there exists a run
of the automaton upto a state q, then the algorithm declares q to be reachable.
However, to make sure the algorithm always terminates, an additional property is
desired of simulation relations – finiteness. A simulation relation v is said to be
finite if in every infinite sequence of zones Z1, Z2, . . . , there exists two zones Zi and
Zj with i > j and Zi v Zj.

Simulation relations for diagonal-free timed automata. Two finite simula-
tion relations have been studied for timed automata without diagonal constraints,
vM [DT98, BBFL03] and vLU [BBLP06]. Among these, vLU is coarser than vM .
This means, vLU can result in more number of simulations than vM . Because of
this, vLU results in smaller zone graph computations and therefore faster reacha-
bility procedures. In practice, tools checking reachability for diagonal-free Timed
Automata generally use the vLU simulation relation over vM . More details about
vLU will be discussed in the upcoming Chapters 3 and 4.

2.6.4 Reachability algorithm: Overall framework

Given a diagonal-free timed automaton A, the state-of-the-art reachability check-
ing tools use Algorithm 1 with a simulation relation as the subsumption relation.
Since the available simulation relations are all parameterized (by the so-called clock
bounds M or LU), the overall reachability algorithm needs to compute these param-
eters first before starting the zone graph enumeration. This parameter computation
is generally a static analysis on the input automaton. The M and LU bounds can
be computed by solving a system of inequalities [BBFL03, BBLP06]. The overall
reachability algorithm therefore consists of two steps:

Step 1. compute the parameters (static analysis)

Step 2. zone graph enumeration (Algorithm 1) with simulation

This thesis defines a simulation relation vG, parameterized by a finite set of
atomic constraints G. Chapter 3 describes the static analysis to compute this
parameter. Chapter 4 then describes an algorithm for checking Z vG Z ′, given
two zones Z,Z ′ and a set G. This can then be plugged into Algorithm 1 to get
a procedure for checking reachability. This procedure terminates for every timed
automaton (even with diagonal constraints) and for some of the classes (listed down
in Chapter 5) of Updatable Timed Automata with decidable reachability.

28

Chapter 3

A new simulation relation

The “configuration space” of Timed Automata is uncountably infinite, due to the
fact that the clocks range over non-negative real numbers. This makes checking
reachability in Timed Automata an inherently hard task, to be precise, a PSPACE-
hard (and complete) task [AD94]. In Updatable Timed Automata, the problem
becomes even more difficult, in fact, undecidable [BDFP04]. However, interest-
ing subclasses (retaining some of the updates) have been studied, where checking
reachability remains decidable. These particular subclasses are not of interest in
this chapter (some of these will be considered in Chapter 5). The results (to be
presented) in this chapter consider the general classes of Timed Automata and
Updatable Timed Automata. Therefore, these results also hold in those subclasses.

The infiniteness of the search space makes näıve searching infeasible to determine
whether a state of the input automaton is reachable or not. The algorithms for
checking such reachability rely on finite abstractions of the search space. The
standard reachability algorithm builds a graph, called the zone graph. Each node
of this graph is a pair consisting of a state of the input automaton and a zone. A
state is declared to be reachable if it appears in a node in this graph. The challenge
is that näıve exploration of this graph may not terminate. Removing redundant
explorations – therefore guaranteeing termination of the reachability algorithm – is
achieved by using simulation relations.

The class of Timed Automata without diagonal constraints is a subclass of Timed
Automata that has been widely studied and has been used in practice, much more
than the class containing diagonal constraints. There are perhaps two reasons for
this: (i) diagonal constraints do not add any expressive power, and (ii) the availabil-
ity of a (well-studied) simulation relation for diagonal-free Timed Automata – the
LU simulation relation [BBLP06], which can also be checked efficiently [HSW16].

Diagonal constraints offer succinctness. Timed Automata with diagonal con-
straints can be up to exponentially more succinct than without diagonal constraints
[BDGP98, BC05]. This therefore adds convenience while modelling a system. On
the other hand, updates increase the expressivity. To the best of our knowledge, no
simulation based reachability algorithm was known when Timed Automata contain

29

Chapter 3. A new simulation relation

diagonal constraints and/or updates, prior to our work. The goal in this chapter is
to propose a simulation relation that is correct for checking reachability in Timed
Automata in the presence of diagonal constraints and updates.

The popular LU simulation relation is parameterized by two bounds functions L
and U . Given an input automaton, each of these functions associates a non-negative
integer (or −∞) to every clock, based on the guards present in the transitions of
the input automaton. But these maps have a potential drawback. These bounds
are based only on the constants present in the automaton and are oblivious to
the inequality present. For example, suppose the input automaton contains the
constraint x ≤ 2 in some guard, and no other constraint x ≤ c or x < c with a
larger c. Then the value of U(x) = 2. If the guard would have contained x < 2
instead, then also U(x) = 2. A couple of questions may arise at this point: (i) can
a bounds function be defined that also considers the inequality and (ii) can that
“little more precise” bound improve the simulation relation coming out of it?

This chapter defines the relation vG (in Section 3.1). The set G in this rela-
tion consists of atomic constraints, thus, incorporating the inequality present in the
guards as well. Now, does vG improve upon the existing LU simulation? Since LU
simulation is only defined for diagonal-free Timed Automata, when G contains only
non-diagonal constraints, it turns out, vG is coarser than LU (Section 3.2). How-
ever, the improvement is not drastic and therefore may not be visible in practice.
Nevertheless, the relation vG is also defined in the presence of diagonal constraints
as well as updates, which indeed enables checking reachability in a class of timed
automata larger than the class where the LU simulation can be used.

While using the LU simulation relation, instead of computing L,U for the entire
input automaton, it is better to compute (possibly different) pairs of L,U bounds
corresponding to each state of the input automaton [BBFL03]. The idea is to
consider only the guards of the transitions that are “relevant” at each state to
determine that state’s L,U bounds. Section 3.3 incorporates this idea of state-
specific bounds and defines a map G, that associates a set of atomic constraints to
each state of the input automaton, instead of considering a single G for the entire
input automaton. The goal is to construct this map G so that when the relation vG

is defined with respect to this map G, the resulting relation vG becomes a simulation
relation. This section constructs this map, achieving this goal, in the presence of
diagonal constraints and updates.

The state-specific L,U bounds are computed by solving a system of inequalities.
Whereas, the map G will be determined by performing a fixpoint iteration. This
iteration always terminates when the input automaton is a timed automaton. But,
when the input is an updatable timed automaton, this fixpoint iteration is no longer
guaranteed to terminate. Since the simulation relation vG can be used in a reacha-
bility algorithm only after computing the map G, it is important to know, given an
input automaton, whether the fixpoint iteration is going to terminate or not. This
chapter concludes by providing a method for determining, given an input updatable
timed automaton, whether this fixpoint iteration terminates or not (Section 3.4).

30

3.1. The relation vG

3.1 The relation vG

This section defines the relation vG, given a (finite or infinite) set of atomic con-
straints G. This relation is first defined between two valuations and subsequently
between two zones. Upcoming Section 3.3 further extends these two relations to a
relation between configurations and one between nodes, respectively. However, as
will be shown, these two extended relations essentially boil down to the relations
between valuations and zones, that are going to be defined in this section. Since
simulation relations are relations defined between configurations, the aim in this
chapter is to make the relation vG, defined between two configurations of a given
updatable timed automaton, a simulation relation.

The definition of a simulation relation (Definition 2.16) is recalled below, this
motivates the definition of vG. Given two configurations (q, v) and (q, v′) of an
updatable timed automaton A, satisfying (q, v) v (q, v′), the following three condi-
tions need to hold in order for the relation v to be a simulation relation:

1. for every δ ∈ R≥0, (q, v + δ) v (q, v′ + δ),

2. for every transition t = (q, g, up, q′) of A, if t is enabled from (q, v), then –

(a) t is also enabled from (q, v′), and

(b) (q′, up(v)) v (q′, up(v′)).

To recall, a transition t = (q, g, up, q′) is said to be enabled from a configuration
(q, v) if two conditions are met: (i) v |= g and (ii) up(v) is a valid valuation, that
is, up(v)(x) ≥ 0 for every clock x. The conditions 1 and 2a above motivate the
following definition of the relation vG, defined between two valuations.

Definition 3.1 (vG over valuations). Given two valuations v, v′ and a (finite or
infinite) set of atomic constraints G, v vG v

′ if ∀ϕ ∈ G and ∀δ ∈ R≥0 :

if v + δ |= ϕ then v′ + δ |= ϕ .

Example 3.1.1. Let G = {x < 2} and v and v′ be two valuations such that
v(x) = 0.5 and v′(x) = 1. Then v 6vG v′, since v + 1.4 |= x < 2 (v(x) + 1.4 =
0.5+1.4 = 1.9 < 2) but v′+1.4 6|= x < 2 (v′(x)+1.4 = 1+1.4 = 2.4 > 2). However,
v′ vG v holds, since v(x) < v′(x), thus, for every δ ∈ R≥0 if (v′ + δ)(x) < 2 then
(v + δ)(x) < 2 as well, in other words, v′ + δ |= x < 2 implies v + δ |= x < 2.

Example 3.1.2. Let G = {x < 2, 0 ≤ x− y} and v, v′ be two valuations such that
v(x) = 0.5, v(y) = 1 and v′(x) = 1, v′(y) = 0.2. Then, v 6vG v

′ since v 6v{x<2} v
′

from Example 3.1.1. Moreover, v′ 6vG v since v′ |= 0 ≤ x− y (since v′(x)− v′(y) =
1− 0.2 = 0.8 ≥ 0), but v 6|= 0 ≤ x− y (since v(x)− v(y) = 0.5− 1 = −0.5 6≥ 0).

Given a set of atomic constraints G, the next two propositions talk about the
relations (of Definition 3.1) defined with respect to subsets of G. The following
proposition states that if the relation vG holds between two valuations for some set
of atomic constraints G then the relation also holds for every set contained inside
G. The proof follows directly from Definition 3.1.

31

Chapter 3. A new simulation relation

Proposition 3.2. Let G be a set of atomic constraints and v, v′ be two valuations.
Then, v vG v

′ implies v vG′ v
′, for every G′ satisfying G ⊇ G′.

The reverse direction of the above proposition need not hold in general. However,
the next proposition states that if the relations v v{ϕ} v′ hold for every ϕ ∈ G, then
the relation v vG v

′ holds as well.

Proposition 3.3. Given a set of atomic constraints G and two valuations v, v′, the
relation v vG v

′ holds iff for every ϕ ∈ G, the relation v v{ϕ} v′ holds.

Proof. (⇒) This follows from Proposition 3.2 since {ϕ} ⊆ G for every ϕ ∈ G.

(⇐) Choose ϕ ∈ G and δ ∈ R≥0 such that v + δ |= ϕ. Since v v{ϕ} v′,
Definition 3.1 implies v′ + δ |= ϕ. Since ϕ was an arbitrary constraint from G, this
implication holds for every ϕ ∈ G and for every δ ∈ R≥0, proving v vG v

′.

Example 3.1.1 illustrates that the relation in Definition 3.1 defined over valua-
tions, is not symmetric. However, from Definition 3.1 it can be deduced easily that
the relation vG is reflexive and transitive, making it a preorder.

Since the reachability algorithms do not deal with valuations directly, and deal
with zones instead, it is necessary to define a relation between a pair of zones. This
can be achieved by lifting the relation in Definition 3.1 in the following manner.

Definition 3.4 (vG over zones). Given two zones Z,Z ′ and a (finite or infinite)
set of atomic constraints G, Z vG Z

′ if ∀v ∈ Z ∃v′ ∈ Z ′ such that v vG v
′.

Note that, this relation (between zones) trivially holds when Z = ∅ and it does
not hold if Z 6= ∅ but Z ′ = ∅. Zones contain infinitely many valuations, thus it is
difficult to ascertain when the relation vG holds between two non-empty zones and
when it does not. Chapter 4 considers this problem and proposes an algorithm for
checking Z vG Z

′, when G is a given finite set of atomic constraints.
Section 3.3 extends the relation vG defined between valuations (Definition 3.1)

to a relation over configurations, that is, pairs of the form (q, v). Also, it extends
the relation defined in Definition 3.4 (between two zones) to a relation between two
nodes of the zone graph, that is, pairs of the form (q, Z). In both of these cases
(configurations and nodes) the relations are defined between two pairs only when
the states present in the pairs are the same. For this reason, the relations to be
defined in Section 3.3 boil down to the relations defined in this section.

Now, before going to Section 3.3, the next section considers the restricted class
of timed automata without diagonal constraints. Behrmann et al. in [BBLP06]
proposed the state-of-the-art simulation relation vLU , for this class of automata.
The next section compares vLU with the relation vG of Definition 3.1.

3.2 Comparing vG with LU-preorder

The relationvLU relating two valuations, proposed by Behrmann et al. in [BBLP06],
is used in the state-of-the-art algorithms for checking reachability in diagonal-free

32

3.2. Comparing vG with LU -preorder

timed automata. The relation vG defined between two valuations in the previ-
ous section (Definition 3.1), can also be defined for diagonal-free timed automata.
The only restriction being, the set G will consist of only non-diagonal constraints.
Now, with two relations being available for diagonal-free timed automata, a natural
question arises: how do these two relations compare? This section answers this.

The relation vLU is parameterized by two functions, L and U , together called an
LU -bound. Given a diagonal-free timed automaton as input, these L,U bounds are
computed based on the constants present in the guards of the automaton. On the
other hand, the relation vG is parameterized by a set of atomic constraints G. To
emphasize the restriction on non-diagonal constraints, instead of using G, for the
rest of this section, Gnd will be used to denote a set of non-diagonal constraints and
vGnd will be the relation defined with respect to Gnd according to Definition 3.1.

Since L,U are defined based on the set of all guards present in the input automa-
ton, these can also be defined based on arbitrary (finite) sets of atomic constraints.
Theorem 3.13 will prove that v vGnd v

′ implies the relation v vLU v′, when the
LU bounds are defined with respect to the set Gnd (Definition 3.12). The reverse
direction does not hold. This proves that vG relates more valuations than vLU ,
making the former coarser than the latter.

The aim now is to prove this coarseness, that is, the upcoming Theorem 3.13.
Proposition 3.2 proved that v vGnd v

′ iff for every constraint ϕ ∈ Gnd, the relation
v v{ϕ} v′ holds. Characterizing v v{ϕ} v′ will help prove Theorem 3.13. First, the
relation v{x/c} (given a constraint x / c) is characterized in the following theorem.

Theorem 3.5. Given two valuations v, v′ and a non-diagonal constraint x / c where
c ∈ N, the relation v v{x/c} v′ holds iff either v 6|= x / c or v′(x) ≤ v(x).

Proof. (⇐) If v 6|= x / c then clearly ∀δ ∈ R≥0 v + δ 6|= x / c as well. Then the
relation v v{x/c} v′ holds trivially. Similarly, if v′(x) ≤ v(x) then for every δ ∈ R≥0,
v′(x) + δ ≤ v(x) + δ as well. Therefore, if v(x) + δ / c then v′(x) + δ / c also is true.
This again implies the relation v v{x/c} v′.

(⇒) Conversely, let v v{x/c} v′. There are two possibilities: (i) v 6|= x / c or
(ii) v |= x / c. In the second case, since v v{x/c} v′, it follows that v′ |= x / c as
well, that is, v′(x) / c. If v′(x) > v(x) then from the density of real numbers, there
exists δ ∈ R≥0 such that v(x) + δ / c however v′(x) + δ > c. This contradicts the
assumption that v v{x/c} v′. Therefore, v′(x) ≤ v(x) must hold.

The arithmetic defined over pairs of the form (/, c) on Page 21, where / ∈ {<,≤}
and c ∈ Z, will be used in the proofs in this section.

The following result generalizes Theorem 3.5 from a single upper-bound non-
diagonal to a set of upper-bound non-diagonal constraints. This result shows that,
given a set of atomic constraints Gnd, as far as the relation vGnd is concerned, if
Gnd contains more than one upper-bound constraint involving a clock x, then it is
sufficient to keep only the upper-bound constraint involving x in Gnd that has the
max pair (/, c), with respect to the order defined on Page 21.

Corollary 3.6. Let Gnd = {x /1 c1, . . . , x /k ck} be a finite set of non-diagonal
upper-bound constraints involving the same clock x and v, v′ be two valuations.
Then, v vGnd v

′ iff v v{x/c} v′, where (/, c) = max{(/i, ci) | x /i ci ∈ Gnd}.

33

Chapter 3. A new simulation relation

Proof. (⇒) Since x / c ∈ Gnd, it follows from Proposition 3.3 that v v{x/c} v′.
(⇐) Assume the relation v v{x/c} v′, where (/, c) = max{(/i, ci) | x /i ci ∈ Gnd}.

Then, Theorem 3.5 implies that either v 6|= x / c or v′(x) ≤ v(x). Now, if v 6|= x / c
then v 6|= x /i ci for every constraint x /i ci ∈ Gnd. Therefore, Theorem 3.5 implies
v v{x/ici} v′ for all x /i ci ∈ Gnd, which then implies that v vGnd v

′ (Proposition 3.3).
On the other hand, if v′(x) ≤ v(x) then also from Theorem 3.5 it follows that
v v{x/ici} v′ for every x /i ci ∈ Gnd. This again proves that v vGnd v

′ (thanks to
Proposition 3.3).

Analogous results to Theorem 3.5 and Corollary 3.6 hold for lower-bound non-
diagonal constraints as well. The following two results give these two conditions
separately. Theorem 3.9 then combines these two results to get the consolidated
condition that is necessary and sufficient for the relation v v{d/y} v′ to hold.

Lemma 3.7. Given two valuations v, v′ and a non-diagonal constraint d / y such
that v |= d / y, the relation v v{d/y} v′ holds iff v′ |= d / y.

Proof. (⇒) This direction follows from Definition 3.1.

(⇐) If v′ |= d / y, then for every δ ∈ R≥0, v′ + δ |= d / y as well. Therefore, in
this case, the relation v v{d/y} v′ holds trivially.

Lemma 3.8. Given two valuations v, v′ and a non-diagonal constraint d / y such
that v 6|= d / y, the relation v v{d/y} v′ holds iff v(y) ≤ v′(y).

Proof. (⇐) From the assumption that v(y) ≤ v′(y), it follows that for every δ ∈ R≥0,
v(y) + δ ≤ v′(y) + δ. Then, whenever d / v(y) + δ, it also holds that d / v′(y) + δ.
That is, if v + δ |= d / y then v′ + δ |= d / y as well. This implies v v{d/y} v′.

(⇒) Assume the relation v v{d/y} v′ holds. Now, if v(y) > v′(y) then by the
density of real numbers, there exists δ ∈ R≥0 such that v(y)+δ > d but v′(y)+δ ≤ d.
This contradicts the fact that v v{d/y} v′. Therefore, v(y) ≤ v′(y) must hold.

The following theorem combines the previous two results to get the condition
that is necessary as well as sufficient for the relation v v{d/y} v′ to hold.

Theorem 3.9. Given two valuations v, v′ and a non-diagonal constraint d / y where
d ∈ N, the relation v v{d/y} v′ holds iff either v′ |= d / y or v(y) ≤ v′(y).

Proof. (⇐) If v′ |= d / y then the result follows from Lemma 3.7 and on the other
hand, if v(y) ≤ v′(y) then the result follows from Lemma 3.8.

(⇒) For the valuation v, either v |= d / y or v 6|= d / y. In the first case,
the result follows from Lemma 3.7 and in the second case, the result follows from
Lemma 3.8.

Similar to Corollary 3.6, the following result proves that it is also sufficient to
keep only one lower bound per clock in Gnd, for the sake of the relation vGnd .

Corollary 3.10. Let Gnd = {d1 /1 y, d2 /2 y, . . . , dk /k y} be a set of non-diagonal
lower bound constraints and v, v′ be two valuations. Then, v vGnd v

′ iff v v{d/y} v′,
where d = max{di | di /i y ∈ Gnd} and / = < if d < y ∈ Gnd, otherwise / = ≤.

34

3.2. Comparing vG with LU -preorder

Proof. (⇒) Since the constraint d / y ∈ Gnd, Proposition 3.3 implies v v{d/y} v′.
(⇐) Assume v v{d/y} v′. Then, Theorem 3.9 implies that either v′ |= d / y or

v(y) ≤ v′(y). If v′ |= d / y then from the choice of d and / it follows that v′ |= di /i y
for every constraint di /i y ∈ Gnd. Therefore, Theorem 3.9 implies v v{di/iy} v′ for
all di /i y ∈ Gnd, which then implies that v vGnd v

′ (due to Proposition 3.3). On the
other hand, if v(y) ≤ v′(y) then also from Theorem 3.9 it follows that v v{di/iy} v′
for every di /i y ∈ Gnd. Then, Proposition 3.3 again proves that v vGnd v

′.

The LU -preorder vLU defined by Behrmann et al. in [BBLP06] is recalled below.
This relation is defined with respect to two bounds functions, L and U . Each of
these functions associates non-negative integers (or −∞) to every clock.

Definition 3.11 (LU -preorder [BBLP06]). Given two valuations v, v′ and two
bounds functions L : X → N ∪ {−∞} and U : X → N ∪ {−∞}, the relation
v vLU v

′ is said to hold if for every clock x ∈ X:

• if v(x) > v′(x) then v′(x) > L(x),

• if v′(x) > v(x) then v(x) > U(x).

Note that, the relation vLU can be defined for all possible bounds functions L,U .
In practice, these L,U bounds are defined based on the set of all (or “relevant”)
guards present in the input automaton. However, these bounds can in fact be
defined given any finite set of non-diagonal constraints, in particular, given a set
Gnd. Two bounds functions LGnd and UGnd are defined below, based on Gnd.

Definition 3.12 (LU bounds corresponding to Gnd). Given a finite set of non-
diagonal constraints Gnd, the two functions LGnd : X → N ∪ {−∞} and UGnd :
X → N ∪ {−∞} are defined as follows, with the convention max(∅) = −∞ :

• LGnd(y) = max{d | d / y ∈ Gnd}, for every clock y ∈ X,

• UGnd(x) = max{c | x / c ∈ Gnd}, for every clock x ∈ X.

Finally, the following theorem shows that if two valuations are related with
respect to the relation vLU(Gnd) then they will also be related with respect to vGnd ,
when LU(Gnd) denotes the pair of functions LGnd and UGnd of Definition 3.12.

Theorem 3.13. Given a finite set of non-diagonal constraints Gnd, let LGnd , UGnd
be the bounds functions defined from Gnd according to Definition 3.12. Then, given
a pair of valuations v, v′, the relation v vLU(Gnd) v

′ implies the relation v vGnd v
′.

Proof. Let ϕ be an arbitrary constraint belonging to Gnd. To prove the theorem it is
sufficient to show that v v{ϕ} v′ (due to Proposition 3.3). There are two possibilities
for the atomic constraint ϕ, it can either be of the form x / c or of the form d / y,
where c, d are non-negative integers, x, y are clocks and / ∈ {<,≤}.

Case 1. Let ϕ = x / c for some clock x and some constant c ∈ N. Then,
from Definition 3.12 it follows that c ≤ UGnd(x). There are, again, two possibilities:
either (i) v′(x) ≤ v(x) - in this case, Theorem 3.5 implies that v v{ϕ} v′, or (ii)
v′(x) > v(x) - in this case Definition 3.11 implies that UGnd(x) < v(x). Since

35

Chapter 3. A new simulation relation

c ≤ UGnd(x), this means that v 6|= x / c, that is, v 6|= ϕ. Then, Theorem 3.5 implies
that v v{ϕ} v′.

Case 2. Let ϕ = d / y for some clock y and some constant d ∈ N. Then, from
Definition 3.12: d ≤ LGnd(y). There are two possibilities: either (i) v(y) ≤ v′(y) - in
this case Theorem 3.9 implies that v v{ϕ} v′, or (ii) v(y) > v′(y) - in this case since
v vLU(Gnd) v

′, from Definition 3.11 it follows that L(y) < v′(y). Since d ≤ LGnd(y),
it then follows that v′ |= d / y. Therefore, Theorem 3.9 implies that v v{ϕ} v′.

Since ϕ was an arbitrarily chosen constraint from Gnd, it follows that for every
constraint ϕ ∈ Gnd, v v{ϕ} v′. Therefore, Proposition 3.3 implies v vGnd v

′.

However, the reverse direction of Theorem 3.13 does not hold.

Example 3.2.1. This example stems from the observation that, the statement
“either v 6|= x / c or v′(x) ≤ v(x)” in Theorem 3.5 can be rephrased as “if v′(x) >
v(x) then v 6|= x / c”. Consider the set Gnd = {x < 1} and the pair of valuations
v, v′ such that v(x) = 1 and v′(x) = 1.1. The LGnd , UGnd functions defined over
Gnd, according to Definition 3.12, are such that LGnd(x) = −∞ and UGnd(x) = 1.
Now, from the construction of the valuations v, v′, it can be seen that v′(x) > v(x),
but v(x) = UGnd(x). Therefore, from the definition of vLU in Definition 3.11, it
follows that v 6vLU(Gnd) v

′. However, since v(x) = 1 6< 1, it follows that v 6|= x < 1.
Therefore, from Theorem 3.5 (with the statement being rephrased as mentioned at
the beginning of this example) it follows that v vG v

′.

Theorem 3.13 and Example 3.2.1 together show that the relation vGnd can relate
more valuations than the relation vLU(Gnd), where the set Gnd contains only non-
diagonal constraints and LU(Gnd) denotes the bounds LGnd , UGnd , defined based on
Gnd, according to Definition 3.12. This is one motivation for studying the relation
vG defined in the previous section. This improvement is due to the fact that the
LGnd , UGnd bounds fail to distinguish between the inequalities < and ≤.

Theorem 3.13 extends naturally to zones as well. It follows directly from Defi-
nition 3.4 that if two zones satisfy Z vLU(Gnd) Z

′ then Z vGnd Z
′ as well.

Corollary 3.14. Given a finite set of non-diagonal constraints Gnd, let LGnd , UGnd
be the bounds functions defined from Gnd according to Definition 3.12. Then, given
a pair of zones Z,Z ′, if Z vLU(Gnd) Z

′ then Z vGnd Z
′ as well.

Similar to the case with valuations, the reverse direction of the above result need
not hold in general. This implies that when the relation vGnd is used instead of vLU

in a reachability algorithm for diagonal-free timed automata, the computed zone
graph is expected to be smaller. However, this improvement of vGnd over vLU is not
drastic and therefore it may not show large improvements in practice. However, the
simulation relation vLU is defined only for diagonal-free timed automata. Whereas,
the relation vG can be made a simulation relation for timed automata, even with
the presence of diagonal constraints and further for Updatable Timed Automata
in general (Section 3.3). One question may arise at this point: one reason for the
popularity of the vLU simulation is the ease of checking this relation, does it become
more difficult to check vG? The answer to this question is delayed till Section 4.2.

36

3.3. Making vG a simulation relation

3.3 Making vG a simulation relation

The aim in this section is to make the relation vG a simulation relation, when G can
also contain diagonal constraints. Not all choices for the set G results in achieving
this aim. This section starts off with a simple construction that is sufficient to ensure
vG becomes a simulation relation for Timed Automata. This construction is then
lifted naturally to incorporate updates. This construction makes vG a simulation
relation for Updatable Timed Automata as well. However, the parameter becomes
impossible to compute for large number of such automata. An improved (and a little
more technical) construction is then provided that can be computed for strictly more
automata, enabling vG to be used for more updatable timed automata.

A simulation relation (Definition 2.16) is, first of all, a relation between two
configurations. The relation vG has only been defined between two valuations
in Definition 3.1, the following definition extends this to a relation between two
configurations. Two configurations are related with respect to vG, only when the
states present in both the configurations are the same. Also, in the spirit of the
state-dependent clock bounds introduced by Behrmann et al. in [BBFL03], state
specific sets of atomic constraints are used below while defining this relation.

Definition 3.15 (the relation vG over configurations of UTA). Given two config-
urations (q, v) and (q′, v′) of an updatable timed automaton and a map G : q 7→
G(q) associating sets of atomic constraints to states of the automaton, the relation
(q, v) vG (q′, v′) holds if (i) q = q′ and (ii) v vG(q) v′.

The goal now is to compute these sets G(q) for every state q of the underlying
automaton, so that, the resulting relation vG becomes a simulation relation. Before
proceeding towards this goal, recall that the reachability algorithm (Algorithm 1)
does not deal with configurations and instead deals with nodes of the form (q, Z)
where q is a state of the automaton and Z is a zone. Similar to the above Defini-
tion 3.15, the relation vG defined between zones in Definition 3.4 can be extended
to a relation between two nodes (having the same state) in the following manner.

Definition 3.16 (the relation vG over nodes of zone graph). Given two nodes
(q, Z) and (q′, Z ′) of the zone graph of an updatable timed automaton and a map
G : q 7→ G(q), (q, Z) vG (q, Z ′) if (i) q = q′ and (ii) Z vG(q) Z ′.

The above definition can also be rewritten in terms of Definition 3.15: the
relation (q, Z) vG (q, Z ′) holds if for every (q, v) with v ∈ Z, there exists (q, v′)
where v′ ∈ Z ′ such that (q, v) vG (q, v′). Thus, for every state q, the set G(q) used in
the definition for (q, v) vG (q, v′) is the same set used to define (q, Z) vG (q, Z ′). The
following Section 3.3.1 describes a simple construction of such a map G : q 7→ G(q),
that makes vG a simulation relation for Timed Automata.

The rest of this chapter is devoted towards constructing the appropriate pa-
rameter in order to make the relation vG, defined over configurations, a simula-
tion relation (Definition 2.16). The rest of this chapter, therefore, considers only
the relations defined between valuations (Definition 3.1) and configurations (Def-
inition 3.15). Chapter 4 contains further discussions regarding the relations over
zones (Definition 3.4) and nodes (Definition 3.16).

37

Chapter 3. A new simulation relation

3.3.1 Constructing an appropriate parameter: initial try

For a start, this section considers only (classical) Timed Automata. Therefore, this
section considers only resets, that is, updates of the form x := 0, where x is a clock.
To make this restriction more evident, in this section from now on the notation for
updates is reverted back to R (to denote resets) from up. More general updates
will be considered in the next section. This section proposes a construction for the
map G, that is sufficient to ensure vG is a simulation relation for Timed Automata.
The results presented in this section are part of [GMS19].

The conditions required to be satisfied by a relation in order to be a simulation
relation (Definition 2.16) are rewritten below for the case of Timed Automata. In
order to be a simulation relation, vG (Definition 3.15) needs to satisfy the following
conditions whenever two configurations (q, v) and (q, v′) satisfy (q, v) vG (q, v′):

1. for every δ ≥ 0, (q, v + δ) vG (q, v′ + δ),

2. for every transition t = (q, g, R, q′) of A, if v |= g then –

(a) v′ |= g, and

(b) (q′, [R]v) vG (q′, [R]v′).

Among the three conditions above, Condition 1 follows directly from Defini-
tion 3.1 and therefore does not require any special construction for vG. For every
choice of G, the relation vG satisfies this condition. This is proved below.

Lemma 3.17. If (q, v) vG (q, v′) then for every δ ≥ 0, (q, v + δ) vG (q, v′ + δ).

Proof. Assume (q, v) vG (q, v′), that is, v vG(q) v′. It needs to be shown that
(v+ δ) vG(q) (v′+ δ). Consider an atomic constraint ϕ ∈ G(q). Let δ′ ∈ R≥0 be such
that (v+ δ) + δ′ |= ϕ. This can be rewritten as v+ (δ+ δ′) |= ϕ. Since v vG(q) v′, it
follows that v′+(δ+δ′) |= ϕ as well. Again, this can be rewritten as (v′+δ)+δ′ |= ϕ.
Therefore, the following implication holds (v + δ) + δ′ |= ϕ =⇒ (v′ + δ) + δ′ |= ϕ.
This completes the proof of the lemma.

Satisfaction of the remaining two conditions, Condition 2a and Condition 2b,
indeed require specific constructions of G. One such construction is discussed in this
section. First, the following question is considered: what atomic constraints does
the set G(q) need to contain so that whenever (q, v) vG (q, v′), for every transition
(q, g, R, q′), if v satisfies the guard g of the transition then v′ also satisfies g?

Ensuring condition 2a. Recall from Definition 3.1 that if v vG(q) v′, then for
every constraint ϕ belonging to the set G(q), v |= ϕ implies v′ |= ϕ. Therefore,
if G(q) contains the guard g itself, then the required condition will be satisfied
whenever (q, v) vG (q, v′). However, the sets G(q) contain only atomic constraints
and g can also be a conjunction of atomic constraints. Thus, g cannot directly be
added to G(q). The following lemma proves that if G(q) contains each of the atomic
constraints present in g, the relation vG satisfies the required condition.

38

3.3. Making vG a simulation relation

Lemma 3.18. Let (q, v) vG (q, v′). For every transition t = (q, g, R, q′) of A, if
G(q) contains all atomic constraints present in g, then v |= g implies v′ |= g.

Proof. Since (q, v) vG (q, v′), from Definition 3.15 it follows that v vG(q) v′. Assume
that all atomic constraints present in g are included in G(q) and v |= g. Let g =
ϕ1∧ϕ2∧· · ·∧ϕn, where each ϕi is an atomic constraint. Then, v |= g =⇒ v |= ϕi for
all i ∈ {1, 2, . . . , n}. Now, since v vG(q) v′ and for every i, ϕi ∈ G(q), Definition 3.1
implies that v′ |= ϕi. Therefore, v′ |= ϕ1 ∧ϕ2 ∧ · · · ∧ϕn as well, that is, v′ |= g.

The lemma above provides the first step for constructing the map G:

for every transition (q, g, R, q′) –

G(q) contains all atomic constraints present in the guard g
(3.1)

Ensuring condition 2b. This condition states that, for every transition t =
(q, g, R, q′) and for every pair of configurations (q, v) and (q, v′), if the relation
(q, v) vG (q, v′) holds and t is enabled from (q, v), then, after taking the transition,
the resulting configurations preserve the relation, that is, (q′, [R]v) vG (q′, [R]v′).
In other words, this condition requires – if v vG(q) v′ and v |= g, then the relation
[R]v vG(q′) [R]v′ must also hold. Since this condition involves two sets G(q) and
G(q′), a dependence between these two sets is required in order to satisfy this
condition. This is achieved by propagating each constraint present in G(q′) to the
set G(q), along the selected transition t = (q, g, R, q′). The propagated atomic
constraints act as “pre-conditions” that are sufficient to ensure v vG(q) v′ and v |=
g imply [R]v vG(q′) [R]v′. Given a constraint from the set G(q′) and the reset
R (present in the selected transition (q, g, R, q′)), the atomic constraint that is
propagated to the set G(q), is defined below.

Definition 3.19 (pre under reset). Given an atomic constraint ϕ and a set of
clocks R, the pre of ϕ under the reset of clocks in R, is the constraint [R]−1(ϕ),
where [R]−1(ϕ) = ϕ[0/x,∀x ∈ R].

For example, if R = {x, y} then (i) [R]−1(x ≤ 3) = 0 ≤ 3 = >, (ii) [R]−1(y > 2) =
0 > 2 = ⊥, (iii) [R]−1(z ≤ 1) = z ≤ 1, (iv) [R]−1(x− z ≤ −2) = 2 ≤ z.

Upcoming Lemma 3.21 proves that for every transition t = (q, g, R, q′), if the set
G(q) contains the atomic constraint [R]−1(ϕ), for every constraint ϕ ∈ G(q′) then the
relation vG satisfies the condition 2b as well. But before proving this lemma, it will
be useful to prove the following intermediate result first. This result considers the
restricted case when G(q′) consists only of a single atomic constraint ϕ instead of a
set of atomic constraints. The proof of this result considers the various possibilities
for the atomic constraint ϕ and the set of resets R.

Lemma 3.20. Given two valuations v, v′, an atomic constraint ϕ and a set of clocks
R, if the relation v v{[R]−1(ϕ)} v

′ holds then [R]v v{ϕ} [R]v′ holds.

39

Chapter 3. A new simulation relation

Proof. Let v v{[R]−1(ϕ)} v
′ and δ ∈ R≥0 be a constant such that [R]v + δ |= ϕ. To

prove [R]v v{ϕ} [R]v′, it needs to be shown that [R]v′ + δ |= ϕ as well.

Consider the case where ϕ is a non-diagonal constraint of the form x / c. Assume
that the clock x /∈ R. Then, ([R]v)(x) = v(x), ([R]v′)(x) = v′(x) and [R]−1(ϕ) =
x / c. The following holds: [R]v + δ |= x / c =⇒ ([R]v)(x) + δ / c =⇒
v(x) + δ / c =⇒ v + δ |= [R]−1(ϕ). Since v v{[R]−1(ϕ)} v

′, it then follows that
v′+δ |= x / c as well. Following the above sequence of arguments backwards, it can
be deduced that [R]v′+δ |= x / c, that is, [R]v′+δ |= ϕ. On the other hand, assume
that x ∈ R. In this case, ([R]v)(x) = 0 = ([R]v′)(x). Therefore, for every δ ∈ R≥0,
([R]v)(x)+δ = ([R]v′)(x)+δ. This implies, [R]v+δ |= x / c ⇐⇒ [R]v′+δ |= x / c.
The case when ϕ = d / y can be proved using similar arguments.

Now, assume ϕ be a diagonal constraint x − y / c. If x /∈ R and y ∈ R,
then ([R]v)(x) = v(x), ([R]v′)(x) = v′(x) and ([R]v)(y) = 0 = ([R]v′)(y). Also,
in this case, [R]−1(ϕ) = x / c. The following sequence of implications hold:
[R]v + δ |= ϕ =⇒ ([R]v)(x) + δ − (([R]v)(y) + δ) / c =⇒ ([R]v)(x)− 0 / c =⇒
v(x) / c =⇒ v |= x / c =⇒ v |= [R]−1(ϕ). Since v v{[R]−1(ϕ)} v′, it fol-
lows that v′ |= [R]−1(ϕ). From this, following the above sequence of reasoning
backwards, it can be deduced that [R]v′ + δ |= ϕ. On the other hand, assume
now that x ∈ R, y /∈ R. Then, ([R]v)(x) = 0 = ([R]v′)(x) and ([R]v)(y) =
v(y), ([R]v′)(y) = v′(y). Also, [R]−1(ϕ) = −y / c = −c / y. The following hold:
[R]v+ δ |= ϕ =⇒ [R]v+ δ |= x−y / c =⇒ ([R]v)(x) + δ− (([R]v)(y) + δ) / c =⇒
−v(y) / c =⇒ v |= −c / y =⇒ v |= [R]−1(ϕ). Again, since v v{[R]−1(ϕ)} v

′, it fol-
lows that v′ |= [R]−1(ϕ) and therefore it can again be deduced, following the previous
reasoning backwards, that [R]v′ + δ |= ϕ. The remaining two cases are when both
x ∈ R, y ∈ R or when x /∈ R, y /∈ R. In both of these cases, ([R]v)(x) = ([R]v′)(x)
and ([R]v)(y) = ([R]v′)(y). Therefore, [R]v+δ |= x−y / c ⇐⇒ [R]v′+δ |= x−y / c.
When ϕ = d / x− y, the result can be proved using similar reasoning.

The following lemma generalizes the previous lemma by considering G(q′) to be
a (not necessarily singleton) set of atomic constraints. This result proves: for every
transition t = (q, g, R, q′) and for every atomic constraint ϕ in G(q′) if the constraint
[R]−1(ϕ) is added to the set G(q) then the relation vG satisfies condition 2b.

Lemma 3.21. Let (q, v) vG (q, v′) and t = (q, g, R, q′) be a transition of A. For
every constraint ϕ ∈ G(q′), if G(q) contains [R]−1(ϕ), then (q′, [R]v) vG (q′, [R]v′).

Proof. Since (q, v) vG (q, v′), from Definition 3.15 it follows that v vG(q) v′. It
needs to be shown that [R]v vG(q′) [R]v′. Choose a constraint ϕ ∈ G(q′). From
the assumption of this lemma it follows that G(q) contains the constraint [R]−1(ϕ).
Now, since v vG(q) v′, from Proposition 3.3 it follows that v v{[R]−1(ϕ)} v

′ as well.
Then, from Lemma 3.20 it follows that [R]v v{ϕ} [R]v′. Finally, since this holds for
every ϕ ∈ G(q), again from Proposition 3.3, it follows that [R]v vG(q′) [R]v′.

for every transition t = (q, g, R, q′) and

for every constraint ϕ ∈ G(q′):

G(q) contains the atomic constraint pre(ϕ,R) = [R]−1(ϕ)

(3.2)

40

3.3. Making vG a simulation relation

Given a timed automatonA = (Q,X, q0, T, F), two steps have now been proposed
in (3.1) and (3.2), that are required to be taken while constructing a map G, to make
the relation vG (Definition 3.15) a simulation relation, when defined with respect
to such a map G. Such maps will be called A-maps.

Definition 3.22 (A-map). An A-map is a tuple G := (G(q))q∈Q, where each G(q)
is a set of atomic constraints associated with the state q, satisfying the following
two conditions: for every state q of A and for every transition t = (q, g, R, q′) of A,

– G(q) contains the atomic constraints present in g,

– for every ϕ ∈ G(q′), G(q) contains the atomic constraint [R]−1(ϕ).

The following theorem proves that when the relation vG in Definition 3.15,
relating two configurations, is defined with respect to an A-map G, it becomes a
simulation relation for the timed automaton A. The proof of this result follows
directly from Lemma 3.17, 3.18 and 3.21.

Theorem 3.23. Given a timed automaton A, possibly containing diagonal con-
straints, the relation vG (of Definition 3.15) defined over the space of configurations
of A is a simulation relation, if the tuple (G(q))q∈QA is an A-map.

Proof. In order to be a simulation relation, the relation vG in Definition 3.15 needs
to satisfy the three conditions 1, 2a and 2b. When the map G is an A-map of
Definition 3.22, Lemma 3.17 proves that vG satisfies the condition 1, Lemma 3.18
implies thatvG satisfies the condition 2a and finally Lemma 3.21 ensuresvG satisfies
the condition 2b. Therefore, when G is an A-map, vG is a simulation relation.

Thanks to the theorem above, the problem of finding a simulation relation for
timed automata now reduces to computing an A-map given a timed automaton
A. An A-map can be computed by computing the least fixpoint of a system of
equations, as defined below.

Definition 3.24 (state based guards). Let A = (Q,X, q0, T, F) be a given timed
automaton. Associate a set of atomic constraints G(q) to every state q ∈ Q, where
{G(q)}q∈Q is the least solution to the following set of equations and atoms of(g)
denotes the set of all atomic constraints present in the constraint g:

G(q) =
⋃

(q,g,R,q′)∈T

atoms of(g) ∪

 ⋃
ϕ∈G(q′)

pre(ϕ,R)

Algorithm 2 computes the least (with respect to pointwise set inclusion order)

fixpoint of the set of equations present in Definition 3.24. Given a timed automaton
A, this algorithm computes the sets G(q) corresponding to every state q of the
input automaton A such that these sets satisfy the two conditions derived from
Lemma 3.18 and Lemma 3.21. Therefore, the following Algorithm 2 computes
A-map. This is stated in Theorem 3.25.

41

Chapter 3. A new simulation relation

Input: A = (Q,X, q0, T, F)
Output: G(q) for every state q ∈ Q

1 foreach state q ∈ Q do
2 G(q)← ∅
3 end
4 foreach transition t = (q, g, R, q′) ∈ T do
5 G(q)← G(q) ∪ atoms of(g) ; // atoms of(g) is the set of all

// atomic constraints present in g

6 end
7 while a fixed point of {G(q)}q∈Q is not reached do
8 foreach transition t = (q, g, R, q′) ∈ T do
9 foreach constraint ϕ in G(q′) do

10 G(q)← G(q) ∪ {[R]−1(ϕ)} ;
11 end

12 end

13 end

Algorithm 2: Computing state based guards G(q)

Theorem 3.25. Given a timed automaton A = (Q,X, q0, T, F), every set {G(q)}q∈Q
that either satisfies the set of equations of Definition 3.24 or that is generated by
Algorithm 2 is an A-map.

Example 3.3.1. The A-map computation according to Algorithm 2 for the au-
tomaton given in Figure 3.1, is given in Figure 3.2:

q0 q1
y − x ≤ 1

{x}
2 < x

Figure 3.1: Example A-map computation

G(q0) =
G(q1) =

{}
{}

{2 < x, y − x ≤ 1}
{}

{2 < x, y − x ≤ 1, y ≤ 1}
{}

Figure 3.2: A-map computation for the automaton in Figure 3.1

Note that, given a timed automaton A, none of the steps in Algorithm 2 gen-
erates a constraint with a new constant. By a “new” constant it is meant that, a
constant that is not present in any of the guards ofA. This ensures that Algorithm 2
terminates on all input (timed automaton) A.

Theorem 3.26. Given a timed automaton A, Algorithm 2 computing the A-map
corresponding to A, is guaranteed to terminate.

42

3.3. Making vG a simulation relation

Before concluding this section, as an aside, note that, the reverse direction of
Lemma 3.20 does not hold in general. It can be proved that it holds whenever
the constraints ϕ and [R]−1(ϕ) are either both non-diagonal constraints or both
diagonal constraints. It however may not hold if ϕ is a diagonal constraint and
[R]−1(ϕ) is a non-diagonal constraint.

An example where the reverse direction of Lemma 3.20 does not hold is as
follows: consider ϕ = x − y ≤ 5, let R be the set {y} and v, v′ be two valuations
such that v(x) = 4, v(y) = 2 and v′(x) = 4.5, v′(y) = 3. Then, [R]−1(ϕ) = x ≤ 5.
If δ = 1 then v(x) + δ = 4 + 1 = 5 ≤ 5, that is v + δ |= [R]−1(ϕ) but v′(x) + δ =
4.5 + 1 = 5.5 6≤ 5, that is v′ + δ 6|= [R]−1(ϕ). Therefore, v 6v{[R]−1(ϕ)} v

′. However,
([R]v)(x) = 4, ([R]v)(y) = 0, thus [R]v |= ϕ and also ([R]v′)(x) = 4.5, ([R]v′)(y) =
0, thus [R]v′ |= ϕ. Since ϕ is a diagonal constraint, for every constant δ ∈ R≥0,
both [R]v+ δ |= ϕ and [R]v′+ δ |= ϕ hold. Therefore, [R]v v{ϕ} [R]v′, proving that
[R]v v{ϕ} [R]v′ 6⇒ v v{[R]−1(ϕ)} v

′.
This shows that, in order to ensure the relation [R]v v{ϕ} [R]v′, it is sufficient

but not necessary for the relation v v{[R]−1(ϕ)} v
′ to hold. Therefore, the construc-

tion (3.2), derived from Lemma 3.21, can possibly be done away with in certain
situations. It will be shown in the next section that such an optimization is indeed
possible – and, in fact, somewhat necessary – in the case of Updatable Timed Au-
tomata. This optimization stems from another observation. Note that, although
condition 2b only talks about the configurations (q, v) where the valuation v satisfies
the guard of the transition, Lemma 3.20 and Lemma 3.21 are oblivious to this infor-
mation. Considering this additional information brings some technical challenges.
The next and the subsequent section discuss more about these.

3.3.2 Constructing an appropriate parameter: better try

The previous section considered only (classical) Timed Automata and proved that
the relation vG of Definition 3.15 becomes a simulation relation for a timed automa-
ton A when the map G is an A-map (of Definition 3.22). This section considers
updates and the goal is to come up with a map G : q 7→ G(q) that will make
the relation vG (Definition 3.15) a simulation relation for the class of Updatable
Timed Automata. Two constructions will be discussed in this section. The first
is the natural extension of the construction presented in the previous section, with
resets replaced with updates. This construction turns out to be sufficient to en-
sure vG becomes a simulation relation, however, this construction is not optimal.
For a large number of updatable timed automata this construction can result in
making one of its G(q) infinite. Therefore, a better construction is required. This
section concludes with this construction, which results in maps G with smaller G(q)
sets. Proposition 3.2 implies that these (new) maps G will result in coarser rela-
tions. The first construction presented in this section is part of [GMS19] and the
improved construction presented later in this section is part of [GMS20].

A simulation relation needs to satisfy a slightly modified set of conditions in the
presence of updates than in the presence of only resets (as presented on Page 38).
The former needs to satisfy the conditions 1 and 2a as the latter along with a mod-
ified version of condition 2b: for every transition t = (q, g, up, q′), if (q, v) v (q, v′)

43

Chapter 3. A new simulation relation

and t is enabled from (q, v), that is, v |= g and up(v)(x) ≥ 0 for every clock x,
then (q′, up(v)) v (q′, up(v′)) needs to hold instead of (q′, [R]v) v (q′, [R]v′) as in
the case of resets. To recall a notation: if for every clock x, up(v)(x) ≥ 0 then
up(v) ≥ 0. Now, to put the above three conditions in one place, in order to be a
simulation relation, vG needs to satisfy the following: if (q, v) and (q, v′) are two
configurations of an updatable timed automaton such that (q, v) vG (q, v′), then -

1. for every δ ≥ 0, (q, v + δ) vG (q, v′ + δ),

2. for every transition t = (q, g, up, q′) of A, if v |= g and up(v) ≥ 0 then –

(a) v′ |= g,

(b) up(v′) ≥ 0, and

(c) (q′, up(v)) vG (q′, up(v′)).

Condition 1 follows directly from Definition 3.1. Since condition 2a is unchanged,
the same construction (3.1) mentioned on Page 39 for the sets G(q) is sufficient to
ensure this condition is satisfied by vG (Lemma 3.18).

Satisfying Condition 2b. Unlike resets, not all updates result in a valid valua-
tion. For example, consider v to be a valuation with v(x) = 2 and let upx = x− 3.
Then, (up(v))(x) = −1 < 0 and therefore up(v) is not a valid valuation, since
up(v) 6≥ 0. Since this phenomenon was not present in the case of resets, the con-
struction for the sets G(q) need the following additional step.

for every transition t = (q, g, R, q′) and

for every clock x ∈ X:

G(q) contains the atomic constraint up−1(0 ≤ x)

(3.3)

Lemma 3.27. Given two valuations v, v′ and a transition t = (q, g, up, q′), if the
set G(q) contains the constraint up−1(0 ≤ x) for every clock x, then the relation
v vG(q) v′ and up(v) ≥ 0 imply that up(v′) ≥ 0 as well.

The proof of this lemma follows from Definition 3.1.

Satisfying Condition 2c. A slightly modified condition calls for a slightly mod-
ified construction. In the case of Timed Automata, the following construction was
required to ensure vG satisfies condition 2b (as given on Page 40): for every tran-
sition t = (q, g, R, q′) and for every constraint ϕ ∈ G(q′), the set G(q) contains the
“pre-condition” [R]−1(ϕ). This construction can be naturally extended to the case
of updates in the following way: for every transition t = (q, g, up, q′) and for every
constraint ϕ ∈ G(q′), the set G(q) contains the constraint up−1(ϕ). Turns out, this
construction is sufficient to ensure the relation vG satisfies the condition 2c. Before
proving this, the constraint up−1(ϕ) is formally defined below.

44

3.3. Making vG a simulation relation

To recall, an update up is a function x 7→ upx, where x is a clock and upx is
either a constant c ∈ N or some clock y (possibly x) or the expression y + d where
y is a non-zero clock (can be x) and d is a positive or negative integer. Note that,
all these three kinds of updates can be expressed in general by the expression z+d,
where z is a clock (allowed to be the zero clock) and d is a positive or negative
integer. Therefore, the proofs that are present in this section, will assume, without
any loss of generality, that an update to a clock x, that is upx, is always of the form
z + d, where z is a clock (possibly the zero clock) and d ∈ Z.

Definition 3.28 (pre under update). Given an atomic constraint ϕ and an update
up, the pre of ϕ under the update up, is the constraint up−1(ϕ), where up−1(ϕ) =
ϕ[upx/x,∀x ∈ X].

Following are a few examples of the constraint up−1(ϕ) mentioned in the above
definition: (i) let ϕ = x < 2 and upx = y then up−1(ϕ) = y < 2, (ii) let ϕ = x−y < 2
and upx = x (that is, no update to x) and upy = z+2 then up−1(ϕ) = x− (z+2) <
2 = x − z < 4, (iii) let ϕ = x − y < 2 and upx = z1 + 5 and upy = z2 + 2, then
up−1(ϕ) = (z1 + 5)− (z2 + 2) < 2 = z1 − z2 < 2− 3 = z1 − z2 < −1 = 1 < z2 − z1,
(iv) let ϕ = x − y ≤ 2 and upx = 1 and upy = z, then up−1(ϕ) = 1− z ≤ 2 =
−z ≤ 1 = −1 ≤ z, which is actually the trivial atomic constraint > since this
constraint is always true.

The following is a generalization of Lemma 3.20. This states that, for an atomic
constraint ϕ, if two valuations are related with respect tov{up−1(ϕ)} then the updated
valuations are related with respect to v{ϕ}. The proof involves considering several
possibilities for the constraint ϕ and the update up.

Lemma 3.29. Given two valuations v, v′, an atomic constraint ϕ and an update
up such that up(v) ≥ 0 and up(v′) ≥ 0, if v v{up−1(ϕ)} v

′ then up(v) v{ϕ} up(v′).

Proof. Assume v v{up−1(ϕ)} v
′ and δ ∈ R≥0 is a constant such that up(v) + δ |= ϕ.

The aim is to show that up(v′) + δ |= ϕ.
First, consider ϕ to be a diagonal constraint. Then, up(v) + δ |= ϕ ⇐⇒

up(v) |= ϕ holds. Now, let ϕ be of the form x − y / c. Then, up(v) |= ϕ =⇒
up(v)(x) − up(v)(y) / c. If upx = z1 + d1 and upy = z2 + d2 then up(v)(x) −
up(v)(y) = v(z1) + d1 − v(z2) − d2 and up−1(ϕ) = (z1 + d1) − (z2 + d2) / c.
Hence, up(v)(x) − up(v)(y) / c =⇒ v |= (z1 + d1) − (z2 + d2) / c, that is,
v |= up−1(ϕ). Since v v{up−1(ϕ)} v

′, it follows that v′ |= (z1 + d1) − (z2 + d2) / c as
well. From this, it can be derived that up(v′) |= ϕ. Again, since ϕ is a diagonal,
up(v′) |= ϕ ⇐⇒ up(v′) + δ |= ϕ.

Now, consider ϕ to be a non-diagonal constraint of the form x / c. Let
upx = d for some d ∈ N. Then, (up(v))(x) = d = (up(v′))(x). Therefore,
up(v) + δ |= x / c ⇐⇒ up(v′) + δ |= x / c. Otherwise, let upx = z + d where z
is a clock and d is a (positive or negative) integer. Then up−1(ϕ) = z / c − d
and (up(v))(x) = v(z) + d and (up(v′))(x) = v′(z) + d. If c − d < 0 then
up−1(ϕ) = z / c− d = > and hence v+ δ |= z / c−d holds trivially. Otherwise, the
following hold: up(v) + δ |= ϕ =⇒ up(v) + δ |= x / c =⇒ (up(v))(x) + δ / c =⇒
v(z) + d + δ / c =⇒ v + δ |= z / c− d. Since v v{z/c−d} v′, it then follows

45

Chapter 3. A new simulation relation

that v′ + δ |= z / c − d =⇒ (v′(z) + d) + δ / c =⇒ (up(v′))(x) + δ /
c =⇒ up(v′) + δ |= x / c =⇒ up(v′) + δ |= ϕ. Similar arguments hold when
ϕ is of the form c / y as well. Therefore for every atomic constraint ϕ, the relation
v v{up−1(ϕ)} v

′ implies up(v) v{ϕ} up(v′).

The following lemma extends the previous one by letting G(q′) be a set con-
taining possibly more than one atomic constraint. This next lemma states that,
given a transition (q, g, up, q′), for every constraint ϕ ∈ G(q′), adding the con-
straint up−1(ϕ) to the set G(q), is sufficient to ensure (q, v) vG (q, v′) implies
(q′, up(v)) vG (q′, up(v′)). The proof follows from Definition 3.15 and Lemma 3.29.

Lemma 3.30. Let (q, v) vG (q, v′) and t = (q, g, up, q′) be a transition of the
updatable timed automaton A. For every constraint ϕ ∈ G(q′), if G(q) contains the
constraint up−1(ϕ), then (q′, up(v)) vG (q′, up(v′)) as well.

Proof. Proving up(v) vG(q′) up(v′) will prove (q′, up(v)) vG (q′, up(v′)). Choose a
constraint ϕ ∈ G(q′). To prove this relation, it is sufficient (thanks to Proposi-
tion 3.3) to show that up(v) v{ϕ} up(v′). Since (q, v) vG (q, v′), it means v vG(q) v′.
Now, since the constraint up−1(ϕ) ∈ G(q), Proposition 3.2 implies v v{up−1(ϕ)} v

′.
Then, Lemma 3.29 implies that up(v) v{ϕ} up(v′).

The lemma above gives the final condition for the construction of G:

for every transition t = (q, g, R, q′) and

for every constraint ϕ ∈ G(q′):

G(q) contains the atomic constraint up−1(ϕ)

(3.4)

Thanks to the lemma above, an A-map can now be defined for Updatable Timed
Automata, along the lines of Definition 3.22.

Definition 3.31 (A-map in the presence of Updates). Let A = (Q,X, q0, T, F) be
a UTA. An A-map G is a tuple (G(q))q∈Q with each G(q) being a set of atomic
constraints, such that the following conditions are satisfied. For every transition
(q, g, up, q′) ∈ T the following holds:

– every atomic constraint of g belongs to G(q),

– up−1(0 ≤ x) ∈ G(q) for every x ∈ X,

– up−1(ϕ) ∈ G(q) for every ϕ ∈ G(q′) (called the propagation criterion)

An A-map of Definition 3.31 can be computed by modifying Algorithm 2: (i)
Line 5 should be changed to the following:

G(q)← G(q) ∪ atoms of(g) ∪ {up−1(0 ≤ x) | x ∈ X}

and (ii) Line 9 should be changed to the following:

G(q)← G(q) ∪ {up−1(ϕ)}

46

3.3. Making vG a simulation relation

However, such A-map may not result in minimal G(q) sets. Although it is
sufficient (as proved in Lemma 3.30), it is not always necessary for G(q) to contain
up−1(ϕ) in order to satisfy the condition: if (q, v) vG (q, v′) then (q′, up(v)) vG
(q′, up(v′)) for every transition (q, g, up, q′). This realization stems from the fact
that the reverse directions of Lemma 3.20 and 3.29 do not hold.

q0 q1 q2

x ≤ 3

x := x− 1
x− y ≤ 1

Figure 3.3: Non-terminating A-map computation

Consider the automaton in Figure 3.3. The computation of Algorithm 2 (with
the two modifications described on Page 46) on this automaton is depicted in Fig-
ure 3.4. Clearly, this A-map computation does not terminate.

G(q0) =
G(q1) =
G(q2) =

{}
{}
{}

{x ≤ 3, 1 ≤ x}
{x− y ≤ 1}
{}

{x ≤ 3, 1 ≤ x, x− y ≤ 2}
{x ≤ 3, 1 ≤ x, x− y ≤ 1}
{}

{x ≤ 3, x ≤ 4, 1 ≤ x, 2 ≤ x, x− y ≤ 2}
{x ≤ 3, 1 ≤ x, x− y ≤ 1, x− y ≤ 2}
{}

{x ≤ 3, x ≤ 4, 1 ≤ x, 2 ≤ x, x− y ≤ 2, x− y ≤ 3}
{x ≤ 3, x ≤ 4, 1 ≤ x, 2 ≤ x, x− y ≤ 1, x− y ≤ 2}
{}

. . .

Figure 3.4: A-map computation for the automaton in Figure 3.3; at every step the
new constraints that get added are marked in red

The first step adds constraints that meet the first two conditions of Defini-
tion 3.31. Since for the updates present in each of the transitions of the automaton,
up−1(0 ≤ y) is 0 ≤ y, which is semantically equivalent to >, it is not added ex-

plicitly to either G(q0) or G(q1). Consider two transitions (q0, v)
t−→ (q1, up(v))

and (q0, v
′)

t−→ (q1, up(v
′)) with t = (q0, x ≤ 3, x := x − 1, q1), and up being

x := x − 1. Then, (up(v))(x) = v(x) − 1 and (up(v′))(x) = v′(x) − 1. Suppose, it
is required that up(v) v{x−y<1} up(v

′). By Definition 3.1, the condition that needs
to be satisfied is: if up(v) |= x − y < 1, then up(v′) |= x − y < 1. Rewriting in
terms of v: if v(x) − 1 − v(y) < 1, then v′(x) − 1 − v′(y) < 1. In other words: if
v |= x − y < 2, then v′ |= x − y < 2. This is achieved by adding x − y < 2, that
is the constraint up−1(x − y < 1), to G(q0) in the second step. This is the essence
of the propagation criterion of Definition 3.31, which asks that for each ϕ ∈ G(q1),
the set G(q0) contains up−1(ϕ). The fixpoint computation iteratively ensures this
criterion for each transition of the automaton. As illustrated in Figure 3.4, the
computation does not terminate for the automaton of Figure 3.3. There are three
sources of increasing constants: (1) x ≤ 3, x ≤ 4, . . . , (2) 1 ≤ x, 2 ≤ x, . . . and (3)
x− y < 1, x− y < 2,

The claim now is: this conservative propagation is unnecessary to get the

required simulation. Suppose v vG(q0) v′ and (q0, v)
t−→ (q1, up(v)), with t :=

(q0, x ≤ 3, x := x − 1, q1). Since t is enabled at v, it means v(x) ≤ 3 and hence
v′(x) ≤ v(x) ≤ 3 since the atomic constraint x ≤ 3 is present in G(q0). Then, it

47

Chapter 3. A new simulation relation

follows that both the valuations v and v′ satisfy the constraint x − y ≤ 3, since
every valuation satisfies y ≥ 0. The presence of x− y < 4, x− y < 5, . . . at G(q0)
is useless as both v, v′ already satisfy these constraints. Stopping the propagation
of x−y < 3 from G(q1) will cut the infinite propagation due to (3). Similarly, v and
v′ both satisfy the constraints x ≤ 3, x ≤ 4, . . . , therefore the propagation of x ≤ 3
from G(q1) (that is, adding the constraint x ≤ 4) to G(q0) is not necessary, stopping
(1). The remaining source (2) is trickier, but it can still be eliminated. Here is the
main idea. Consider a constraint 3 ≤ x ∈ G(q0) which propagates unchanged to
G(q1) and then back to G(q0) as up−1(3 ≤ x) = 4 ≤ x. This propagation can be
cut since v v{3≤x} v′ already ensures v v{4≤x} v′ for the valuations that are relevant :
the ones that satisfy the guard x ≤ 3 of t. Indeed, v, v′ |= x ≤ 3 and v v{3≤x} v′
implies v(x) ≤ v′(x) which in turn implies v v{4≤x} v′. Overall, it can be shown
that the A-map G with G(q0) = {x ≤ 3, 3 ≤ x, x − y < 2, x − y < 3} and
G(q1) = {x− y < 1} ∪ G(q0) suffices to make the relation vG a simulation relation.

Taking guards into account for propagations. The propagation criterion of
Definition 3.31, which is responsible for non-termination, is oblivious to the guard
that is present in the transition. A new propagation criterion is proposed below that
takes the guard into account and cuts out certain irrelevant constraints. Consider
a transition (q, g, up, q′) and a constraint ϕ ∈ G(q′). What actually is required is
a constraint ψ ∈ G(q) such that v v{ψ} v′ and v |= g and v vatoms of(g) v

′ implies
up(v) v{ϕ} up(v′). The additional “and v |= g and v vatoms of(g) v

′ ” was missing
in the intuition behind the previous propagation. Of course, setting ψ := up−1(ϕ)
is sufficient - even without the additional information - as proved in Lemma 3.29.
However, the goal is to either eliminate the need for ψ or find a ψ with a smaller
constant compared to up−1(ϕ). It turns out that in fact in many cases, it is possible
to get the former, when the additional condition “and v |= g” is plugged in.

Definition 3.32 (pre under a “guard-update” pair). Given an atomic constraint ϕ
and a “guard-update” pair (g, up), the pre of the constraint ϕ under this pair, written
as pre(ϕ, g, up) is: an atomic constraint as specified in Table 3.1 if g and up−1(ϕ)
satisfy the corresponding conditions mentioned in the table, otherwise pre(ϕ, g, up)
is the atomic constraint up−1(ϕ).

up−1(ϕ) if g contains pre(ϕ, g, up)

1 x / d x /1 c >
2 d / x x /1 c with c < d c ≤ x

3
x− y / d or x /1 c or x− y /1 c or e /1 x− y >
d / x− y s.t. c < d < e

Table 3.1: Cases where pre under “guard-update” pair is different from up−1(ϕ).
Two different symbols / and /1 are used in the constraints above to insist that the
inequality / need not be same as the inequality /1.

The next lemma states: given a transition (q, g, up, q′) and an atomic constraint
ϕ, it is sufficient that the relation v v{pre(ϕ,g,up)} v′ holds in order to ensure that

48

3.3. Making vG a simulation relation

the updated valuations satisfy the relation up(v) v{ϕ} up(v′), when the “additional
information” regarding the guard is taken into account.

Lemma 3.33. Let (g, up) be a guard-update pair, ϕ be an atomic constraint and
v, v′ be two valuations such that up(v) ≥ 0, up(v′) ≥ 0, v |= g and v vatoms of(g) v

′.
Then, if the relation v v{pre(ϕ,g,up)} v′ holds then up(v) v{ϕ} up(v′) holds as well.

Proof. When pre(ϕ, g, up) = up−1(ϕ), this is Lemma 3.29. First it is proved that
the relation v v{up−1(ϕ)} v

′ holds for the combinations given in Table 3.1.
(Case 1) From the hypothesis v v{ϕ|ϕ∈atoms of(g)} v

′, since the guard g contains the
atomic constraint x /1 c, that is, x /1 c ∈ atoms of(g), it follows from Theorem 3.2
that v v{x/1c} v′. Theorem 3.5 then implies that either v 6|= x /1 c or v′(x) ≤ v(x).
From the other hypothesis v |= g, it follows that v |= x /1 c. Therefore, the inequal-
ity v′(x) ≤ v(x) holds. Theorem 3.5 then implies that v v{x/d} v′ holds for every
upper bounded non-diagonal constraint x / d.

(Case 2) In this case, pre(ϕ, g, up) = c ≤ x with c < d. Since the guard
g contains the atomic constraint x /1 c, from the reasoning given in the previ-
ous case, it follows that v′(x) ≤ v(x). Since v satisfies the guard, it follows that
v′(x) ≤ v(x) /1 c < d. Now, if v v{pre(ϕ,g,up)} v′, that is, v v{c≤x} v′, from Theo-
rem 3.9, it follows that: either c ≤ v′(x) or v(x) ≤ v′(x). Using v′(x) ≤ v(x) /1 c,
it follows that, in both cases, v(x) = v′(x). Hence v v{d/x} v′.

(Case 3) There are sub-cases depending on whether the guard contains a non-
diagonal constraint or the diagonal constraints. To prove that v v{x−y/d} v′ and
v v{d/x−y} v′. When the guard contains x /1 c, it follows that v′(x) ≤ v(x) /1 c as
above. Hence, v′(x)− v′(y) /1 c and v(x)− v(y) /1 c, since v(y) ≥ 0 and v′(y) ≥ 0.
Since it is given that c < d, both v and v′ satisfy the diagonal constraint x− y / d
and neither of them satisfies d / x − y. Notice that, time elapse preserves the
satisfaction of diagonal constraints, as for every valuation u and every constant
δ ∈ R≥0, (u+ δ)(x)− (u+ δ)(y) = u(x)− u(y). From Definition 3.1, v v{ψ} v′ for a
diagonal constraint ψ is satisfied, if v 6|= ψ or v′ |= ψ. Hence, since v′ |= x− y / d,
v v{x−y/d} v′ holds and since v 6|= d / x− y, v v{d/x−y} v′ holds.

For the other sub-cases of the guard containing x − y /1 c or e /1 x − y, the
hypotheses v |= g, v vatoms of(g) v

′ and the fact that c < d < e ensure the same
effect, that either v does not satisfy the diagonal constraint up−1(ϕ) or v′ does.
Hence, from Definition 3.1 the relation v v{up−1(ϕ)} v

′ holds.
Therefore, in all the cases above, the relation v v{up−1(ϕ)} v

′ holds. Then,
Lemma 3.29 implies that up(v) v{ϕ} up(v′). This completes the proof.

Thanks to the lemma above, a new A-map can now be defined that uses the
constraint pre(ϕ, g, up) instead of up−1(ϕ). Since in some cases the constraint
pre(ϕ, g, up) is > whereas the constraint up−1(ϕ) is non-trivial, this new A-map
can potentially contain smaller G(q) sets.

Definition 3.34 (reduced A-map). A reduced A-map is a tuple G := (G(q))q∈QA,
where each G(q) is a set of atomic constraints and satisfying the following two
conditions for every state q and for every transition t = (q, g, up, q1) of A:

– G(q) contains the atomic constraints present in the guard g,

49

Chapter 3. A new simulation relation

– G(q) contains the atomic constraint pre(0 ≤ x, g, up),

– for every ϕ ∈ G(q1), G(q) contains the atomic constraint pre(ϕ, g, up).

Like the A-map of Definition 3.22, the reduced A-map can also be obtained as
the least fixpoint of a system of equations as mentioned below.

Lemma 3.35. The smallest reduced A-map with respect to pointwise inclusion is
the least fixpoint of the following system of equations:

G(q) =
⋃

(q,g,up,q1)

{atoms of(g) ∪ {pre(0 ≤ x, g, up) | x ∈ X} ∪

{pre(ϕ, g, up) | ϕ ∈ G(q1)}}

Proof. Every reduced A-map is a fixpoint of the given system of equations and
every solution to the given system of equations is a reduced A-map.

The following theorem proves that the relation vG, when G is a reduced A-map,
satisfies the conditions of a simulation relation.

Theorem 3.36. Given an updatable timed automaton A = (Q,X, q0, T, F), the
relation vG of Definition 3.15 defined over the space of configurations of A is a
simulation relation if the tuple (G(q))q∈Q is a reduced A-map.

Proof. The relation vG needs to satisfy the conditions 1, 2a, 2b and 2c given on
Page 44 in order to become a simulation relation. Lemma 3.17 ensures that vG
satisfies condition 1, Lemma 3.18 ensures vG satisfies condition 2a and Lemma 3.27
ensures vG satisfies condition 2b. Finally, Lemma 3.33 implies that vG satisfies the
condition 2c as well. Therefore, if G is a reduced A-map then the relation vG is a
simulation relation for Updatable Timed Automata.

Given an updatable timed automaton A, the reduced A-map can be computed
using Algorithm 3, which is obtained through a little modification to Algorithm 2.

Unlike Algorithm 2, that terminates on every input timed automaton, Algo-
rithm 3 does not necessarily terminate given an updatable timed automaton as
input. Given an input UTA, determining if Algorithm 3 will terminate or not, is
possible. This is the topic of the next section.

3.4 Termination of parameter computation

In order to use the simulation relationvG in a reachability algorithm, an appropriate
parameter G needs to be computed first. Since the reduced A-map computes the
smallest G(q) sets among the constructions presented in the previous section, this
is the parameter that will be used in the simulation relation.

As explained on Page 47, the construction of A-map with pre(ϕ, up) (Defini-
tion 3.28) does not terminate for the automaton in Figure 3.3. The construction of
reduced A-map (Definition 3.34) based on the function pre(ϕ, g, up) (Definition 3.32)
terminates for this example automaton. However, given an updatable timed au-
tomaton, the computation of reduced A-map is also not guaranteed to terminate

50

3.4. Termination of parameter computation

Input: A = (Q,X, q0, T, F)
Output: G(q) for every state q ∈ Q

1 foreach state q ∈ Q do
2 G(q)← ∅
3 end
4 foreach transition t = (q, g, up, q′) ∈ T do
5 G(q)← G(q) ∪ atoms of(g) ∪ {pre(0 ≤ x, g, up) | ∀x ∈ X}
6 end
7 while a fixpoint of (G(q))q∈Q is not reached do
8 foreach transition t = (q, g, up, q′) ∈ T do
9 foreach constraint ϕ in G(q′) do

10 G(q)← G(q) ∪ {pre(ϕ, g, up)}
11 end

12 end

13 end

Algorithm 3: Computing reduced A-map

always. It is therefore important to know, given an updatable timed automaton as
input, whether the reduced A-map computation will terminate for the input or not.

Consider the automaton in Figure 3.5. Note that, according to Table 3.1, the
constraint pre(x− y ≤ i, 2 < x, x := x− 1) = x− y ≤ i+ 1, for every integer i ≥ 1.
Therefore, the reduced A-map will be the tuple (G(q0),G(q1)), where -

G(q0) = {x− y ≤ i | i ≥ 1, i ∈ Z}
G(q1) = {}

q0 q1
x− y ≤ 1

x := x− 1

2 < x

Figure 3.5: Automaton for which reduced A-map computation does not terminate

Since the set G(q0) is infinite, the reduced A-map computation will not termi-
nate for this automaton. It is, however, possible to check if the reduced A-map
computation is going to terminate, given an updatable timed automaton as input.
The rest of this section discusses how to check this. The results presented in this
section are part of the work [GMS20].

Let A = (Q,X, q0, T, F) be an updatable timed automaton with:

M = max{c | c occurs in some guard of A}
L = max{|d| | d occurs in some update of A}

Let G be the smallest reducedA-map computed by the least fixpoint of the equations
in Lemma 3.35. The claim is: this fixpoint computation does not terminate if a
constraint with a large enough constant gets added to some G(q).

51

Chapter 3. A new simulation relation

Proposition 3.37. The reduced A-map computation does not terminate iff for
some state q, there is an atomic constraint ϕ ∈ G(q) with a constant cϕ > N , where
N = max(M,L) + (2 · L · |Q| · |X|2).

For the analysis, the strings of the form “x ≤”, “≤ x”, “x− y ≤” and “≤ x− y”
where x, y ∈ X, will be used and will be called contexts. Given such a context ϕ and
a constant c, ϕ[c] denotes the atomic constraint obtained by plugging the constant
into the context. For example, if ϕ = ≤ x and c = 2 then ϕ[c] is 2 ≤ x.

In the proof below, the notion of propagation sequence will be used, which is a
sequence of the form (qi, ϕi[ci]) → (qi+1, ϕi+1[ci+1]) → · · · → (qj, ϕj[cj]) such that
for all i ≤ k < j, the atomic constraint ϕk+1[ck+1] = pre(ϕk[ck], gk, upk) for some
transition (qk+1, gk, upk, qk) of the given updatable timed automaton A.

Proof (of Proposition 3.37). Since the constants appearing in an atomic constraint
are always non-negative, if the reduced A-map computation does not terminate,
there must be constraints with growing constants being added to the sets G(q)’s.
The left to right implication of Proposition 3.37 is therefore clear. Conversely,
assume that ϕ[c] ∈ G(q), where the constant c > max(M,L) + 2 · L · |Q| · |X|2.
Consider the smallest n ≥ 0 such that ϕ[c] ∈ Gn(q). Then, there is a propagation
sequence π = (qi, ϕ0[c0]) → (qi+1, ϕ1[c1]) → · · · → (qi+n, ϕn[cn]) such that ϕ0[c0] ∈
G0(qi) and (qi+n, ϕn[cn]) = (q, ϕ[c]). Note that ϕj[cj] ∈ Gj(qi+j) for all 0 ≤ j ≤
n. First claim: the propagation sequence π contains a positive cycle with large
constants.

Lemma 3.38. There exists 0 < j1 < j2 ≤ n such that (qi+j1 , ϕj1) = (qi+j2 , ϕj2),
cj1 < cj2 and max(M,L) < ck for all j1 ≤ k ≤ j2.

Proof. Since ϕ0[c0] ∈ G0(qi), the atomic constraint ϕ0[c0] is either present in a guard
or it is pre(0 ≤ x, g, up) for some clock x and a guard-update pair (g, up) which is
present in some transition. Therefore, c0 satisfies the relation 0 ≤ c0 ≤ max(M,L).
Consider the last occurrence of a small constant in the propagation sequence. More
precisely, let m = max{k | 0 ≤ k < n and ck ≤ max(M,L)}. Hence, for all
m < k ≤ n, the constant ck is such that ck > max(M,L).

Notice that, for m < k < n, the constraint in the sequence cannot switch
from an upper diagonal to a lower diagonal and vice-versa. This is because, if
ϕk[ck] = (x− y ≤ ck) and ϕk+1[ck+1] = (ck+1 ≤ y′ − x′), then the update upk must
contain x := x′ + d, y := y′ + e with ck+1 = d − e − ck. This is not possible with
|d|, |e| ≤ L and ck, ck+1 > L. Similarly, it can be shown that an upper (resp. lower)
diagonal constraint cannot switch to a lower (resp. upper) non-diagonal constraint.
On the other hand, it is possible to switch once from an upper (resp. lower) diagonal
constraint to an upper (resp. lower) non-diagonal constraint.

The other remark is: |ck+1− ck| ≤ 2L for all m ≤ k < n. Since cm ≤ max(M,L)
and cn > max(M,L) + 2 · L · |Q| · |X|2, there exists an increasing sequence m <
i1 < i2 < · · · < i` ≤ n with ci1 < ci2 < · · · < ci` and ` > |Q| · |X|2. As noticed
above, the contexts ϕk are either all upper constraints or all lower constraints,
hence the set {(qi+k, ϕk) | m < k ≤ n} contains at most |Q||X|2 elements (for every
state, there are at most |X| many non-diagonals and |X|(|X|−1) many diagonals).
Therefore, there exists j1, j2 ∈ {i1, . . . , i`} such that j1 < j2, hence cj1 < cj2 , and

52

3.4. Termination of parameter computation

(qi+j1 , ϕj1) = (qi+j2 , ϕj2). Also, recall that ck > max(M,L) for all m < k ≤ n and
m < j1 < j2 ≤ n.

The next step is to show that a positive cycle with large constants can be
iterated, resulting in larger and larger constants.

Lemma 3.39. Let (qi, ϕi[ci])→ (qi+1, ϕi+1[ci+1])→ · · · → (qj, ϕj[cj]) be a propaga-
tion sequence with (qi, ϕi) = (qj, ϕj), d = cj − ci > 0 and ck > M for all i ≤ k ≤ j.
Then, (qi, ϕi[ci + d]) → (qi+1, ϕi+1[ci+1 + d]) → · · · → (qj, ϕj[cj + d]) is also a
propagation sequence.

Proof. Let i ≤ k < j and (qk+1, gk, upk, qk) be a transition of A yielding the prop-
agation from k to k + 1: ϕk+1[ck+1] = pre(ϕk[ck], gk, upk). Since ck+1 > M , none
of the three cases of Table 3.1 applies: if ϕk+1 is one of x ≤, ≤ x, x − y ≤ or
≤ x − y then gk does not contain x ≤ c or x − y ≤ c. Hence, the constraint
ϕk+1[ck+1] = up−1(ϕk[ck]). From the definition of up−1 (in Definition 3.28), it can
be deduced that ϕk+1[ck+1 + d] = up−1(ϕk[ck + d]). Since ck+1 + d > M the cases of
Table 3.1 do not apply as well and hence ϕk+1[ck+1+d] = pre(ϕk[ck+d], gk, upk).

This allows to conclude the proof of Proposition 3.37. Using Lemma 3.38, a
positive cycle with large constants can be obtained. This cycle can then be iterated
forever thanks to Lemma 3.39. Therefore, ϕi[ci + kd] ∈ Gi(qi) for all k ≥ 0 and the
reduced A-map computation does not terminate.

Algorithm for Deciding Termination. Proposition 3.37 gives a termination
mechanism: run the fixpoint computation G0,G1, . . . – stop if either the computation
stabilizes with Gn = Gn+1 or if some constraint ϕ(:= ϕ[cϕ]) gets added to Gn(q) with
cϕ > N , where N = max(M,L)+(2·L·|Q|·|X|2). This is formalized in Algorithm 4.

The number of pairs (q, ϕ) with cϕ ≤ N is 2·N ·|Q|·|X|2 (the factor 2 is for upper
or lower constraints). Therefore, Algorithm 4 stops after at most 2 · N · |Q| · |X|2
steps and the total computation time is poly(M,L, |Q|, |X|).

If the constants occurring in guards and updates of the UTA A are encoded
in unary, the computation of G terminates in time poly(|A|). If the constants are
encoded in binary, (non-)termination of the computation of G can be detected in
NPSPACE = PSPACE: it suffices to search for a propagation sequence (qi, ϕ0) →
(qi+1, ϕ1)→ · · · → (qi+n, ϕn) such that ϕ0 ∈ G0(qi) and cϕn > N . For this, only the
current pair (qi+k, ϕk) needs to be stored, guess a transition (qi+k+1, gk, upk, qi+k) of
A and compute the next pair (qi+k+1, ϕk+1) with ϕk+1 = pre(ϕk, gk, upk). This can
be done with polynomial space. A matching PSPACE lower-bound is shown below.

Lower bound. A reduction from the control-state reachability of bounded one-
counter automata is shown to prove that when constants are encoded in binary,
deciding termination of the reduced propagation is PSPACE-hard.

A bounded one-counter automaton [FJ15, HOW16] is given by (L, `0,∆, b) where
L is a finite set of states, `0 is an initial state, ∆ is a set of transitions and b ≥ 0
is the global bound for the counter. Each transition is of the form (`, p, `′) where `
is the source and `′ the target state of the transition, p ∈ [−b,+b] gives the update
to the counter. A run of the counter automaton is a sequence (`0, c0)→ (`1, c1)→

53

Chapter 3. A new simulation relation

Input: an updatable timed automaton A = (Q,X, q0, T, F)
Output: G(q) for every state q ∈ Q

1 foreach state q ∈ Q do
2 G(q)← ∅
3 end
4 N ← max(M,L) + (2 · L · |Q| · |X|2) ;
5 foreach transition t = (q, g, up, q′) ∈ T do
6 G(q)← G(q) ∪ atoms of(g) ∪ {pre(0 ≤ x, g, up) | ∀x ∈ X}
7 end
8 while a fixpoint of (G(q))q∈Q is not reached do
9 foreach transition t = (q, g, up, q′) ∈ T do

10 foreach constraint ϕ in G(q′) do
11 ϕ[cϕ]← pre(ϕ, g, up);
12 if cϕ ≤ N then
13 G(q)← G(q) ∪ {ϕ[cϕ]} ; // add pre(ϕ, g, up) to G(q)
14 else
15 conclude that the fixpoint computation will not terminate ;
16 return ;

17 end

18 end

19 end

20 end

Algorithm 4: Reduced A-map computation with termination check

· · · → (`n, cn) such that c0 = 0, each ci ∈ [0, b] and there are transitions (`i, pi, `i+1)
with ci+1 = ci + pi. All constants used in the automaton definition are encoded in
binary. Reachability problem for this model asks: does there exist a run starting
from (`0, 0) to a given state `t with some (arbitrary) counter value ct. This problem
is known to be PSPACE-complete [FJ15]. Now, a reduction will be given from the
reachability for bounded one-counter automata to the problem of checking whether
the fixpoint computation for the smallest reduced A-map terminates.

From a bounded one counter automaton B = (L, `0,∆, b), construct a UTA AB
in the following way. States of AB are L ∪ {`′0, `′t} where `′0 and `′t are new states
not in L. AB contains two clocks x, y. For each transition (`, p, `′) of B, there is a
transition (`′, g, up, `) in AB, with the guard g being x ≤ b ∧ y ≤ 0 and the update
up being x := x − p and y := y. There are three additional transitions using the

new states `′0 and `′t: (1) `0
x−y≤0−−−−→ `′0, (2) `′t −→ `t and (3) `′t

x:=x,y:=y+1−−−−−−−−→ `′t.

In the reduced AB-map computation, the constraint x − y ≤ 0 is added to
G0(`0). The propagation sequence starting from (`0, x− y ≤ 0) mimics the runs of
the counter machine B with the constant present in the diagonal constraint x−y ≤ c
giving the value of the counter. Case 3 of Table 3.1 keeps this value bounded between
0 and b. Guard x ≤ b disallows propagation of constraints x − y ≤ d with d > b.
But, it can allow d to go smaller and smaller, and at one point the constant becomes
negative and the constraint gets rewritten: x − y ≤ b, x − y ≤ b − 1, . . . , x − y ≤

54

3.4. Termination of parameter computation

0, 1 ≤ y − x, 2 ≤ y − x, etc. The presence of the constraint y ≤ 0 in the guard
eliminates 1 ≤ y − x, 2 ≤ y − x, etc. once again due to Case 3 of Table 3.1.

Lemma 3.40. For every run (`0, 0) → (`1, c1) → · · · → (`n, cn) in the bounded
one-counter automaton B, there exists a propagation sequence (`0, x − y ≤ 0) →
(`1, x− y ≤ c1)→ · · · → (`n, x− y ≤ cn) in the updatable timed automaton AB.

Proof. Let G be the smallest reduced AB-map, that is, for every reduced AB-map G ′
and for every state q of AB, G(q) ⊆ G ′(q) holds. It will be shown by induction, that,

for every i, there is a constraint x−y ≤ ci in G(`i). Due to the edge `0
x−y≤0−−−−→ `′0, the

constraint x− y ≤ 0 ∈ G(`0). Suppose, the hypothesis is true for some j > 0, that
is, there exists x − y ≤ cj ∈ G(`j). Since the run contains (`j, cj) → (`j+1, cj+1),
there is a transition (`j, p, `j+1) in B and cj+1 = cj + p with 0 ≤ cj+1 ≤ b. By
construction, there is a transition (`j+1, g, up, `j) in AB with upx = x− p and guard
x ≤ b ∧ y ≤ 0. Hence the constraint ϕ = x− y ≤ cj at G(`j) should be propagated
to G(`j+1). The constraint up−1(ϕ) = x − y ≤ cj + p, that is x − y ≤ cj+1. Since
0 ≤ cj+1 ≤ b, Case 3 of Table 3.1 does not apply: the constraint x ≤ b in g does
not cut the propagation since cj+1 ≤ b, and the constraint y ≤ 0 in g does not
apply as well (if cj+1 = 0 the constraint up−1(ϕ) can also be written as 0 ≤ y − x).
Therefore, pre(x− y ≤ cj, g, up) = x− y ≤ cj+1 ∈ G(`j+1).

The following is the reverse direction of the above Lemma 3.40.

Lemma 3.41. For every propagation sequence (`0, x−y ≤ 0)→ (`1, x− y ≤ c1)→
· · · → (`n, x−y ≤ cn) in the updatable timed automaton AB, there is a run (`0, 0)→
(`1, c1)→ · · · → (`n, cn) in the bounded one-counter automaton B.

Proof. The proof is by induction on n. The base case n = 0 is trivial. Let
n > 0 and suppose the lemma is true up to n − 1. Consider the propagation
(`n−1, x− y ≤ cn−1) → (`n, x− y ≤ cn). This implies that, there is a transition
(`n, g, up, `n−1) in AB with upx = x − p where p = cn − cn−1 and the constraint
pre(x− y ≤ cn−1, g, up) = x − y ≤ cn. By construction, every g is x ≤ b ∧ y ≤ 0.
As pre(x − y ≤ cn−1, g, up) is non-trivial, firstly cn ≤ b (otherwise Case 3 of Ta-
ble 3.1 will apply) and secondly 0 ≤ cn. To see this, suppose cn < 0, then the
constraint x − y ≤ cn gets rewritten as −cn ≤ y − x and the propagation would
give (`n,−cn ≤ y − x) contrary to what was assumed. Now, consider the counter
automaton B. By induction hypothesis, there is a run up to (`n−1, cn−1). From the
construction, since there is the transition (`n, g, up, `n−1) in AB, there is a transition
(`n−1, p, `n) in B. Recall that the constant cn satisfies 0 ≤ cn ≤ b. Hence, there is a
step (`n−1, cn−1)→ (`n, cn) in B, giving an extension to the run.

It now remains to notice that the only transition that can generate infinitely
many constraints during the propagation is the loop `′t → `′t, since the other tran-
sitions between states coming from the counter automaton have a guard to cut out
infinite propagations. For this to happen, some constraint needs to reach `t, and
then propagate to `′t via the transition `′t → `t.

Proposition 3.42. The final state (`t) is reachable in the counter automaton B
iff the smallest reduced A-map of the updatable timed automaton AB contains a
component that is infinite.

55

Chapter 3. A new simulation relation

Proof. Let G be the smallest reduced AB-map.

Suppose the final state `t is reachable in B, with a run (`0, c0)→ · · · → (`t, ct).
From Lemma 3.40, there is a propagation in AB adding x − y ≤ ct to G(`t). Due

to the extra transitions `′t → `t and `′t
x:=x,y:=y+1−−−−−−−→ `′t in AB (with no guards), the

constraint x − y ≤ ct gets added to G(`′t) and then for every integer i ≥ 0, the
constraint x− y ≤ ct + i gets added to the set G(`′t). Therefore, G becomes infinite.

Conversely, suppose ` be a state of the updatable timed automaton such that
G(`) is infinite. Firstly ` 6= `′0, since there are no outgoing transitions from `′0 and
therefore G(`′0) = ∅. Pick some state ` ∈ L \ {`′0, `′t}. Every outgoing transition

from ` has guard x ≤ b∧y ≤ 0, except in the case `0
x−y≤0−−−−→ `′0. But since G(`′0) = ∅,

this transition can be forgotten as far as propagation is concerned. Hence Table 3.1
ensures that, d ≤ b for every atomic constraint x− y ≤ d or d ≤ x− y propagated
to G(`). Moreover, if at all there is a propagated constraint d ≤ y− x or y− x ≤ d,
then d = 0 since y ≤ 0 is present in all outgoing guards. This shows that the
number of diagonal constraints is finite in G(`). In the construction, a diagonal
constraint x − y ≤ c always propagates as a diagonal since all updates are of the
form x := x − p and y := y. Coming to non-diagonals, since there are x ≤ b and
y ≤ 0 in all guards of outgoing transitions from `, Case 1 of Table 3.1 disallows
propagation of any other upper constraint to `, and Case 2 of Table 3.1 bounds the
possible constants of lower constraints d ≤ x or d ≤ y in G(`). This gives finite G(`)
for ` ∈ L ∪ {`′0}. Therefore, the only possibility is to have G(`′t) infinite, due to the
self-loop on `′t with update up being x := x and y := y + 1. The infinite number
of constraints arises due to y := y + 1 and hence should come from a constraint
that involves y. Since there are no guards in this self-loop, pre(ϕ,>, up) = up−1(ϕ).
For every constraint ϕ[c] involving y and the update up present in the self-loop,
up−1(ϕ[c]) = ϕ[c − 1] if y occurs with a positive sign in ϕ and ϕ[c + 1] if y occurs
with a negative sign in ϕ. There are three ways a constraint involving y reaches `′t
during the propagation. One of them is y ≤ 0 which could come from `t. But the pre
of this is y ≤ −1 and hence is trivial. Another possibility is from pre(0 ≤ y,>, up)
used in the initialization step G0. But this gives −1 ≤ y which is again trivial. The
only other way to have a propagation is to start from x−y ≤ 0 ∈ G(`0), reach some
x−y ≤ ct ∈ G(`t) with 0 ≤ ct ≤ b. This then passes on to G(`′t). Starting from this,
it then follows that the constraints x − y ≤ ct + i for i ≥ 0 all get added to G(`′t).
This gives a propagation sequence (`0, x − y ≤ 0) → · · · → (`t, x − y ≤ ct). From
Lemma 3.41, there is a corresponding run in the counter automaton B, proving `t
is reachable.

Theorem 3.43. Deciding termination of the reduced A-map computation for a
given updatable timed automaton A is in PTIME if the constants in A are encoded
in unary, and PSPACE-complete if the constants are encoded in binary.

Proof. The algorithm to detect termination given in Page 53 discusses the upper
bound: PTIME when constants are in unary and PSPACE when the constants are in
binary. Proposition 3.42 establishes the PSPACE lower-bound. Hence, the problem
of deciding whether Algorithm 4 terminates, given an updatable timed automaton
as input, is PSPACE-complete.

56

3.5. Discussion

3.5 Discussion

Given an updatable timed automaton A, the goal of this chapter was to design a
simulation relation for A. Section 3.1 introduced the relation vG, first relating two
valuations and then extending it to a relation between two configurations. The first
condition for relating two configurations was that the states present in both of the
configurations are the same. Therefore, the relation over configurations essentially
reduces to the relation between the valuations present in the configurations. The
relation vG is parameterized by a set of atomic constraints G. When defining the
relation between two configurations, instead of using a single G for every state, a
state-specific set of atomic constraints G(q) is used. The challenge was to construct
these sets G(q), for every state q of the input automaton A, so that when plugged
into the relation vG, the resulting relation vG becomes a simulation relation for A.

Section 3.3 provided the appropriate constructions for these sets G(q) that make
vG a simulation relation for Updatable Timed Automata. However, this parameter
computation is not guaranteed to terminate for every updatable timed automaton.
Since the relation vG can be used in a reachability algorithm only after the param-
eter is computed, it is important to know when this computation terminates and
when it does not. Section 3.4 provided an algorithm for checking this.

From a theoretical point of view, Section 3.4 also showed that checking if this
parameter computation terminates is, in fact, a PSPACE-complete problem. How-
ever, note that, the algorithm for deciding termination is not a separate procedure.
This termination check is performed while computing the parameter itself. It only
adds a comparison (Line 11 of Algorithm 4) between two constants, each time before
deciding if a constraint should be added to a set G(q) or not, for some q. Therefore,
this termination check does not result in an overhead for the overall algorithm.

For the restricted class of diagonal-free Timed Automata, there exists the well
studied LU simulation relation. Since the relation vG can also be defined for this
class of automata, Section 3.2 compared these two relations. It was shown that
the relation vG can relate more valuations, and therefore more zones, than the
LU simulation. This is due to the fact that the parameters for LU simulation do
not consider the inequalities present in the guards and only consider the constants
present. Whereas, since the parameter for vG contains atomic constraints, it can
also take the inequalities into account. However, since this improvement is not
drastic, it may not result in large improvements in practice.

The improved parameter computation described in Section 3.3.2 shows that
it might be possible to find even better parameters, that can result in coarser
simulations. This chapter does not answer what is the ‘best’ possible choice for the
sets G(q). This remains a problem to be looked at.

Finally, to get a reachability algorithm for a class of Timed Automata, being able
to define a simulation relation is the first step. The next and final step is devising a
procedure to check this relation between nodes of the zone graph. Since this check is
performed everytime a new node is added to the zone graph, the simulation relation
requires to be “efficiently checkable”. This is the topic of the next chapter.

57

Chapter 3. A new simulation relation

58

Chapter 4

Algorithm for checking simulation

Given a timed automaton as input, the reachability algorithm builds the zone graph
corresponding to the input automaton. Näıve construction of this graph does not
necessarily terminate. To ensure termination, the algorithm uses simulation rela-
tions. The previous chapter proposed a simulation relation for Updatable Timed
Automata. However, only having a simulation relation available for a class of au-
tomata is not enough for using the reachability algorithm (Algorithm 1) for that
class of automata. Another important step remains.

The nodes of the zone graph are pairs consisting of a state of the input automaton
and a zone. A node n1 is simulated by another node n2 only if the states present
in both the nodes are the same and the zone present in n1 is simulated by the zone
present in n2. A state q of the input automaton is said to be reachable from a node
n of the zone graph, if a node containing q is reachable from the node n. The idea
to keep the zone graph finite is to not add ‘unnecessary’ nodes. That is, add a node
to the zone graph only if some state is reachable from this new node that is not
reachable from any other nodes (having the same state) present in the zone graph.
This ‘necessity’ is precisely captured by simulation relations. A new node is not
necessary to be added to the zone graph if it is simulated by another node present
in the graph. This chapter describes how to check if this simulation holds or not.

The reason behind using a simulation relation is to ensure finiteness of the zone
graph. But, not every simulation relation ensures finiteness. When simulation
relations are ‘finite’, they guarantee finiteness of the zone graph built using that
relation. Finiteness of a simulation relation means the following – every infinite se-
quence of zones contains two zones such that one zone is simulated by the preceding
zone. This property therefore implies that when a finite simulation relation is used,
the zone graph produced by the reachability algorithm is also finite. Section 4.1
proves that the relation vG is finite when G is finite.

Whenever a new node gets discovered by the reachability algorithm, before
adding it to the zone graph, it is checked first if it is simulated by any of the nodes
already present in the graph. Therefore, the simulation relation is used frequently
by the overall reachability algorithm. If this relation cannot be checked efficiently,

59

Chapter 4. Algorithm for checking simulation

then clearly it will impact the overall performance of the reachability algorithm.
An efficient algorithm for checking the simulation relation is therefore desired.

One reason behind the popularity of the LU simulation relation (vLU), defined
by Behrmann et al. in [BBLP06] for diagonal-free Timed Automata, is the efficiency
of checking this relation. The tools for checking reachability in diagonal-free Timed
Automata including UPPAAL [LPY97] and TChecker [HP] use this LU simulation
relation. Herbreteau et al. showed in [HSW16] that whether a zone is simulated
by another with respect to vLU , can be checked in quadratic time. Chapter 3
proved that the relation vG becomes a simulation relation (with appropriate G)
for diagonal-free Timed Automata. Moreover, it also showed that the relation vG

relates more (valuations and hence more) zones than vLU . A question therefore
may arise at this point: does this improvement make checking the relation vG

more difficult? Section 4.2 provides an algorithm for checking this relation in the
restricted class of diagonal-free Timed Automata. It turns out, if the relation vG

does not hold between two zones, then it is due to at most two (non-diagonal)
constraints present in G. Therefore, vG can also be checked in quadratic time in
the diagonal-free case, matching the theoretical complexity of checking vLU .

Finally, the main aim of devising an algorithm for checking the relationvG, when
the input automaton contains diagonal constraints, is considered in Section 4.3. The
algorithm to be proposed in this section, makes use of the algorithm devised for
the diagonal-free case. It will be shown that if the set G contains d many diagonal
constraints, then whether a zone is related to another zone with respect to vG, can
be decided by checking O(2d)-many vGnd relations between different zones, where
the set Gnd consists of all the non-diagonal constraints present in G. The existing
algorithms for handling diagonal constraints all contain a step causing mandatory
exponential blowup. Although checking vG relation still comes with an exponential
cost, this cost occurs in the worst case and in other situations it might be possible
to conclude if this relation holds or not rather quickly. Is this exponential cost
inevitable in the worst case? The final Section 4.4 talks about this. This section
proves that deciding if vG does not hold between two zones is NP-complete. This
is proved by showing a polynomial time reduction from the 3-SAT problem.

The algorithms and results provided in this chapter are for the relation vG where
G is an arbitrary finite set of atomic constraints. Therefore, the contents of this
chapter also hold when G is a specific set of atomic constraints, in particular, when
G is part of a reduced A-map. On the other hand, whether the underlying input
automaton contains updates or not is not relevant for this chapter. Having updates
only modifies how the successor nodes are computed while building the zone graph
and does not alter when the relation vG holds and when it does not.

4.1 The relation vG is finite

A relation v is said to be finite if for every sequence of zones {Z1, Z2, Z3, . . . }
there exist two zones Zi and Zj with i > j, such that, Zi v Zj. The finiteness
of a simulation relation guarantees the termination of the reachability algorithm
employing that relation. As a first step towards making the relation vG (introduced

60

4.1. The relation vG is finite

and discussed in Chapter 3) suitable for use in a reachability algorithm, this section
proves that the relation vG is finite, when G is a finite set of atomic constraints.

Theorem 4.1. Given a finite set of atomic constraints G, the relation vG is finite.

Given a zone Z, define the set ↓GZ to be {v | ∃v′ ∈ Z. v vG v′}. For two
zones Z1, Z2, if Z1 6vG Z2 then ↓GZ1 6= ↓GZ2. Similarly, given a valuation v, ↑Gv
denotes the set {v′ | v vG v′}. For notational convenience, henceforth, whenever
the underlying set G will be clear from context, only ↓Z and ↑v will be used.

Theorem 4.1 will be proved following the schema presented below:

Define an equivalence relation over the set of all valuations
(Definition 4.2)

↓
Number of equivalence classes (of that relation) is finite

(Lemma 4.3)
↓

Each ↓Z is a union of those equivalence classes
(Lemma 4.7)

↓
There are only finitely many different ↓Z

↓
Theorem 4.1

The following is a relation between two valuations, given a constant M ∈ N.
The idea is to relate the “equivalent” valuations with respect to satisfaction of
constraints whose constants are smaller than M .

Definition 4.2 (the relation 'M). Given two valuations v, v′, v 'M v′ holds if the
following conditions hold for every integer 0 ≤ c ≤M and 0 ≤ c′ < M :

1. for every pair of (distinct) clocks x, y:

(a) v(x)− v(y) = c iff v′(x)− v′(y) = c,
(b) c′ < v(x)− v(y) < c′ + 1 iff c′ < v′(x)− v′(y) < c′ + 1,
(c) v(x)− v(y) > M iff v′(x)− v′(y) > M ,

2. for every clock x:

(a) v(x) = c iff v′(x) = c,
(b) c′ < v(x) < c′ + 1 iff c′ < v′(x) < c′ + 1,
(c) v(x) > M iff v′(x) > M .

Given a finite set of atomic constraints G, let MG be the maximum constant
among all the constants present in the constraints belonging to G. To keep the
notation simple, let 'G denote relation in Definition 4.2 with M = MG.

Lemma 4.3. Given a finite set of atomic constraints G, the relation 'G is an
equivalence relation of finite index.

61

Chapter 4. Algorithm for checking simulation

Proof. Definition 4.2 implies that the relation 'G is an equivalence relation.
Given a finite set of atomic constraints G, let MG denote the maximum constant

present in the constraints ofG. Consider the set Φ := Φxy∪Φx, where Φxy = {x−y =
c, c′ < x−y < c′+1, x−y > MG | x, y are non-zero clocks, c, c′ ∈ N, c ≤MG, c

′ <
MG} and Φx = {x = c, c′ < x < c′ + 1, x > MG | x is a non-zero clock, c, c′ ∈
N, c ≤ MG, c

′ < MG}. From Definition 4.2 it can be seen that, each equivalence
class of 'G is defined by picking a constraint from Φxy for every pair of distinct
non-zero clocks x, y and a constraint from Φx for every non-zero clock x. Since
there are only finitely many clocks and Φxy and Φx both are finite, so is the number
of equivalence classes of 'G.

The relation'G therefore partitions the space of all valuations. Each equivalence
class of the relation 'G will be called a G-region. The aim now is to show that for
every zone Z, the set ↓Z is a union of G-regions (Lemma 4.7). This will be proved
using a reformulation of the set ↓Z. Note, if a valuation v /∈ ↓Z for some zone Z,
then for every valuation v′ satisfying v vG v′, v′ 6∈ Z. Then from the definitions
of the sets ↓Z and ↑v it follows that v 6∈ ↓Z if and only if ↑v ∩ Z = ∅. It will be
shown that if v 'G v

′ then for every zone Z, ↑v ∩ Z 6= ∅ if and only if ↑v′ ∩ Z 6= ∅
(Lemma 4.6). This result will imply that if a G-region intersects ↓Z, for some zone
Z, then the G-region is in fact a subset of ↓Z proving that ↓Z is a union of G-
regions. Before proving Lemma 4.6 the distance graph (see Page 22) representation
of the set ↑v is presented below.

Due to Corollary 3.6 and Corollary 3.10, it will be assumed throughout this
chapter that the set of atomic constraints G contains at most one upper and at
most one lower bound non-diagonal constraint per clock. This restriction cannot
be assumed for diagonal constraints however, G may contain multiple upper and
lower bound constraints involving the difference x− y, for example.

The graph G↑v to be constructed below, is the distance graph representation
of the set ↑v, given a valuation and a finite set of atomic constraints G. The
construction of G↑v needs to ensure: whenever a valuation satisfies all the constraints
of G↑v, the valuation belongs to the set ↑v and vice versa (Lemma 4.4).

Let all the upper-bound diagonals in G involving the difference x − y, that v
satisfies, be the set Gu

xy := {x− y /1 c1, x− y /2 c2, . . . , x− y /k ck}. Let (/, c)
be such that (/, c) = min{(/i, ci) | x − y /i ci ∈ Gu

xy}. Then, for every valuation
v′ |= x − y / c ⇐⇒ v′ |= ϕ, for every ϕ ∈ Gu

xy. Therefore, every valuation in ↑v
needs to satisfy the constraint x− y / c. This is encoded in the edge in Figure 4.1.

(/, c)

y x

Figure 4.1: ↑v contains the constraint x− y / c

Let all the lower-bound diagonals in G involving the difference x − y, that v
satisfies, be the set G`

xy := {d1 /1 x− y, d2 /2 x− y, . . . , dj /j x− y}. Let (/, d) be
such that d = max{di | di /i x− y ∈ G`

xy} and / = < if d < x− y ∈ G`
xy, otherwise

62

4.1. The relation vG is finite

/ = ≤. Then again v′ |= d / x − y ⇐⇒ v′ |= ϕ for every ϕ ∈ G`
xy. The edge in

Figure 4.2 encodes this constraint d / x− y.

(/,−d)
y x

Figure 4.2: ↑v contains the constraint d / x− y

Now, consider the non-diagonal constraints present in G. Since G contains
at most one upper bound non-diagonal constraint involving x, let G contains the
constraint ϕ := x / c. If the valuation v 6|= ϕ, then no constraint needs to be
imposed on ↑v, hence no edges in the graph G↑v. Whereas, if v |= ϕ, then whenever
a valuation v′ satisfies v vG v

′, the inequality v′(x) ≤ v(x) must hold (Theorem 3.5).
Also, since valuations always map clocks to non-negative values, v′(x) ≥ 0 needs to
hold as well. These two conditions are encoded in the pair of edges in Figure 4.3.

(≤, v(x))

(≤, 0)
0 x

Figure 4.3: every v′ ∈ ↑v must satisfy 0 ≤ v′(x) ≤ v(x)

Lastly, consider the lower bound non-diagonals present in G. If G contains no
lower bound non-diagonal involving y, then no constraint needs to be imposed on
↑v. Otherwise, assume G contains the constraint d / y. If v 6|= d / y, then, in order
for a valuation v′ to satisfy v vG v

′, v′ needs to satisfy v(y) ≤ v′(y) (Lemma 3.8).
This constraint v(y) ≤ v′(y) translates to the edge in Figure 4.4.

(≤,−v(y))
0 y

Figure 4.4: every v′ ∈ ↑v must satisfy v(y) ≤ v′(y)

Otherwise, if the valuation v |= d / y then due to Lemma 3.7, whenever a
valuation v′ satisfies v vG v′, the valuation v′ |= d / y as well. This condition
translates to the edge depicted in Figure 4.5.

Note that, every blue edge (→) in G↑v has integer weight. Whereas, every red
edge (→) has weight in terms of the valuation v, which may not be an integer.

The following Lemma proves that, the graph G↑v correctly represents the set ↑v.
To recall the notation [[G↑v]] (from Page 22) used in the following lemma, the set
[[G↑v]] consists of valuations that satisfy each of the constraints encoded in G↑v.

Lemma 4.4. Let v and v′ be two valuations. Then, v′ ∈ [[G↑v]] iff v vG v
′.

Proof. (⇒) Let v′ ∈ [[G↑v]]. Due to Proposition 3.3, in order to prove v vG v
′, it is

sufficient to show that v v{ϕ} v′ for every constraint ϕ ∈ G.

63

Chapter 4. Algorithm for checking simulation

(/,−d)
0 y

Figure 4.5: ↑v contains the constraint d ≤ y

Let ϕ ∈ G be a diagonal constraint of the form x − y /xy cxy. If v 6|= ϕ, then
the relation v v{ϕ} v′ holds trivially. On the other hand, if v |= ϕ then from the
construction in Figure 4.1 it follows that (/, c) ≤ (/xy, cxy), where (/, c) is the weight
of the edge y → x in G↑v. Then, since v′ ∈ [[G↑v]], the valuation v′ |= x− y / c and
hence v′ |= x− y /xy cxy. Similar argument holds if ϕ is of the form dxy /xy x− y.
Hence, in both of the cases v v{ϕ} v′.

Let ϕ ∈ G be of the form x /x cx. If v 6|= ϕ, then for every δ ∈ R≥0 also v+δ 6|= ϕ.
Hence, the relation v v{ϕ} v′ holds trivially. Otherwise, if v |= ϕ then the edges
in Figure 4.3 are present in the graph G↑v. Since the valuation v′ satisfies these
constraints, 0 ≤ v′(x) ≤ v(x) holds and therefore Theorem 3.5 implies v v{ϕ} v′.

Lastly, let ϕ := dy /y y ∈ G. If v 6|= ϕ then the graph G↑v contains the edge
depicted in Figure 4.4. Since v′ satisfies this constraint, v′(y) ≥ v(y). Therefore,
from Theorem 3.9 it follows that v v{ϕ} v′. On the other hand, assume v |= ϕ.
If there exist some other constraint ϕ′ := d′y /

′
y y ∈ G such that v 6|= ϕ′ then

the edge in Figure 4.4 still exist in the graph G↑v and therefore the result holds.
Otherwise, if for every ϕ := dy /y y ∈ G, v |= ϕ, then the graph G↑v contains the
edge of Figure 4.5. Again, since v′ satisfies this constraint, v′ |= d / y and therefore
v′ |= dy /y y, for every dy /y y ∈ G. Hence, due to Theorem 3.9, v v{ϕ} v′ holds in
this case as well.

(⇐) Assuming v vG v
′ it is required to show that v′ ∈ [[G↑v]], that is, v′ satisfies

all the constraints present in G↑v. Since v vG v
′, for every diagonal constraint ϕ,

v |= ϕ implies v′ |= ϕ. Therefore, if the graph G↑v contains the constraints depicted
in Figure 4.1 and Figure 4.2, then v′ satisfies these. If G contains a constraint
x / c such that v |= x / c, then since v vG v′, from Theorem 3.5 it follows that
0 ≤ v′(x) ≤ v(x). Therefore, if G↑v contains the constraints depicted in Figure 4.3,
then v′ satisfies these. Lastly, if G contains a constraint of the form d / y such
that v 6|= d / y, then since v vG v

′, it must hold that v′(y) ≥ v(y) (Lemma 3.8).
Therefore, v′ satisfies the constraint depicted in Figure 4.3. On the other hand,
if for every ϕ := dy /y y ∈ G, the valuation v |= ϕ then it means v |= d / y as
well. Then again, since v vG v

′, it must hold that v′ |= d / y (due to Lemma 3.7).
Therefore, v′ satisfies the constraint depicted in Figure 4.5. Hence, the valuation v′

satisfies all the constraints of G↑v whenever v vG v
′.

An observation can be made at this point about the structure of two graphs
G↑v and G↑v′ , when the valuations v, v′ belong to the same G-region. The following
result describes a similarity between these two graphs.

Lemma 4.5. If v, v′ are two valuations such that v 'G v
′, then every blue edge in

G↑v has the same weight as the corresponding edge in the graph G↑v′.

Proof. Consider the edge depicted in Figure 4.1. Choose a diagonal constraint
ϕ := x−y / c ∈ G. If v |= ϕ, then due to the conditions 1a and 1b of Definition 4.2,

64

4.1. The relation vG is finite

v′ |= ϕ. Therefore, v′ satisfies the same set of diagonal constraints that v does.
Hence, G↑v′ contains the edge of Figure 4.1 with the same weight as G↑v. Similar
argument holds for the type of edge depicted in Figure 4.2. The blue edge in
Figure 4.3 is trivial, this will be present in G↑v′ as well. Lastly, consider the edge
depicted in Figure 4.5. The presence of this edge in G↑v means v |= dy /y y for every
lower bound non-diagonal constraint dy /y y present in G. The conditions 2a and
2b of Definition 4.2 now imply that v′ also satisfies all these constraints. Therefore,
G↑v′ contains the edge (of type Figure 4.5) with the same weight as in G↑v.

Given a zone Z, let GZ be the distance graph representation of Z. Lemma 2.13
showed that the graph min(G↑v,GZ) represents the set [[G↑v]] ∩ [[GZ]], which is same
as the set ↑v ∩ Z (since ↑v = [[G↑v]], thanks to Lemma 4.4). Due to Lemma 2.12,
the set ↑v ∩ Z is empty if the graph min(G↑v,GZ) contains a negative cycle. The
following Lemma proves that if min(G↑v,GZ) contains a negative cycle, then for every
valuation v′ satisfying v 'G v′, the graph min(G↑v′ ,GZ) also contains a negative
cycle. The intuition behind the proof is that every blue edge present in G↑v is
also present in G↑v′ (Lemma 4.5) and every red edge of G↑v, when replaced by the
corresponding edge from G↑v′ , keeps a negative cycle negative.

Lemma 4.6. Let v, v′ be two valuations such that v 'G v
′. Then, for every zone

Z, if ↑v ∩ Z = ∅ then ↑v′ ∩ Z = ∅.

Proof. Let ↑v ∩ Z = ∅. Due to Lemma 4.4, [[G↑v]] = ↑v. The graph min(G↑v,GZ)
contains a simple negative cycle, call it C. Let gray (→) edges in C be edges of GZ
and all red (→) and blue (→) edges be from G↑v. The → edges contain integral
weights, whereas, the → edges contain weights in terms of the valuation v, with
possibly non-integer values. Note, every → edge in the graph G↑v (Figure 4.3 and
Figure 4.4) is either outgoing or incoming to the vertex corresponding to the zero
clock 0. Therefore, the cycle C can contain atmost two → edges.

If C contains no→ edge then this Lemma follows from the previous Lemma 4.5.
Suppose C contains a single → edge. If C contains the red edge in Figure 4.3 with
weight (≤, v(x)), then it means G contains a constraint x / c and the valuation
v |= x / c, therefore v(x) / c ≤ MG. Since v 'G v

′, it follows from Definition 4.2
that bv(x)c = bv′(x)c. This implies v′ |= x / c as well, and hence G↑v′ also contains
this red edge. On the other hand, if C contains the red edge in Figure 4.4 with weight
(≤,−v(y)), then G must contain a constraint d / y and v 6|= d / y. This also implies
v(y) ≤ d ≤ MG. Again, since v 'G v

′, Definition 4.2 implies that bv(y)c = bv′(y)c.
Thus, v′ 6|= d / y and G↑v′ contains this red edge as well. Moreover, in either of the
two cases, when the weight of the red edge in C is replaced by the weight of the
corresponding edge in G↑v′ , the cycle C remains negative.

Now consider the case when C contains two → edges. In this case, the cycle C
is of the form as depicted in Figure 4.6. The weight of the edge x ← 0 is (≤, v(x))
(Figure 4.3) and the weight of the edge 0 ← y is (≤,−v(y)) (Figure 4.4).

The claim is: this cycle C can be modified into a cycle C ′ that – (i) belongs to
min(G↑v′ ,GZ), and (ii) is also negative. This will then imply that ↑v′∩Z = ∅. Since
the weights of the → edges are same in the graph G↑v′ as in G↑v (Lemma 4.5) these
→ as well as the → edges will be present in the graph min(G↑v′ ,GZ) as well. Let C ′

65

Chapter 4. Algorithm for checking simulation

0 yx

· · ·

Figure 4.6: Negative cycle C present in ↑v ∩ Z

be the cycle C, with only the → edges replaced with the weights from G↑v′ in place
of the weights from G↑v. These → edges are present in min(G↑v,GZ) since (≤, v(x))
and (≤,−v(y)) are lesser than the weight of the corresponding edges in GZ . Also,
as argued in the single red edge case, the existence of these two red edges in the
graph G↑v means v(x) ≤ MG and v(y) ≤ MG, respectively. Since bv(z)c = bv′(z)c
for every clock z such that v(z) ≤ MG and GZ contains only integral weights, the
pairs (≤, v′(x)) and (≤,−v′(y)) will still remain smaller than the weight of the
corresponding edges in GZ . Therefore, these new → edges, with the weights being
(≤, v′(x)) and (≤,−v′(y)) respectively, belong to the graph min(G↑v′ ,GZ) as well.
The goal now is to show that the sum of the weights of edges of C ′ is also negative.

Let SC denote the sum of the edges of C, SC′ denote the sum of the edges of C ′ and
S denote the sum of the non-red edges in C. Note that the sum of the non-red edges
in C ′ is also S (due to Lemma 4.5). Since every non-red edge has integral weight, the
constant present in S is an integer. Assuming SC < 0, the aim is to show SC′ < 0.
Now, the sum SC = S + (≤, v(x)) + (≤,−v(y)) = S + (≤, v(x)− v(y)). Note that,
since v(x) ≤ MG and v(y) ≤ MG, the difference v(x) − v(y) ≤ MG as well. Now,
if v(x)− v(y) ≥ 0 then Definition 4.2 implies that bv(x)− v(y)c = bv′(x)− v′(y)c.
Otherwise, if v(x) − v(y) < 0 then 0 < v(y) − v(x) ≤ MG holds and therefore
Definition 4.2 again implies bv(x) − v(y)c = bv′(x) − v′(y)c. Since the constant
present in S is an integer and SC < 0 it follows that SC′ < 0 as well.

Therefore, C ′ is also a negative cycle and hence ↑v′ ∩ Z = ∅.

The above lemma implies that for every zone Z, the set ↓Z is a union of G-
regions (stated formally and proved in Lemma 4.7).

Lemma 4.7. Given a zone Z, the set ↓Z is a union of G-regions. In other words,
if a G-region R is such that R ∩ ↓Z 6= ∅ then R ⊆ ↓Z.

Proof. Since R ∩ ↓Z 6= ∅, let v ∈ R ∩ ↓Z. Let v′ be a valuation such that v′ ∈ R
but v′ 6∈ ↓Z. This means that ↑v′ ∩ Z = ∅. Lemma 4.6 then implies ↑v ∩ Z = ∅ as
well. This contradicts the assumption that v ∈ ↓Z.

The above lemma, along with the fact that there are only finitely many distinct
G-regions (Lemma 4.3), proves that the relation vG is finite (Theorem 4.1).

Proof (of Theorem 4.1). Assume the relation vG is not finite. Then, there exists
an infinite sequence of zones Z := {Z1, Z2, Z3, . . . } such that for every pair of
integers i > j, Zi 6vG Zj. Now, Zi 6vG Zj means there exists v ∈ Zi such that
v /∈ ↓Zj. Therefore, ↓Zi 6= ↓Zj. Then, for every pair of zones Zi, Zj in Z with

66

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

i > j, ↓Zi 6= ↓Zj. This means there are infinitely many different ↓Z’s. But, the sets
↓Z are unions of G-regions (Lemma 4.7) and there are only finitely many G-regions
(Lemma 4.3). This is a contradiction. Therefore, vG must be finite.

Having established the finiteness of the relation Z vG Z
′, the focus now turns

to finding ways of checking when this relation actually holds. First up: the case
when G contains only non-diagonal constraints. To emphasize this restriction on
G, the next section will use the notation Gnd instead of G.

4.2 Checking Z vGnd Z ′ where Gnd is diagonal-free

This section considers the following problem: given two non-empty canonical zones
Z,Z ′ and a finite set of non-diagonal constraints Gnd, how to check if Z vGnd Z

′?
This section proposes Algorithm 5 for checking this relation through characterizing
the negation of this relation. This algorithm will then be used in the next section
to devise an algorithm for checking the relation Z vG Z

′, when the set G will also
be allowed to contain diagonal constraints.

The zones that will be considered throughout this section will be canonical, and
therefore Proposition 2.11 will be referred to in various proofs. Given a canonical
zone Z and two (possibly zero) distinct clocks x, y, the notation Zxy (described on
Page 21) will be used to denote the pair (/xy, zxy), that is, the constraint y−x /xy zxy
present in Z. Also, due to Corollary 3.6 and Corollary 3.10, it will be assumed that
Gnd contains at most one lower and one upper bound constraint per clock.

The following theorem is the basis on which the algorithm for checking Z 6vGnd Z
′

will be built upon. This result implies that if Z 6vGnd Z
′, then the “non-relation”

is due to at most two constraints of Gnd. That is, if Z 6vGnd Z
′ then either there

is a constraint ϕ ∈ Gnd for which Z 6v{ϕ} Z ′ or there exist two constraints (one
upper-bound and one lower-bound) ϕu, ϕ` in Gnd such that Z 6v{ϕu,ϕ`} Z

′.

Theorem 4.8. Let Z,Z ′ be two non-empty canonical zones and Gnd = Gu ∪ G`

be a finite set of non-diagonal constraints with Gu containing only upper bound
constraints and G` containing only lower bound constraints. Then, Z vGnd Z

′ iff
the following two conditions hold:

1. Z v{ϕ} Z ′ for every ϕ ∈ Gnd, or

2. Z v{ϕu,ϕ`} Z
′ for every ϕu ∈ Gu and ϕ` ∈ G`.

Proof. (⇒) If Z vGnd Z
′, then since {ϕ} ⊆ Gnd for every ϕ and also {ϕu, ϕ`} ⊆ Gnd

for every ϕu ∈ Gu, ϕ` ∈ G`, Proposition 3.2 implies Z v{ϕ} Z ′ and Z v{ϕu,ϕ`} Z
′.

(⇐) Assume Z v{ϕ} Z ′ for every ϕ ∈ Gnd and Z v{ϕu,ϕ`} Z
′ for every pair

ϕu ∈ Gu and ϕ` ∈ G`. The goal is to show Z vGnd Z
′. Assume v ∈ Z. It is

sufficient to show that Z ′ contains a valuation v′ such that v vGnd v
′. This will be

proved by showing that the distance graph (see Page 22 for details about distance
graphs) representing the zone ↑v ∩ Z ′ cannot contain a negative cycle.

67

Chapter 4. Algorithm for checking simulation

To recall, given a finite set of atomic constraints (possibly containing diagonal
constraints) G, ↑Gv denotes the set of all valuations v′ satisfying v vG v′. The
distance graph representation of ↑Gv has been presented in Lemma 4.4. Since this
section deals with the set Gnd containing only non-diagonal constraints, for the
rest of this section, ↑v will denote the set of all valuations v′ such that v vGnd v

′.
The distance graph G↑v representing ↑v will be a subgraph of the distance graph
representing ↑Gv, described on Page 62. Only the edges described in Figure 4.3,
Figure 4.4 and Figure 4.5 can be present in G↑v. The edges described in Figure 4.1
and Figure 4.2 are based on diagonal constraints and therefore are not part of G↑v.

G↑v contains no other type of edge. The fact that the graph G↑v correctly
represents ↑v is stated in Lemma 4.4. The graph min(G↑v, Z

′) represents the set
↑v ∩ Z ′ (Lemma 2.13). Note that, every edge present in G↑v is either incoming or
outgoing from 0. Therefore, every (simple) cycle in min(G↑v, Z

′) can contain atmost
two edges coming from the graph G↑v.

Moreover, since the zone Z ′ is canonical, in every negative cycle in min(G↑v, Z
′),

every sequence of edges x1
Z′x1x2−−−→ x2

Z′x2x3−−−→ x3 → · · · → xn−1
Z′xn−1xn−−−−−→ xn can be

replaced with the edge x1
Z′x1xn−−−→ xn and the cycle would remain negative, since the

weight of this single edge is at most the sum of the weights of the edges present
in the sequence. Therefore, it can be assumed that no two consecutive edges (in a
negative cycle) come from Z ′. Also, since v ∈ ↑v and ↑v 6= ∅, no negative cycle in
min(G↑v, Z

′) can consist entirely of edges from G↑v. Similarly, since Z ′ is assumed
to be non-empty, no negative cycle can consist entirely of edges from Z ′ either.

These observations altogether imply that, if the graph min(G↑v, Z
′) contains a

negative cycle, it must be one of the cycles depicted in Figure 4.7a or 4.7b or 4.8
or 4.9a or 4.9b. In these cycles, the gray edges are from Z ′ and the remaining
edges are from G↑v. The weight of the edge 0 → x is (≤, v(x)) (according to
Figure 4.3). The weight of the edge y → 0 is either (/2,−d) (according to Figure 4.5)
or (≤,−v(y)) (according to Figure 4.4). The weight of the gray edge in each of these
cycles is the weight of the corresponding edge present in Z ′.

(≤, v(x))

(/2,−d)

Z ′xy

0 x y

(a) the valuation v |= x /1 c and
v |= d /2 y; the edge y → 0 has
weight (/2,−d)

(≤, v(x))

(≤,−v(y))

Z ′xy

0 x y

(b) the valuation v |= x /1 c but
v 6|= d /2 y; the edge y → 0 has
weight (≤,−v(y))

Figure 4.7: cycle in min(G↑v, Z
′) containing two edges from G↑v; the set Gnd contains

two constraints x /1 c and d /2 y

The claim now is that none of these cycles can be negative. Note that, the
edges of the cycles in Figure 4.7a and Figure 4.7b get determined by only two
constraints x /1 c and d /2 y. To explain this observation, consider G′ to be the set
containing only these two constraints, that is G′ = {x /1 c, d /2 y}. Also, let ↑G′v

68

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

(≤, v(x))

Z ′x0

0 x

Figure 4.8: cycle in min(G↑v, Z
′) with 0 → x edge from G↑v; the set Gnd contains

the constraint x /1 c and v |= x /1 c

Z ′0y

(/2,−d)
0 y

(a) y → 0 has weight (/2,−d); the
valuation v |= d /2 y

Z ′0y

(≤,−v(y))
0 y

(b) y → 0 has weight (≤,−v(y));
the valuation v 6|= d /2 y

Figure 4.9: cycle in min(G↑v, Z
′) with y → 0 edge from G↑v; G

nd contains the
constraint d /2 y

denote the set of all valuations v′ such that v vG′ v′ and G′↑v be the distance graph

representing ↑G′v. Then, the two cycles in Figure 4.7 will also be a part of the
graph min(G′↑v, Z

′). This implies that neither of these two cycles can be negative,
because otherwise Z 6v{x/c,d/y} Z ′, which contradicts the assumption of the lemma.

Similarly, the cycle in Figure 4.8 gets determined by the constraint x /1 c. That
is, if G′ = {x /1 c} and G′↑v is the distance graph representing ↑G′v then this
cycle will also be present in the graph min(G′↑v, Z

′). Therefore, this cycle can also
not be negative, since for every ϕ ∈ G, the relation Z v{ϕ} Z ′ holds. The same
argument holds for the cycles in Figure 4.9a and 4.9b. These two cycles are due to
the constraint d /2 y and hence these cannot be negative as well.

Since these exhaust the set of all possible cycles in the graph min(G↑v, Z
′) and

none of these cycles can be negative, ↑v ∩ Z ′ 6= ∅. Now, since v is an arbitrary
valuation in Z, it follows that Z vGnd Z

′. This proves the theorem.

Theorem 4.8 reduces the problem of checking Z vGnd Z
′ into two “smaller”

checks: (i) Z v{ϕ} Z ′ for every ϕ ∈ Gnd or (ii) Z v{ϕu,ϕ`} Z
′ for every (ϕu, ϕ`) ∈

Gu×G`. However, the problem remains: given Z and Z ′, how to check if these two
“smaller” relations hold? The next three sections are devoted to this. Section 4.2.1
states the necessary and sufficient conditions that the two zones Z and Z ′ need
to satisfy, so that Z 6v{x/1c} Z ′ holds. Similarly, Section 4.2.2 considers the lower
bound constraint d /2 y and characterizes Z 6v{d/2y} Z ′. Lastly, Section 4.2.3 deals
with the two constraints’ case. It states the conditions that imply (and are implied
by) Z 6v{x/1c, d/2y} Z ′. These three results are then put together in Section 4.2.4 to
devise an overall algorithm for checking Z vGnd Z

′.

69

Chapter 4. Algorithm for checking simulation

4.2.1 Checking Z 6v{x/1c} Z
′

The goal of this section is to characterize the non-relation Z 6v{ϕ} Z ′, when ϕ
is an upper bound constraint x /1 c. For the rest of this section, fix two non-
empty canonical zones Z,Z ′ and the constraint x /1 c. The following proposition
provides two “independent” conditions, that together imply Z 6v{x/1c} Z ′. By the
word “independent” it is meant that the two conditions (present in the following
proposition) require the existence of two possibly different valuations in Z.

Proposition 4.9. Z 6v{x/1c} Z ′ iff the following two conditions hold:

1. ∃v1 ∈ Z such that v1 |= x /1 c, and

2. ∃v2 ∈ Z such that v2(x) < v′2(x), for all v′2 ∈ Z ′.

Proof. (⇒) Assume Z 6v{x/1c} Z ′. From Definition 3.4 it follows that: ∃v ∈ Z such
that ∀v′ ∈ Z ′, v 6v{x/1c} v′. Now, Theorem 3.5 implies that firstly v |= x /1 c and
also for every v′2 ∈ Z ′, the inequality v(x) < v′2(x) holds. Here the valuation v
serves as both v1 and v2 mentioned in the proposition.

(⇐) If v2 |= x /1 c, then v2 6v{x/1c} v′2 for every v′2 ∈ Z ′ (due to Theorem 3.5).
Hence Z 6v{x/1c} Z ′. Otherwise, v2 6|= x /1 c, that is c /1 v2(x). From the assumption
in this proposition: v1(x) /1 c and v2(x) < v′2(x), for every v′2 ∈ Z ′. Coupled with
c /1 v2(x), this gives v1(x) < v′2(x) for all v′2 ∈ Z ′. Hence, again from Theorem 3.5
it follows that v1 6v{x/1c} v′2, thereby giving Z 6v{x/1c} Z ′.

Thanks to the previous proposition, the non-relation Z 6v{x/1c} Z ′ can now be
ascertained by checking existence of two valuations satisfying the two conditions
mentioned in the proposition. However, since zones contain infinitely many valua-
tions it is still not clear how to check if these two conditions are indeed satisfied by
Z and Z ′. Two results will be presented next that formulate two conditions over
Z,Z ′ that will be (necessary and) sufficient to conclude Z 6v{x/1c} Z ′.

Please recall the arithmetic defined (on Page 21) over the pairs (/, z) where
/ ∈ {<,≤} and z ∈ Z. This will be used in the proofs that follow.

The first condition mentioned in Proposition 4.9 requires the zone Z to contain
a valuation v such that v |= x /1 c. To give an intuition about how to check the
existence of such a valuation v, let Z be the zone {2 ≤ x, 1 ≤ y, y ≤ 4, x− y ≤ 3}
and the given constraint be x ≤ 3. The question is: does Z contain a valuation v
such that v |= x ≤ 3? The answer to this question only depends on the constraint,
describing the zone Z, that gives a lower-bound on the clock x. In this example,
this constraint is 2 ≤ x. Since [[2 ≤ x]] ∩ [[x ≤ 3]] 6= ∅ there indeed exists the
valuation v, mapping x 7→ 2 and y 7→ 3, in the zone Z that also satisfies the
constraint x ≤ 3. This condition “[[2 ≤ x]] ∩ [[x ≤ 3]] 6= ∅” can be rewritten
as “(≤, 3) + (≤,−2) ≥ (≤, 0)”. The first pair in the sum comes from the given
constraint x ≤ 3 and the second pair comes from the constraint 2 ≤ x present in
Z. Note that, if the given constraint is x < 2 instead, then Z does not contain
any valuation satisfying this constraint, since for every valuation v ∈ Z, the value
v(x) ≥ 2. In this case, in terms of the sum of pairs, (<, 2) + (≤,−2) 6≥ (≤, 0). The
following lemma generalizes this condition for an arbitrary zone Z.

70

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

Lemma 4.10. ∃v ∈ Z such that v |= x /1 c iff (/1, c) + (/x0, zx0) ≥ (≤, 0).

Proof. (⇒) Assume there exists v ∈ Z such that v |= x /1 c. This means the zone
Z ∩ {x /1 c} 6= ∅. Now, consider the distance graph representation G of the zone
Z ∩ {x /1 c}. Since the zone Z is non-empty, G cannot contain a negative cycle
involving only edges from Z. Therefore, every possible negative cycle must contain
the edge corresponding to the constraint x /1 c. Also, since Z is canonical, two
consecutive edges from Z can be replaced by one. Hence, G contains a negative
cycle if and only if there exists a negative cycle with only two edges with one of

them being 0
(/1,c)−−−→ x, that is, the cycle depicted in Figure 4.10.

(/1, c)

(/x0, zx0)
0 x

Figure 4.10: possible negative cycle in Z ∩ {x /1 c}

Since the zone Z ∩ {x /1 c} is non-empty, the cycle depicted in Figure 4.10
cannot be negative, that is (/1, c) + (/x0, zx0) ≥ (≤, 0).

(⇒) Conversely, if (/1, c) + (/x0, zx0) ≥ (≤, 0) then the cycle depicted in Fig-
ure 4.10 is not negative and therefore Z ∩ {x /1 c} 6= ∅. Hence, there exists v ∈ Z
such that v |= x /1 c.

A similar condition over the zones Z,Z ′ is required for the second condition
mentioned in Proposition 4.9. This condition requires the zone Z to contain a
valuation v such that for every valuation v′ in Z ′, the inequality v(x) < v′(x) holds.
Note that Z will contain such a valuation if the lower bound for the clock x in Z is
smaller than that of Z ′. In that case, it will be possible to find a valuation in Z for
which the value of x is strictly smaller than the lower bound (for x) allowed in Z ′.
For example, consider two zones Z = {2 < x, . . . } and Z ′ = {3 ≤ x, . . . }. Here, Z
indeed contains a valuation v for which v(x) = 2.5 and for every v′ ∈ Z ′, the value
v(x) = 2.5 < 3 ≤ v′(x). Also, in this case (≤,−3) < (<,−2), where the pair on
the left side of the inequality comes from the constraint 3 ≤ x (present in Z ′) and
the pair on the right comes from the constraint 2 < x (present in Z). On the other
hand, if Z ′ = {1 ≤ x, . . . }, then Z ′ contains a valuation v′ for which v′(x) = 1 and
no valuation v belongs to Z for which v(x) < v′(x), since v(x) > 2. Note that, in
this case (≤,−1) 6< (<,−2). This condition is formalized in the following lemma.

Lemma 4.11. ∃v ∈ Z such that ∀v′ ∈ Z ′, v(x) < v′(x) iff (/′x0, z
′
x0) < (/x0, zx0).

Proof. (⇐) Assume (/′x0, z
′
x0) < (/x0, zx0). From this it follows that, either (i) z′x0 <

zx0 or (ii) z′x0 = zx0, /
′
x0 = < and /x0 = ≤. Case (i): z′x0 < zx0 =⇒ −zx0 < −z′x0.

Now, there exists v ∈ Z such that −zx0 < v(x) < −z′x0. Since for every v′ ∈ Z ′,
−z′x0 /′x0 v′(x), it then follows that v(x) < v′(x). Case (ii): since the zone Z is
canonical, there exists v ∈ Z such that v(x) = −zx0 (Proposition 2.11). Then,

71

Chapter 4. Algorithm for checking simulation

v(x) = −zx0 = −z′x0 < v′(x), for every v′ ∈ Z ′. Therefore, in both of the cases,
there exists v ∈ Z such that for every v′ ∈ Z ′, v(x) < v′(x).

(⇒) To prove the contrapositive statement, let (/′x0, z
′
x0) ≥ (/x0, zx0). This

implies z′x0 ≥ zx0. If /′x0 = ≤ then due to Proposition 2.11, Z ′ contains a valuation
v′ such that −v′(x) = z′x0. This implies that for every v ∈ Z, the value −v(x) /x0
zx0 ≤ z′x0 = −v′(x), that is, v′(x) ≤ v(x). On the other hand if /′x0 = < then
(/′x0, z

′
x0) ≥ (/x0, zx0) implies that either (i) z′x0 > zx0 or (ii) z′x0 = zx0 and /x0 = <.

In the first case, again due to Proposition 2.11, Z ′ contains a valuation v′ such
that z′x0 > −v′(x) > zx0. This implies for every v ∈ Z, −v(x) < −v′(x), that is,
v′(x) < v(x). In the second case, for every v ∈ Z there will exist some valuation
v′ ∈ Z ′ such that −v(x) ≤ −v′(x) < z′x0 = zx0 (thanks to Proposition 2.11).
Therefore, there cannot exist v ∈ Z such that ∀v′ ∈ Z ′, v(x) < v′(x).

Lemma 4.10 and Lemma 4.11 can now be combined with Proposition 4.9 to get
a consolidated condition over the two zones Z,Z ′, such that, Z 6v{x/1c} Z ′.

Theorem 4.12. Z 6v{x/1c} Z ′ iff the following two conditions hold:

1. (/1, c) + (/x0, zx0) ≥ (≤, 0), and

2. (/′x0, z
′
x0) < (/x0, zx0).

The proof follows from Proposition 4.9, Lemma 4.10 and Lemma 4.11.

4.2.2 Checking Z 6v{d/2y} Z
′

The previous section provided two conditions over the zones Z,Z ′ that simulta-
neously need to hold in order to imply Z 6v{x/1c} Z ′. The aim of this section is
to provide similar characterization for Z 6v{d/2y} Z ′. The following proposition de-
scribes such a formulation with the help of Theorem 3.9. For the rest of this section,
fix two non-empty canonical zones Z,Z ′ and a constraint d /2 y.

Proposition 4.13. Z 6v{d/2y} Z ′ iff the following two conditions hold:

1. ∀v′ ∈ Z ′, v′ 6|= d /2 y and

2. ∃v ∈ Z such that ∀v′ ∈ Z ′, v′(y) < v(y).

Proof. (⇒) Assume Z 6v{d/2y} Z ′. Then Z contains a valuation v such that v 6∈ ↓Z ′,
that is, for every v′ ∈ Z ′, v 6v{d/2y} v′. Then, for every v′ ∈ Z ′, from Theorem 3.9 it
follows that: (i) v′ 6|= d /2 y and (ii) v′(y) < v(y).

(⇐) Let v ∈ Z be the valuation such that for every v′ ∈ Z ′, v′(y) < v(y).
From Theorem 3.9, for a valuation v′ ∈ Z ′, the relation v v{d/2y} v′ holds only if
v′ |= d /2 y. But the other hypothesis in the lemma does not permit this. Therefore,
for every v′ ∈ Z ′, v 6v{d/2y} v′ holds, proving v /∈ ↓Z ′ and hence Z 6v{d/2y} Z ′.

Since the zones Z and Z ′ contain infinitely many valuations, it is again not clear
how to check if the two conditions mentioned in Proposition 4.13 hold or not. The

72

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

next two results will provide two conditions that are, firstly, checkable given Z,Z ′

and that can replace the two corresponding conditions in the proposition above.

The first condition in the proposition requires that for every valuation v′ in the
zone Z ′, v′ 6|= d /2 y. To give an example, consider a zone Z ′ = {y ≤ 1, . . . } and
the constraint 2 ≤ y. The only relevant constraint in Z ′ is the constraint describing
the upper bound for y. In this example, since for every v′ ∈ Z ′ the value v′(y) ≤ 1,
clearly, 2 6≤ v′(y). The required condition holds if “a valuation with the maximum
possible value for the clock y in Z ′, does not satisfy d /2 y”. This translates to
the formal condition: (≤, 1) + (≤,−2) < (≤, 0), where the first pair comes from
the constraint y ≤ 1 present in the zone Z ′ and the second pair comes from the
given constraint 2 ≤ y. On the other hand, if the given constraint is 1 ≤ y then Z ′

contains the valuation v′ : y 7→ 1 that satisfies the constraint 1 ≤ y. Note that, in
this case, the sum of pairs (≤, 1) + (≤,−1) 6< (≤, 0).

Lemma 4.14. ∀v′ ∈ Z ′, v′ 6|= d /2 y iff (/′0y, z
′
0y) + (/2,−d) < (≤, 0).

Proof. (⇒) For every v′ ∈ Z ′, v′ 6|= d /2 y means Z ′ ∩ {d /2 y} = ∅. This implies
the distance graph representing the zone Z ′ ∩ {d /2 y} contains a negative cycle.
Following the similar arguments used in the proof of Lemma 4.10, it can be argued
that the negative cycle must be as depicted in Figure 4.11. This cycle being negative
implies the required inequality (/′0y, z

′
0y) + (/2,−d) < (≤, 0).

(/′0y, z
′
0y)

(/2,−d)
0 y

Figure 4.11: negative cycle in Z ′ ∩ {d /2 y}

(⇐) Assume (/′0y, z
′
0y) + (/2,−d) < (≤, 0). This means the cycle in Figure 4.11

is negative and hence Z ′ ∩ {d /2 y} = ∅. That is, for every v′ ∈ Z ′, v′ 6|= d /2 y.

The second condition in Proposition 4.13 requires Z to contain a valuation v
satisfying v′(y) < v(y) for every valuation v′ ∈ Z ′. This happens if the upper bound
for the clock y in Z is bigger than the upper bound in Z ′. No other constraints
of the zones have any relevance for checking the required condition. For example,
consider two zones Z = {y ≤ 3, . . . } and Z ′ = {y < 2, . . . }. The zone Z contains
a valuation v for which v(y) = 3 and since for every v′ ∈ Z ′ the value v′(y) < 2,
clearly v′(y) < v(y). Note that, in this example (<, 2) < (≤, 3), where the first
pair comes from the constraint y < 2 in Z ′ and the second one comes from y ≤ 3
present in the zone Z. To consider a different example, let Z ′ = {y < 4} instead.
In this case, for every v ∈ Z, the value v(y) ≤ 3. Since Z ′ contains a valuation
v′ with v′(y) = 3.5, Z contains no valuation v for which v(y) > v′(y). Note that,
(<, 4) 6< (≤, 3) in this case. This condition is generalized in the following lemma.

Lemma 4.15. ∃v ∈ Z such that ∀v′ ∈ Z ′, v′(y) < v(y) iff (/′0y, z
′
0y) < (/0y, z0y).

73

Chapter 4. Algorithm for checking simulation

Proof. (⇐) Assume (/′0y, z
′
0y) < (/0y, z0y). There are two possibilities now: either

(i) z′0y < z0y or (ii) z′0y = z0y, /
′
0y = < and /0y = ≤. Case (i): if z′0y < z0y then there

exists v ∈ Z such that z′0y < v(y) < z0y. Now, since for every v′ ∈ Z ′, v′(y) /′0y z
′
0y,

it follows that v′(y) < v(y). Case (ii): since Z ′ is canonical and /0y = ≤, there
exists v ∈ Z such that v(y) = z0y. Then, since in this case z′0y = z0y, it follows that
v(y) = z′0y. Now, since /′0y = <, for every v′ ∈ Z ′, v′(y) < z′0y. Therefore, it follows
that v′(y) < v(y) as well. Hence, in both of the cases there exists v ∈ Z such that
for every v′ ∈ Z ′, v′(y) < v(y).

(⇒) To prove the contrapositive, let (/0y, z0y) ≤ (/′0y, z
′
0y). This implies the

inequality z0y ≤ z′0y. If z0y < z′0y, then due to Proposition 2.11, there exists v′ ∈ Z ′
such that for all v ∈ Z, v(y) ≤ z0y < v′(y). On the other hand, assume z0y = z′0y.
If /′0y = ≤, then again Z ′ contains v′ such that for every v ∈ Z, v(y) ≤ z0y = z′0y =
v′(y). Otherwise, if /′0y = <, then /0y = < as well. Hence, Proposition 2.11 implies
that for every v ∈ Z there exists v′ ∈ Z ′ satisfying v(y) ≤ v′(y) < z′0y = z0y.

The following theorem combines Proposition 4.13 and subsequent Lemma 4.14
and Lemma 4.15 to derive the (checkable) conditions required for Z 6v{d/2y} Z ′.

Theorem 4.16. Z 6v{d/2y} Z ′ iff the following two conditions hold:

1. (/′0y, z
′
0y) + (/2,−d) < (≤, 0) and

2. (/′0y, z
′
0y) < (/0y, z0y).

4.2.3 Checking Z 6v{x/1c, d/2y} Z
′

Given two non-empty canonical zones Z,Z ′ and a set of non-diagonal constraints
Gnd, Theorem 4.8 has reduced the problem of checking Z 6vGnd Z ′ to checking
Z 6v{ϕ} Z ′ for some ϕ ∈ Gnd or Z 6v{ϕu,ϕ`} Z

′ for some pair of constraints ϕu, ϕ`,
where ϕu is an upper bound constraint in Gnd and ϕ` is a lower bound constraint in
Gnd. Sections 4.2.1 and 4.2.2 have given the conditions for checking Z 6v{ϕ} Z ′. The
aim of this section is to provide similar conditions for the remaining case of checking
Z 6v{ϕu,ϕ`} Z

′, where ϕu is an upper bound and ϕ` is a lower bound constraint.
For the entirety of this section, fix two non-empty canonical zones Z,Z ′ and two

constraints x /1 c and d /2 y. Further, it is also assumed that Z v{x/1c} Z ′ and
Z v{d/2y} Z ′. The next lemma is a first step towards characterizing Z 6v{x/1c, d/2y} Z ′.

Lemma 4.17. Assume Z v{x/1c} Z ′ and Z v{d/2y} Z ′. Then, Z 6v{x/1c, d/2y} Z ′ iff
∃v ∈ Z such that the following conditions hold:

1. v |= x /1 c,

2. (≤,−v(y)) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0),

3. (/2,−d) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0).

Proof. (⇒) Let Z 6v{x/1c, d/2y} Z ′. Then, there exists v ∈ Z such that min(G↑v, Z
′)

contains a negative cycle. This cycle must be of the form depicted in Figure 4.7,
4.8 or 4.9. But since Z v{x/1c} Z ′ and Z v{d/2y} Z ′, the cycle cannot be of the form

74

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

as in Figure 4.8 and 4.9. Therefore, the cycle must be one of the cycles depicted in
Figure 4.7. Figure 4.12 depicts the general form of this cycle, call this cycle C. The
edges 0→ x and y → 0 are from G↑v, and the edge x→ y is from Z ′.

(≤, v(x)) (/′xy, z
′
xy)

∗

0 x y

Figure 4.12: negative cycle C in the graph min(G↑v, Z
′)

The weights of the edges 0 → x and x → y are (≤, v(x)) (see Figure 4.3) and
(/′xy, z

′
xy) respectively. Whereas, the weight of the edge y → 0 is either (i) (≤,−v(y))

(see Figure 4.5) or (ii) (/2,−d) (see Figure 4.4).
Since the graph G↑v contains the edge 0 → x with weight (≤, v(x)), it implies

(from the construction presented in Figure 4.3) condition 1, that is, v |= x /1 c.
The satisfaction of the remaining two conditions are explained below. Sv(y) is used
below to denote the sum (≤,−v(y))+(≤, v(x))+(/′xy, z

′
xy), and Sd is used to denote

the sum (/2,−d) + (≤, v(x)) + (/′xy, z
′
xy).

Case (i). In this case, the weight of the edge y → 0 is (≤,−v(y)). Since the
cycle C is negative, Sv(y) < (≤, 0). Also, in this case v 6|= d /2 y, that is, v(y) /2 d.
Then the claim is that (/2,−d) < (≤,−v(y)). This is because, either v(y) < d, that
is, −d < −v(y) and thus the claim follows, or v(y) = d, in which case /2 must be
the weak inequality ≤ and hence /2 is the strict inequality <, therefore the claim
follows again. Therefore, from the claim it follows that Sd < Sv(y) < (≤, 0).

Case (ii). In this case, the weight of the edge y → 0 is (/2,−d). Again, since the
cycle C is negative, it follows that Sd < (≤, 0). Now, in this case v |= d /2 y, hence,
−v(y) /2 −d. Then, the claim is (≤,−v(y)) ≤ (/2,−d) holds. This is because,
either −v(y) < −d and then the claim holds, or −v(y) = −d, in which case /2 is
the weak inequality ≤ and hence the claim follows in this case as well. Therefore,
from the claim it follows that Sv(y) ≤ Sd < (≤, 0).

Therefore, in both of the cases, Sv(y) < (≤, 0) as well as Sd < (≤, 0).

(⇐) If Z contains a valuation v satisfying the three conditions of the lemma,
then the cycle in Figure 4.12 is negative, for both possible values of ∗. Therefore,
min(G↑v, Z

′) contains a negative cycle proving Z 6v{x/1c, d/2y} Z ′.

Unlike Proposition 4.9 and Proposition 4.13, the previous lemma does not pro-
vide “independent” conditions that are required for Z 6v{x/1c, d/2y} Z ′ to hold. In
the above lemma, the same valuation v ∈ Z needs to satisfy all the three condi-
tions. Given Z,Z ′ it is again not clear how to check whether Z contains such a
valuation. The following proposition further characterizes the three conditions of
Lemma 4.17 and states that the three conditions can actually be made independent
of each other. That is, if there exist three different valuations satisfying each of the
three conditions separately, then there will also exist a single valuation satisfying
all the three conditions simultaneously.

75

Chapter 4. Algorithm for checking simulation

Proposition 4.18. Z contains a valuation v that satisfies the following properties:

i. v |= x /1 c,

ii. (≤,−v(y)) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0),

iii. (/2,−d) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0).

if and only if the following three conditions hold -

a. ∃v1 ∈ Z such that v1 |= x /1 c,

b. ∃v2 ∈ Z such that (≤,−v2(y)) + (≤, v2(x)) + (/′xy, z
′
xy) < (≤, 0),

c. ∃v3 ∈ Z such that (/2,−d) + (≤, v3(x)) + (/′xy, z
′
xy) < (≤, 0).

The forward direction of Proposition 4.18 follows immediately. The valuation
v that satisfies the three conditions (i), (ii), (iii), can serve as the three valuations
v1, v2, v3 present in the conditions (a), (b), (c) respectively. The reverse direction
however requires more arguments. The following three results construct three zones,
one zone corresponding to each of the conditions (a), (b) and (c), such that, each
zone represents the set of all valuations that satisfy the corresponding condition.
These three zones then help formulate the subsequent result (Lemma 4.22) which
directly implies the backward direction of Proposition 4.18.

Lemma 4.19. Let Z1 be the zone {x /1 c}. Then, v1 ∈ Z1 iff v1 |= x /1 c.

The proof of this lemma follows directly from the definition of zones.

Lemma 4.20. Let Z2 be the zone given by {x − y /Z2 −z′xy}, where /Z2 = /′xy.
Then, v2 ∈ Z2 iff (≤,−v2(y)) + (≤, v2(x)) + (/′xy, z

′
xy) < (≤, 0).

Proof. (⇒) Let v2 ∈ Z2. Then, v2(x) − v2(y) /Z2 −z′xy. Therefore v2(x) − v2(y) +
z′xy ≤ 0. When v2(x) − v2(y) + z′xy < 0, the lemma follows. Otherwise, if v2(x) −
v2(y) + z′xy = 0, then /Z2 has to be ≤. This implies /′xy is the strict inequality <,
due to which the lemma follows for this case too.

(⇐) Let v2 be a valuation satisfying (≤,−v2(y))+(≤, v2(x))+(/′xy, z
′
xy) < (≤, 0).

It needs to be shown that v2 ∈ Z2. Now, if v2(x) − v2(y) < z′xy then clearly,
v2 |= x−y /Z2 −z′xy holds. On the other hand, if v2(x)−v2(y) = z′xy, then it implies
that /′xy = < and hence /Z2 = ≤. Therefore, again v2 |= x− y /Z2 −z′xy holds.

Lemma 4.21. Let Z3 be the zone given by {x /Z3 d − z′xy}, where /Z3 is ≤ if at
least one of /2 or /′xy is <, otherwise /Z3 is <. Then, a valuation v3 ∈ Z3 iff v3
satisfies the inequality (/2,−d) + (≤, v3(x)) + (/′xy, z

′
xy) < (≤, 0).

Proof. (⇒) Let v3 ∈ Z3, then v3(x) /Z3 d− z′xy. If v3(x) < d− z′xy, then the lemma
follows. Otherwise, if v3(x) = d − z′xy, then it means /Z3 = ≤. Which, in turn,
means that /2 = < or /′xy = <. Therefore, the result follows again.

(⇐) Let v3 be a valuation satisfying (/2,−d) + (≤, v3(x)) + (/′xy, z
′
xy) < (≤, 0).

Again, if −d + v3(x) + z′xy < 0 then v3 |= x /Z3 d− z′xy, for both values of /Z3 . On
the other hand, if −d + v3(x) + z′xy = 0 then at least one of /2 or /′xy is the strict
inequality <. Therefore, /Z3 is ≤, and hence v3 |= x /Z3 d− z′xy as well.

76

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

The following lemma is the final result required to prove the backward direction
of Proposition 4.18. This result states that if Z contains no single valuation that
satisfies the conditions (i), (ii), (iii) in Proposition 4.18, then there must be at least
one condition among (a), (b), (c) (in Proposition 4.18) that is not satisfied by any
valuation belonging to the zone Z.

Lemma 4.22. Z ∩ Z1 ∩ Z2 ∩ Z3 = ∅ iff Z ∩ Zi = ∅ for some i ∈ {1, 2, 3}.

Proof. (⇐) This direction is immediate.

(⇒) To prove this direction of the lemma, it will be useful to consider the
distance graph representations of the three zones Z1 (Figure 4.13), Z2 (Figure 4.14)
and Z3 (Figure 4.15).

(/1, c)

0 x y

Figure 4.13: distance graph representation of Z1

(/Z2 ,−z′xy)
0 x y

Figure 4.14: distance graph representation of Z2

(/Z3 , d− z′xy)

0 x y

Figure 4.15: distance graph representation of Z3

Since Z ∩ Z1 ∩ Z2 ∩ Z3 = ∅, the distance graph representing the zone Z ∩ Z1 ∩
Z2 ∩Z3 contains a negative cycle. Since the zone Z is non-empty, this cycle cannot
consist only of edges from Z, it must contain at least one edge from Z1,Z2 or Z3.
Furthermore, from the distance graphs of the zones Z1,Z2,Z3 it follows that no
(simple) cycle can contain edges from both Zi and Zj where i, j ∈ {1, 2, 3} and
i 6= j. This means, every (simple) negative cycle in the distance graph representing
the zone Z ∩ Z1 ∩ Z2 ∩ Z3 must contain exactly one edge from either Z1 or Z2 or
Z3. This means these negative cycles will also be present in the distance graphs
representing Z ∩ Z1 or Z ∩ Z2 or Z ∩ Z3. Therefore, if Z ∩ Z1 ∩ Z2 ∩ Z3 is empty
then so is the zone Z ∩ Zi for some i ∈ {1, 2, 3}.

All required results are now in place to prove Proposition 4.18.

Proof (of Proposition 4.18). (⇒) Assume v ∈ Z is the valuation that satisfies all
the three conditions (i), (ii) and (iii). Then, choosing v1 = v2 = v3 = v proves this
direction, thanks to Lemma 4.19, Lemma 4.20 and Lemma 4.21.

77

Chapter 4. Algorithm for checking simulation

(⇐) Let Z1,Z2 and Z3 be the zones described in Lemma 4.19, Lemma 4.20 and
Lemma 4.21 respectively. Then, v1 ∈ Z ∩ Z1 (due to Lemma 4.19), v2 ∈ Z ∩ Z2

(due to Lemma 4.20) and v3 ∈ Z ∩ Z3 (due to Lemma 4.21). From Lemma 4.22 it
then follows that Z ∩ Z1 ∩ Z2 ∩ Z3 6= ∅. Therefore, there exists v ∈ Z such that
v ∈ Zi for every i ∈ {1, 2, 3}. This proves the lemma.

Lemma 4.17 gave three conditions that need to be satisfied by a single valuation
v ∈ Z in order to have Z 6v{x/1c, d/2y} Z ′. Proposition 4.18 then proved that it is
sufficient if three (possibly all different) valuations satisfy each of the three condi-
tions. However, it is still not immediate how to check if such three valuations exist
in Z. The next set of results provide the conditions over the zones Z,Z ′ that are
checkable and will help answer the question of whether Z 6v{x/1c, d/2y} Z ′.

Condition (a) of Proposition 4.18 is same as the condition (1) of Proposition 4.9.
Lemma 4.10 provides the condition over Z that is (necessary and) sufficient for this
condition to hold. The seemingly different condition (c) is also similar to (a) and
the same lemma can be used to devise the required conditions. This similarity is
due to the zone formulation in Lemma 4.21.

Lemma 4.23. ∃v ∈ Z such that (/2,−d) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0) iff the

inequality (/′xy, z
′
xy) + (/2,−d) < (/x0, zx0) holds.

Proof. The valuation v satisfies (/2,−d) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0) iff v also

satisfies the constraint x /Z3 d − z′xy, where /Z3 is ≤ if at least one of /2 or /′xy is
<, otherwise /Z3 is < (Lemma 4.21). Lemma 4.10 further implies that there exists
v |= x /Z3 d − z′xy iff (/x0, zx0) + (/Z3 , d − z′xy) ≥ (≤, 0). From the definition of the

relation /Z3 it follows that (/Z3 , d−z′xy) = (/2, d)+(/′xy,−z′xy). That is, the following

inequality holds: (/x0, zx0) + (/2, d) + (/′xy,−z′xy) ≥ (≤, 0). This then implies either
of the following two conditions hold: (i) either zx0+d−z′xy > 0, that is, z′xy−d < zx0
or (ii) zx0 + d− z′xy = 0 and /x0 = /2 = /′xy = ≤, these together imply z′xy − d = zx0
and /x0= ≤, /′xy = /2 = <. These two conditions together implies the inequality:
(/′xy, z

′
xy) + (/2,−d) < (/x0, zx0). This proves the lemma.

The next lemma characterizes the remaining condition (b) of Proposition 4.18.
This condition requires Z to contain a valuation v such that the following inequality
holds: (≤,−v(y)) + (≤, v(x)) + (/′xy, z

′
xy) < (≤, 0). This inequality depends on the

constraints putting an upper bound on the difference y − x in the zones Z and Z ′.
The left hand side of the inequality can be simplified as (≤,−(v(y)− v(x))) + (/′xy
, z′xy). To give an example, consider two canonical zones Z = {y − x ≤ 3, . . . } and
Z ′ = {y − x < 2, . . . }. Here, because of canonicity, Z contains a valuation v such
that v(y)− v(x) = 3 (due to Proposition 2.11). Since (/′xy, z

′
xy) = (<, 2), it follows

that (≤,−3) + (<, 2) < (≤, 0). The first pair on the left hand side comes from
the constraint y − x ≤ 3 present in Z and the second pair comes from y − x < 2
present in the zone Z ′. Note that, in this example (<, 2) < (≤, 3). This condition
is generalized in the next lemma. To give another example, let Z be same as the
example before and Z ′ = {y − x < 4, . . . } instead. Then, since for every valuation
v ∈ Z, v(y)− v(x) ≤ 3, the sum (≤,−(v(y)− v(x))) + (<, 4) 6< (≤, 0). Note that,
in this example, (<, 4) 6< (≤, 3).

78

4.2. Checking Z vGnd Z
′ where Gnd is diagonal-free

Lemma 4.24. ∃v ∈ Z satisfying (≤,−v(y)) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0) iff

(/′xy, z
′
xy) < (/xy, zxy).

Proof. (⇒) Let (≤,−v(y)) + (≤, v(x)) + (/′xy, z
′
xy) < (≤, 0). Then, there are two

possibilities: (i) z′xy < v(y) − v(x) or (ii) z′xy = v(y) − v(x) and /′xy = <. When
z′xy < v(y) − v(x), since v(y) − v(x) /xy zxy, the result follows. Otherwise, when
z′xy = v(y)− v(x), /′xy = <. Again, v(y)− v(x) /xy zxy. If /xy = ≤ then the result
follows. On the other hand, if /xy = < then z′xy = v(y)− v(x) < zxy and hence the
result follows.

(⇐) Let (/′xy, z
′
xy) < (/xy, zxy). If z′xy < zxy then there must exist v ∈ Z such

that z′xy < v(y) − v(x) /xy zxy (Proposition 2.11) and therefore the result follows.
On the other hand, if z′xy = zxy then it must be the case that /′xy = < and /xy = ≤.
Since /xy = ≤, Z will then contain a valuation v such that v(y)− v(x) = zxy. The
result then follows from the fact that /′xy = <.

The results proved in this section, finally, lead to the following set of conditions
that ensure Z 6v{x/1c, d/2y} Z ′. The proof follows from Lemma 4.17, Proposition 4.18,
Lemma 4.10, Lemma 4.24 and Lemma 4.23.

Theorem 4.25. Z 6v{x/1c, d/2y} Z ′ iff the following three conditions hold:

1. (/x0, zx0) + (/1, c) ≥ (≤, 0),

2. (/′xy, z
′
xy) < (/xy, zxy), and

3. (/′xy, z
′
xy) + (/2,−d) < (/x0, zx0).

4.2.4 Algorithm for checking Z vGnd Z ′

Theorem 4.8 proved that the question of whether Z vGnd Z
′, given two canonical

zones Z and Z ′, can be answered by checking if Z v{ϕ} Z ′ holds for every ϕ ∈ Gnd

and if Z v{x/1c, d/2y} Z ′ holds for every x /1 c ∈ Gnd and d /2 y ∈ Gnd. Theorem 4.12
provided the conditions over the zones Z,Z ′ that are (necessary and) sufficient for
concluding Z 6v{x/1c} Z ′, given a constraint x /1 c. Further, Theorem 4.16 stated
the conditions that imply (and are implied by) Z 6v{d/2y} Z ′, given d /2 y. Lastly,
Theorem 4.25 gave the conditions for Z 6v{x/1c, d/2y} Z ′, given two constraints x /1 c
and d /2 y. The following theorem puts together these four theorems to get a
consolidated set of conditions that are necessary as well as sufficient for Z 6vGnd Z

′.

Theorem 4.26. Let Z,Z ′ be two non-empty canonical zones and Gnd = Gu∪G` be
a set of non-diagonal constraints, where Gu contains only upper-bound constraints
and G` contains lower-bound constraints present in Gnd. Then, Z 6vGnd Z

′ iff at
least one of the following three conditions hold:

1. (/′x0, z
′
x0) < (/x0, zx0) and (/x0, zx0) + (/1, c) ≥ (≤, 0) for some x /1 c ∈ Gu,

2. (/′0y, z
′
0y) < (/0y, z0y) and (/′0y, z

′
0y) + (/2,−d) < (≤, 0) for some d /2 y ∈ G`,

3. (/′xy, z
′
xy) < (/xy, zxy) and (/x0, zx0) + (/1, c) ≥ (≤, 0) and

(/′xy, z
′
xy) + (/2,−d) < (/x0, zx0) for some x /1 c ∈ Gu and d /2 y ∈ G`.

79

Chapter 4. Algorithm for checking simulation

Proof. (⇐) If condition (1) holds then from Theorem 4.12 it follows that Z 6v{x/1c}
Z ′ and therefore Z 6vG Z

′ due to Theorem 4.8. Similarly, if condition (2) holds then
Theorem 4.16 implies Z 6v{d/2y} Z ′, then Theorem 4.8 further implies that Z 6vG Z

′.
Lastly, if condition (3) holds then Theorem 4.25 implies Z 6v{x/1c, d/2y} Z ′ and thus
Z 6vG Z

′, thanks to Theorem 4.8.

(⇒) Assume Z 6vGnd Z
′. Theorem 4.8 implies that either Z 6v{ϕ} Z ′ for some

ϕ ∈ Gnd, or Z 6v{x/1c, d/2y} Z ′, where x /1 c ∈ Gnd and d /2 y ∈ Gnd. If Z 6v{x/1c} Z ′,
then Theorem 4.12 implies that the condition (1) holds. Whereas, if Z 6v{d/2y} Z ′
then condition (2) follows from Theorem 4.16. Lastly, if Z 6v{x/1c, d/2y} Z ′ is the
case, then Theorem 4.25 implies condition (3). Therefore, at least one of the three
conditions hold whenever Z 6vGnd Z

′.

Theorem 4.26 translates to the following algorithm that checks if the relation
Z vGnd Z

′ holds where Gnd is a set containing only non-diagonal constraints.

1 check Z vGnd Z
′:

2 for every x /1 c ∈ Gnd :
3 if (/x0, zx0) + (/1, c) ≥ (≤, 0) and (/′x0, z

′
x0) < (/x0, zx0) :

4 return false

5 for every d /2 y ∈ Gnd :
6 if (/′0y, z

′
0y) + (/2,−d) < (≤, 0) and (/′0y, z

′
0y) < (/0y, z0y) :

7 return false

8 for every (x /1 c, d /2 y) ∈ Gu ×G` :
9 if (/x0, zx0) + (/1, c) ≥ (≤, 0) and (/′xy, z

′
xy) + (/2,−d) < (/x0, zx0) and

10 (/′xy, z
′
xy) < (/xy, zxy) :

11 return false

12 return true

Algorithm 5 Checking Z vGnd Z
′ where Gnd is a set of non-diagonal con-

straints

Maximum time taken by Algorithm 5 depends on the constraints present in
the set Gnd. Each of the loops in Line 2 and Line 5 iterate over Gnd once and the
loop in Line 8 iterates over every pair of Gu × G`. Since Gnd can be assumed to
contain only two (one upper bound and one lower bound) constraints per clock (due
to Corollary 3.6 and Corollary 3.10), Algorithm 5 takes at most O(|X|2) time to
complete in the worst case. This bound matches with the bound for the simulation
relation vLU shown by Herbreteau et al. in [HSW16]. Note that, since the time
bound is dependent on the constraints present in Gnd, if Gnd contains much lesser
number of constraints than 2|X|, then the time taken by the algorithm can also
potentially be much lesser than O(|X|2). For example, if Gnd only contains lower

80

4.3. Checking Z vG Z
′ where G contains diagonals

bound constraints, then the iteration in Line 8 will not be performed and the
algorithm will take only linear time.

The next section will formulate an algorithm, using Algorithm 5, to check the
relation Z vG Z

′, when G will also be allowed to contain diagonal constraints.

4.3 Checking Z vG Z
′ where G contains diagonals

Section 4.2 considered the relation vGnd where the set Gnd contained only non-
diagonal constraints. This section considers diagonal constraints as well. The aim
in this section is to develop an algorithm for checking the relation Z vG Z

′, when
G is a finite set of atomic constraints, that may also contain diagonal constraints.

Before focussing on the relation between zones, first a characterization is pro-
vided for the relation v vG v

′, when G contains diagonal constraints. Recall from
Definition 3.1 that v vG v

′ holds if for every atomic constraint ϕ ∈ G and for every
constant δ ∈ R≥0, v + δ |= ϕ implies v′ + δ |= ϕ. Now, since δ ranges over an
uncountably infinite set it is difficult to ascertain whether v vG v′ or not. The
following characterization states that the “for every constant δ ∈ R≥0” can be re-
moved for the diagonal constraints present in G. This is because: given a diagonal
constraint ϕ, either ∀δ ∈ R≥0, v + δ |= ϕ, or ∀δ ∈ R≥0, v + δ 6|= ϕ.

Theorem 4.27. Given a set of atomic constraints G, let Gnd ⊆ G be the set of all
non-diagonal constraints of G. Then v vG v

′ iff the following two conditions hold:

1. for every diagonal constraint ϕ ∈ G, if v |= ϕ then v′ |= ϕ as well, and

2. v vGnd v
′.

Proof. (⇒) Assume v vG v′. Since Gnd ⊆ G, from Definition 3.1 it follows that
v vGnd v

′. The first part also follows directly from Definition 3.1.

(⇐) For the converse part, it needs to be shown that v vG v
′. Note that, it is

sufficient to show that, for every constraint ϕ ∈ G, v v{ϕ} v′. Choose a constraint
ϕ ∈ G. If ϕ is a non-diagonal constraint, then v v{ϕ} v′ follows from the fact that
v vGnd v

′. Now suppose ϕ is a diagonal constraint of the form x−y / c and δ ∈ R≥0
is such that v+ δ |= ϕ. Now, v+ δ |= x− y / c =⇒ (v+ δ)(x)− (v+ δ)(y) / c =⇒
v(x) + δ − (v(y) + δ) / c =⇒ v(x)− v(y) / c =⇒ v |= ϕ. From the assumption,
v′ |= ϕ as well. Then, following (backwards) the above sequence of implications, it
can be derived that v′ + δ |= ϕ. Therefore, v v{ϕ} v′. Similar arguments also prove
the case when ϕ is of the form d / x− y. Hence, it follows that v vG v

′.

The above theorem can be reformulated in the following way: v vG v
′ holds iff

for every diagonal constraint ϕ ∈ G, (i) if v |= ϕ then v′ |= ϕ and (ii) v vG− v
′,

where G− = G \ {ϕ}. By further unfolding the relation v vG− v′, eventually all
diagonal constraints can be taken outside of G−, which then results in the formu-
lation given in the theorem above. The following theorem is the extension of this
(re-)formulation of Theorem 4.27 to the case of zones.

81

Chapter 4. Algorithm for checking simulation

Theorem 4.28. Let G be a finite set of atomic constraints and ϕ be a diagonal
constraint present in G. Then, Z vG Z

′ iff Z ∩ ϕ vG− Z
′ ∩ ϕ and Z ∩ ¬ϕ vG− Z

′,
where G− = G \ {ϕ}.

Proof. (⇒) Suppose Z vG Z
′. Since Z ∩ ¬ϕ ⊆ Z clearly Z ∩ ¬ϕ vG Z

′ and hence
by definition, Z ∩ ¬ϕ vG− Z

′. For the other part, choose v ∈ Z such that v |= ϕ.
As Z vG Z ′, there exists v′ ∈ Z ′ such that v vG v′. By definition, v′ |= ϕ since
ϕ ∈ G and v |= ϕ. Hence, Z ∩ ϕ vG Z

′ ∩ ϕ and thereby Z ∩ ϕ vG− Z
′ ∩ ϕ.

(⇐) Suppose Z ∩ϕ vG− Z
′ ∩ϕ and Z ∩¬ϕ vG− Z

′. Choose a valuation v ∈ Z.
The goal is to find a valuation v′ ∈ Z ′ such that v vG v

′. Now, either v ∈ Z ∩ ϕ
or v ∈ Z ∩ ¬ϕ. Suppose, v ∈ Z ∩ ϕ. Then, since Z ∩ ϕ vG− Z

′ ∩ ϕ, there exists
v′ ∈ Z ′ ∩ ϕ satisfying v vG− v

′. Firstly, note that both v |= ϕ and v′ |= ϕ. This
observation coupled with v vG− v′ give v vG v′. On the other hand, suppose
v ∈ Z∩¬ϕ. Then, due to Z∩¬ϕ vG− Z

′, there is v′ ∈ Z ′ such that v vG− v
′. Since

v 6|= ϕ and G = G−∪{ϕ}, the relation v vG− v
′ implies the relation v vG v

′. Hence
in both the cases, there exists v′ ∈ Z ′ such that v vG v

′, proving Z vG Z
′.

The above Theorem 4.28 reduces the problem of checking the relation vG to two
vG− checks, where G− contains one less diagonal than G. These vG− checks can be
recursively reduced to further checks with respect to sets containing lesser number
of diagonals till G− no longer contains any diagonal constraints and hence the check
vG− becomes the check vGnd . Algorithm 5 of Section 4.2 can then be used to check
vGnd . This translates to the following algorithm for checking Z vG Z

′.

1 check Z vG Z
′:

2 if Z = ∅ :
3 return true

4 if Z ′ = ∅ :
5 return false

6 if Z 6vGnd Z
′ :

7 return false

8 return Z v∗G Z ′

Algorithm 6

1 check Z v∗G Z ′:
2 if G does not contain any diagonal

constraints :
3 return true

4 pick a diagonal constraint
ϕ = x− y / c from G

5 G− ←− G \ {ϕ}
6 if Z ∩ ¬ϕ 6= ∅ :
7 if Z ∩ ¬ϕ 6v∗

G− Z
′ :

8 return false

9 return Z ∩ ϕ vG− Z
′ ∩ ϕ

Algorithm 7

The proof of correctness of the recursive algorithms described in Algorithm 6
and Algorithm 7, mainly follows from Theorem 4.28. However, the two algorithms
use a few optimizations, the correctness of these are argued below. Lines 2 and 4
in Algorithm 6 consider two trivial cases for Z vG Z

′ : if Z is empty then Z vG Z
′

and if Z 6= ∅ but Z ′ = ∅ then Z 6vG Z
′ (these two results follow from Definition 3.4).

The correctness of the optimization used in Line 6 of Algorithm 6 follows from the
following proposition, which follows from Definition 3.4 and Proposition 3.2.

82

4.4. Complexity of checking Z 6vG Z
′

Proposition 4.29. If Z 6vGnd Z
′ then Z 6vG Z

′.

Line 7 of Algorithm 7 uses another optimization: instead of checking Z∩¬ϕ vG−

Z ′ it only checks Z ∩¬ϕ v∗
G− Z

′. This is because at this point, it is already known
that Z ∩ ¬ϕ 6= ∅, Z ′ 6= ∅. Also, since Z vGnd Z

′ and Z ∩ ¬ϕ ⊆ Z, it follows
that Z ∩¬ϕ vGnd Z

′. Therefore, every if statement checked by Algorithm 6 before
calling Algorithm 7 at Line 8, are already known to be false. Hence, these checks
are not necessary and v∗

G− can directly be checked. No more optimizations are
present in the algorithms, the rest of Algorithm 7 is a translation of Theorem 4.28.

As discussed before, in Line 6 of Algorithm 6, Algorithm 5 can be used to test
the relation Z vGnd Z

′. In the worst case, Algorithm 6 uses Algorithm 5 to test
Z vGnd Z

′ exponentially many times in the number of diagonal constraints present
in G and each Z vGnd Z

′ takes at most O(|X|2) time, as discussed on Page 80. The
next section provides a lower bound complexity for checking the relation Z vG Z

′.

4.4 Complexity of checking Z 6vG Z
′

Given two canonical zones Z,Z ′ and a finite set of atomic constraints G, Algorithm 6
on Page 82, in the worst case, may end up checking the relation vGnd exponentially
(in the number of diagonals present in G) many times. The question is: are these
exponentially many checks avoidable? This section proves that, checking whether
Z 6vG Z

′ is, in fact, NP-complete. The reduction given in this section is adapted
from a similar reduction given for a slightly different relation in [GMS18].

Theorem 4.30. Given two canonical zones Z,Z ′ and a finite set of atomic con-
straints G, checking if Z 6vG Z

′ is NP-complete.

The intuition behind this theorem comes from the following proposition.

Proposition 4.31. Given a set of atomic constraints G = Gnd∪Gdiag, where Gnd is
the set of all non-diagonal constraints and Gdiag is the set of all diagonal constraints
belonging to G. Then, Z 6vG Z

′ iff ∃S ⊆ Gdiag such that –Z ∩(∧
ϕ∈S

ϕ

)
∩

 ∧
ϕ∈Gdiag\S

¬ϕ

 6vGnd

(
Z ′ ∩

(∧
ϕ∈S

ϕ

))

Proof. The contrapositive statement of the proposition is proved below. In this
proof for notational convenience, once the set S is fixed, let Zleft denote the zone(
Z ∩

(∧
ϕ∈S ϕ

)
∩
(∧

ϕ∈Gdiag\S ¬ϕ
))

and Z ′right denote
(
Z ′ ∩

(∧
ϕ∈S ϕ

))
.

(⇐) Let Z vG Z ′, then it is required to show that for every S ⊆ Gdiag the
relation Zleft vG Z

′
right holds. Consider a valuation v ∈ Zleft. Since Z vG Z

′, there
exists a valuation v′ ∈ Z ′ such that v vG v

′. Now, since v ∈ Zleft, for every diagonal
constraint ϕ ∈ S, v |= ϕ. Since v vG v

′, v′ also satisfies each of the diagonals ϕ ∈ S.
Therefore, v′ ∈ Z ′right and hence Zleft vGnd Z

′
right.

83

Chapter 4. Algorithm for checking simulation

(⇒) Assume for every S ⊆ Gdiag the relation Zleft vGnd Z
′
right holds. Then, it

is required to be proved that Z vG Z
′. Consider a valuation v ∈ Z. Then, there

exists a set of diagonals Sv ⊆ Gdiag such that v |= ϕ for every ϕ ∈ Sv and v 6|= ϕ for
every ϕ ∈ Gdiag \ Sv. From the assumption it follows that there exists a valuation
v′ ∈ Z ′ such that v′ |= ϕ for every ϕ ∈ Sv and v vGnd v

′. Theorem 4.27 then implies
that v vG v

′. Therefore, the relation Z vG Z
′ follows.

Given a set of diagonal constraints S ⊆ G, whether the relation vGnd mentioned
in the theorem holds or not can be checked in polynomial (in fact, in O(|X|2))
time. Moreover, since S contains diagonals already present in G, size of S is also
polynomial in terms of the input. This implies that checking Z 6vG Z

′ is in NP.

Lemma 4.32. Given two canonical zones Z,Z ′ and a finite set of atomic constraints
G, checking if Z 6vG Z

′ is in NP.

Proof. The problem belongs to NP because of the following:

• guess a set S ⊆ Gdiag (size of S is polynomial in the size of G),

• given such a set S whether the following non-relation holds or not can also be
checked in polynomial time (discussed on Page 80) -Z ∩(∧

ϕ∈S

ϕ

)
∩

 ∧
ϕ∈Gdiag\S

¬ϕ

 6vGnd

(
Z ′ ∩

(∧
ϕ∈S

ϕ

))

The hardness comes from the difficulty in choosing the set S of Proposition 4.31,
for which the relation vGnd does not hold. Finding out this S, may require to check
all possible subsets of Gdiag.

Checking Z 6vG Z
′ is NP-hard.

The hardness is proved by showing a polynomial-time reduction from 3-SAT. Given
a 3-CNF formula φ, the proof of hardness constructs two zones Z,Z ′ and a set of
atomic constraints G such that φ is satisfiable iff Z 6vG Z

′.

Notation. A literal is either a variable p or its negation ¬p, and a 3-clause is
a disjunction of three literals (l1 ∨ l2 ∨ l3). A 3-CNF formula is a conjunction of
3-clauses. For a literal l, var(l) will denote the variable corresponding to l. For
a 3-CNF formula φ, var(φ) will denote the variables present in φ. An assignment
to a 3-CNF formula φ is a function from var(φ) to {>,⊥} (> denotes true and ⊥
denotes false). For a clause C and an assignment σ, σ |= C holds if substituting
σ(p) for each variable p occurring in C evaluates the clause to true. For a formula
φ and an assignment σ, σ |= φ holds if all clauses of φ evaluate to true under σ. A
formula φ is said to be satisfiable if there exists an assignment such that σ |= φ.
For the rest of the section, fix a 3-CNF formula φ := C1 ∧ C2 ∧ · · · ∧ CN .

84

4.4. Complexity of checking Z 6vG Z
′

Zone Z

2M − 3 2M − 3 2M − 3 2M − 3 2M − 3 2M − 32M 2M

= 4M

= 12M

= 3 = 3 = 3 = 3 = 3 = 3

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Zone Z′

2M − 3 2M − 3 2M − 3 2M − 3 2M − 3 2M − 3

4M + 2

2M + 2
2M + 2

2M + 2
4M + 2

2M + 2
2M + 1

−2M

2M + 1

−2M

= 3 = 3 = 3 = 3 = 3 = 3

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−(16M + 1)

Figure 4.16: Illustration of the zone Z and Z ′ for the formula (p1∨p2∨¬p3)∧ (p3∨
¬p4 ∨ ¬p1). The separator clocks r0, r1, r2 are shown by the green boxes (leftmost
box is r0, middle one is r1 and the rightmost is r2). The intermediate literal clocks
are shown by the black dots: between r0 and r1 are x11, y

1
1, z

1
1 , x

2
1, y

2
1, z

2
1 , x

3
1, y

3
1, z

3
1 in

the same sequence. Similarly between r1 and r2 are the clocks x12, . . . , z
3
2 . An edge

of the form x
c−→ y simply denotes the constraint y − x ≤ c, whereas edges x

= c−−→ y
mean that y−x = c. In some places, c is written in between two consecutive clocks,
say ? and ∗, to denote the edge ?

= c−−→ ∗, that is the value of ∗ − ? equals c.

The idea behind the reduction is the following. A formula φ is satisfiable
iff ∃ an assignment σ such that ∀ clauses C of φ : σ |= C . Correspondingly,

Z 6vG Z
′ iff ∃v ∈ Z such that ∀ v′ satisfying v vG v

′ : v′ /∈ Z ′ . Given φ, the goal
is to construct two zones Z,Z ′ and a set of atomic constraints G, such that φ is
satisfiable iff Z 6vG Z ′. The (potential) v ∈ Z such that v /∈ ↓Z ′ (that is, every
v′ ∈ Z ′ satisfies v 6vG v

′) should encode the (potential) satisfying assignment for φ.

The zones Z,Z ′ that are to be constructed, consist of two kinds of valuations.
One kind can be associated with assignments for the formula φ, the other cannot.
The zone Z will be constructed in a way so that every assignment of φ has a
corresponding valuation in Z. On the other hand, the zone Z ′ will be constructed
to ensure that every valuation in Z ′ with which an assignment can be associated,
falsifies at least one clause of the formula φ. Moreover, every assignment falsifying
φ should have a corresponding valuation in Z ′. Lastly, the set G will be constructed
so that whenever v vG v

′, for some valuation v ∈ Z and v′ ∈ Z ′, if an assignment
can be associated with v then the same assignment corresponds to the valuation v′

as well. The detailed construction is described below.

For each literal lji of φ, three clocks xji , y
j
i , z

j
i are added. There are N + 1

additional clocks r0, r1, . . . , rN , where r0 is assumed to be the special 0 clock, that
is, every valuation maps the clock r0 to the value 0. M is assumed to be an integer
> 3. Figure 4.16 illustrates the construction.

85

Chapter 4. Algorithm for checking simulation

The zone Z is described by three sets of constraints. The first set of constraints
are between clocks of each literal. For every i ∈ {1, . . . , N} and j ∈ {1, 2, 3}:

yji − x
j
i ≥ 1 and zji − y

j
i ≥ 1 and zji − x

j
i = 3 (4.1)

The second set of constraints relates the distance between clocks of different literals.
In addition, the clocks ri are used as separators between clauses. For i ∈ {1, . . . , N}:

x1i − ri−1 = 2M − 3 and xj+1
i − zji = 2M − 3 for j ∈ {1, 2} and ri − z3i = 2M

(4.2)

Constraints (4.1) and (4.2) and the fact that 2M − 3 >, together ensure the
following order of clocks for every valuation in Z, for each i ∈ {1, . . . , N}:

ri−1 < x1i < y1i < z1i < x2i < y2i < z2i < x3i < y3i < z3i < ri (4.3)

Note that for each v ∈ Z, the constraints of Z mentioned so far imply that
v(ri) − v(ri−1) = 8M for i ∈ {1, . . . , N}. Now, in order for valuations in Z to
represent a valid assignment to the variables of φ, the next set of constraints enforce
that if `ji and `j

′

i′ are two literals involving the same variable then the values of yji−x
j
i

and yj
′

i′ − x
j′

i′ are the same, for every valuation in Z. Without loss of generality, it
can be assumed that the three literals in the same clause have different variables.
Therefore, this condition is relevant for literals with the same variable in different
clauses. For every lji and lj

′

i′ such that var(lji) = var(lj
′

i′) and i′ > i:

yj
′

i′ − y
j
i = (i′ − i) · 8M + (j′ − j) · 2M (4.4)

Note that from (4.1) and (4.2) it can be inferred that the values of v(xj
′

i′) − v(xji)

and v(zj
′

i′) − v(zji) are already equal to the right hand side of the above equation,
as the x and z clocks are “fixed” and y is “flexible”. Constraint (4.4) then ensures

that v(yji) − v(xji) = v(yj
′

i′) − v(xj
′

i′) (and hence v(zji) − v(yji) = v(zj
′

i′) − v(yj
′

i′) as

well) whenever lji and lj
′

i′ , with i′ > i, have the same variable.

Encoding of assignments. By construction of Z, in every valuation v ∈ Z, v(ri),
v(xji) and v(zji) are fixed integers. The clocks yji are the only clocks whose values are
not fixed. The value of v(yji) can vary between v(xji) + 1 and v(xji) + 2. When this
value is in the extremes, either 1 or 2, the corresponding valuation, mapping every
clock to an integer, is called an integral valuation. Assignments are encoded by
such integral valuations. An integral valuation v encodes the assignment σv where:

σv(var(lji)) =

{
> if v(yji)− v(xji) = 1

⊥ if v(yji)− v(xji) = 2
(4.5)

By (4.4), the above assignment is well defined. Moreover, the zone Z contains an
integral valuation for every possible assignment.

Lemma 4.33. For every assignment σ to the variables of φ, the zone Z described
by (4.1), (4.2) and (4.4) contains an integral valuation v such that the assignment
σv as defined in (4.5) equals the assignment σ.

86

4.4. Complexity of checking Z 6vG Z
′

An assignment σ satisfies φ if every clause evaluates to true under σ. From a
valuation v encoding this assignment σ, a mechanism is required to check whether
each clause is true. The differences between the clocks xji and zj−1i or ri−1 will be
used for this purpose. Clauses will be identified by certain kind of shifts to these dif-
ferences in v. Some more notations are introduced here. Let L := {(xji , y

j
i , z

j
i) | i ∈

{1, . . . , N} and j ∈ {1, 2, 3}} be the triplets of clocks associated with each literal.
A literal is said to be positive if it is a variable p, and it is negative if it is the
negation ¬p of some variable p. It will be assumed that in every clause of φ, the
positive literals are written before the negative literals: for example, p1 ∨ p3 ∨ ¬p2
will be written instead of p1 ∨ ¬p2 ∨ p3. For each clause Ci, let (ei, fi) be the pair
of clocks corresponding to Ci in the border between positive and negative literals:

(ei, fi) :=

(ri−1, x

1
i) if all literals in Ci are negative

(zji , x
j+1
i) if for j ∈ {1, 2}, lji is positive and lj+1

i is negative

(z3i , ri) if all literals in Ci are positive

(4.6)

Given the formula φ, the above border clocks are fixed. The zone Z ′ will allow
the difference in between these border clocks to be ‘flexible’, in between 2M and
2M + 1. All the other constraints on the differences between any two consecutive
clocks remains the same as that of Z. A valuation v′ of Z ′ will be said to activate
a clause Ci of φ, if for v′ the difference v′(fi) − v′(ei) = 2M + 1. Z ′ will be
constructed in a way that ensures every valuation of Z ′ activates at least one clause
of φ. Moreover, if v′ is an integral valuation encoding the assignment σv′ (according
to 4.5) then for every clause Ci that v′ activates, σv′ 6|= Ci.

The zone Z′ is described by five sets of constraints. The first set of constraints
are between the clocks of the same literal, and are identical to that in Z:

yji − x
j
i ≥ 1 and zji − y

j
i ≥ 1 and zji − x

j
i = 3 (4.7)

The second set of constraints are for border clocks (these are already determined
given the formula φ) in each clause. For each i ∈ {1, . . . , N}:

2M ≤ fi − ei ≤ 2M + 1 (4.8)

where ei and fi are according to the definition in (4.6). The third set of constraints
fix differences between consecutive blocks not involving border clocks to 2M − 3.

x1i − ri−1 = 2M − 3 if (ri−1, x
1
i) 6= (ei, fi) and (4.9)

xj+1
i − zji = 2M − 3 for j ∈ {1, 2} when (zji , x

j+1
i) 6= (ei, fi) and

ri − z3i = 2M − 3 when (z3i , ri) 6= (ei, fi)

From (4.7, 4.8, 4.9), note that for every valuation in Z ′ the difference ri − ri−1
is between 8M and 8M + 1 with the flexibility coming from fi − ei. The fourth set
of constraints ensures that at least one of the fi − ei should be bigger than 2M .

rN − r0 ≥ (8M ·N) + 1 (4.10)

87

Chapter 4. Algorithm for checking simulation

So far, the constraints that have been chosen for Z ′ do not talk about any
clauses being true or false. Recall that valuation v is said to activate a clause Ci
if the border clocks satisfy v(fi) − v(ei) = 2M + 1. The final set of constraints
ensures that whenever an integral valuation v′ in Z ′ activates a clause Ci, that is,
v′(fi) − v′(ei) = 2M + 1, every literal in Ci evaluates to false under the encoding
scheme given in (4.5): if lji is positive then v′(yji) − v′(x

j
i) = 2 and if lji is negative

then v′(yji) − v′(x
j
i) = 1. For a positive literal lji let dji ∈ {0, 1, 2} be the number

of (x, y, z) blocks corresponding to positive literals between zji and fi (does not
include j). Similarly, for a negative literal, let dji ∈ {0, 1, 2} be the number of
blocks corresponding to negative literals between ei and xji (again, excludes j).
Lastly, Z ′ contains the following constraints:

fi − yji ≤ dji · 2M + (2M + 2) if lji is a positive literal (4.11)

yji − ei ≤ dji · 2M + (2M + 2) if lji is a negative literal

Note that, not every integral valuation in Z ′ will correspond to a valid assign-
ment to the variables of φ. This is because the constraints in (4.4) that were en-
forced in Z are not enforced in Z ′. An integral valuation will be called an assignable
valuation if it corresponds to a valid assignment (with respect to (4.5)).

Lemma 4.34. For every integral valuation v′ ∈ Z ′, if v′ is assignable then σv′ 6|= φ.

Proof. Let v′ be an assignable integral valuation in Z ′. Let σv′ be the assignment
corresponding to v′ according to the encoding scheme presented in (4.5). Because
of the constraint in (4.10) v′ activates at least one clause, say Ci = `1 ∨ `2 ∨ `3. For
every i ∈ {1, 2, 3}, if `i is positive (resp. negative) then because of the constraints
in (4.11) it follows that v′(yi)− v′(xi) = 2 (resp. v′(yi)− v′(xi) = 1) and therefore
σv′(var(`i)) = ⊥ (resp. σv′(var(`i)) = >). Hence, σv′ 6|= Ci and σv′ 6|= φ.

The last remaining part of the reduction is the construction of the set G. The
aim behind this construction is to ensure that whenever an integral valuation v ∈ Z
(which corresponds to the assignment σv) satisfies v vG v

′ with v′ being a valuation
in Z ′, v′ should be assignable and moreover σv = σv′ should hold as well.

The set G consists of the following diagonal constraints: assuming the formula
φ consists of N clauses, the constraints yji − x

j
i ≤ 1 and yji − x

j
i ≥ 2 belong to G,

for every i ∈ {1, 2, 3, . . . , N} and for every j ∈ {1, 2, 3}.
The lemma below proves that the aim behind the construction of G is fulfilled.

Lemma 4.35. Let v be an integral valuation in Z and v′ be a valuation in Z ′.
Then, v vG v

′ holds iff - (i) v′ is an assignable valuation and (ii) σv = σv′.

Proof. (⇒) Since v ∈ Z is an integral valuation, for every i ∈ {1, 2, . . . , N} and
every j ∈ {1, 2, 3} the value of v(yji)−v(xji) is either 1 or 2. Suppose v(yji)−v(xji) = 1
(resp. v(yji) − v(xji) = 2). Then, v |= yji − x

j
i ≤ 1 (resp. v |= yji − x

j
i ≥ 2). Since

v vG v
′ it then follows that v′ |= yji − x

j
i ≤ 1 (resp. v′ |= yji − x

j
i ≤ 2). From the

construction of the zones Z and Z ′ (the constraints in (4.1) and (4.7)) it follows
that 1 ≤ v′(yji)−v′(x

j
i) ≤ 2. Therefore, v′(yji)−v′(x

j
i) = 1 (resp. v′(yji)−v′(x

j
i) = 2)

88

4.4. Complexity of checking Z 6vG Z
′

as well. Then, in fact v′(yji)− v′(x
j
i) = v(yji)− v(xji). Since this equality holds for

every i and j, and since v is assignable both of the results follow. That is, firstly v′

is also assignable. Moreover, v(yji)− v(xji) = v′(yji)− v′(x
j
i) implies that σv = σv′ .

(⇐) Let v′ ∈ Z ′ be an assignable valuation such that σv = σv′ . This implies that
v(yji)− v(xji) = v′(yji)− v′(x

j
i) holds for every i ∈ {1, 2, 3, . . . , N} and j ∈ {1, 2, 3}.

Since the constraints in G only involve the difference yji − x
j
i , v vG v

′ holds.

The following lemma proves that for every assignment σ falsifying φ, the zone
Z ′ contains an assignable valuation v′ such that σv′ is the assignment σ.

Lemma 4.36. Let σ be an assignment such that σ 6|= φ. Then, Z ′ contains an
assignable valuation v′ such that σv′ = σ.

Proof. Given an assignment σ such that σ 6|= φ, this proof constructs an assignable
valuation v′ ∈ Z ′ such that σv′ = σ. Since for every valuation in Z ′ the value of the
clock r0 is 0, first set v′(r0) = 0 as well. Now, for every clause Ci of φ such that
σ 6|= Ci, the difference between the border clocks (as mentioned in (4.6)) should be
2M + 1 for v′ and for all the other clauses the difference between its border clocks
under v′ should be 2M . This convention and the constraints in (4.7) and (4.9)
fix the values of every clock r, x, z under v′. The remaining task is to assign the
values v′(y) for the clocks y. This is fixed based on the assignment σ. For every
i ∈ {1, 2, 3, . . . , N} and every j ∈ {1, 2, 3}, set v′(yji) such that: v′(yji)− v′(x

j
i) = 1

if σ(var(`ji)) = > and v′(yji) − v′(xji) = 2 if σ(var(`ji)) = ⊥. This implies that
v′ is assignable and σv′ = σ. Now, the claim is the valuation v′ belongs to the
zone Z ′. Since the values of the clocks r, x, z are determined by the constraints of
Z ′, the constraints in (4.7) and (4.9) are satisfied by v′. The constraints over the
border clocks presented in (4.8) is also satisfied since v′ ensures these distances are
either 2M or 2M + 1. Also, since σ 6|= φ, there is at least one clause Ci such that
σ 6|= Ci. Then from the construction of v′, v′(fi)− v′(ei) = 2M + 1. This ensures v′

satisfies the constraint in (4.10). Only the satisfaction of the constraints in (4.11)
now remains to be shown. It can be checked that the constraints in (4.11) imply
that for every valuation in Z ′, if the difference fi − ei is 2M + 1 then for every
j ∈ {1, 2, 3} the value of the difference yji − x

j
i is 2 for positive literals and 1 for

negative literals. On the other hand, if the difference fi − ei is 2M instead, then
yji −x

j
i can be any value in between 1 and 2. From the construction of v′, the value

of fi − ei is 2M + 1 only for the clauses Ci where σ 6|= Ci. For every literal `ji of
this clause, σ(`ji) = ⊥. Then v′(yji) − v′(x

j
i) will indeed be 2 if `ji is positive and

1 otherwise. This implies that for these clauses also v′ satisfies the constraints of
(4.11). Therefore, the valuation v′ belongs to the zone Z ′.

The following lemma proves that if Z 6vG Z
′ then Z contains an integral valua-

tion that serves as the certificate for Z 6vG Z
′.

Lemma 4.37. If Z 6vG Z
′ then ∃ an integral valuation v ∈ Z such that v /∈ ↓Z ′.

Proof. Assume Z 6vG Z
′. Let u ∈ Z be such that u /∈ ↓Z ′. If u is integral then the

lemma is proved. Now, assume u is not an integral valuation. Recall that, for all
the clocks r, x, z the values are fixed by the zone Z and these are integers. Only the

89

Chapter 4. Algorithm for checking simulation

values for the clocks y are flexible. Therefore, since u is non-integral, there exists
i, j such that u(yji) is not an integer. This proof constructs an integral valuation
v ∈ Z based on u, such that v /∈ ↓Z ′ as well.

The valuation v is constructed in the following way. The values of the clocks
x, y and r are already fixed from Z. Only the values of the clocks y need to be
fixed. For every i ∈ {1, 2, 3, . . . , N} and j ∈ {1, 2, 3}, set the value of v(yji) so that:

v(yji)− v(xji) =

{
u(yji)− u(xji) if u(yji)− u(xji) ∈ Z
1 if u(yji)− u(xji) /∈ Z

From the construction of v, firstly, v is integral. It needs to be shown that
v ∈ Z. Now, v satisfies the constraints in (4.1), since u does and the constraints in

(4.2) because of the construction of v. Now, let lji and lj
′

i′ be two literals containing

the same variable, that is, var(lji) = var(lj
′

i′). Then, it needs to be shown that

v(yji) − v(xji) = v(yj
′

i′) − v(xj
′

i′). There are two possibilities: (i) either the value
u(yji) − u(xji) is an integer and in this case, v(yji) − v(xji) = u(yji) − u(xji) as well

as v(yj
′

i′)− v(xj
′

i′) = u(yj
′

i′)− u(xj
′

i′) and u(yji)− u(xji) = u(yj
′

i′)− u(xj
′

i′) since u ∈ Z,

otherwise (ii) u(yj
′

i′) − u(xj
′

i′) is not an integer. Now, since u ∈ Z, u(yji) − u(xji) =

u(yj
′

i′) − u(xj
′

i′) holds as well. Therefore, in this case, from the construction of v,

v(yji) − v(xji) = 1 = v(yj
′

i′) − v(xj
′

i′). Thus in both of the cases it follows that v
satisfies the constraints of (4.4) as well. Therefore, v ∈ Z.

It will now be proved that if v ∈ ↓Z ′ then u ∈ ↓Z ′ as well. Assume v ∈ ↓Z ′.
Then, there exists v′ ∈ Z ′ such that v vG v′. The claim now is that u vG v′

also holds. Choose a constraint ϕ := yji − xji ./ c ∈ G. It needs to be shown
that u v{ϕ} v′. From the construction of G, it follows that (./, c) is either (≤, 1)
or (≥, 2). Now, if u(yji) − u(xji) is an integer then from the construction of v,
v(yji) − v(xji) = u(yji) − u(xji). Therefore, if u |= ϕ then v |= ϕ. Since v vG v′,
v′ |= ϕ as well, proving that u v{ϕ} v′. Otherwise, if u(yji)− u(xji) is not an integer,
then, u 6|= ϕ. Hence, in this case u v{ϕ} v′ holds trivially. Therefore, u vG v

′.
Now, if v ∈ ↓Z ′ then from the argument above u ∈ ↓Z ′ as well. But this

contradicts the assumption that u /∈ ↓Z ′. Therefore, v /∈ ↓Z ′ must also hold.

The following lemma is the final step towards showing the NP-hardness.

Lemma 4.38. Formula φ is satisfiable iff Z 6vG Z
′.

Proof. (⇒) Assume the given 3-CNF formula φ is satisfiable. Then, there exists an
assignment σ such that σ |= φ. It needs to be shown that with the zones Z,Z ′ and
the set G constructed, the relation Z 6vG Z ′ holds. From Lemma 4.33 it follows
that Z contains a valuation v such that σ = σv. The claim is v /∈ ↓Z ′. Let v′ ∈ Z ′
be a valuation such that v vG v

′. From Lemma 4.35 it follows that σv = σv′ . Since,
σ |= φ and σ = σv = σv′ , σv′ |= φ as well. But this contradicts Lemma 4.34.

(⇐) Conversely, suppose Z 6vG Z ′. Lemma 4.37 implies that Z contains an
integral valuation v such that v /∈ ↓Z ′. The claim is σv |= φ. Suppose this is not
true, that is, σv 6|= φ. Then, Lemma 4.36 implies that Z ′ contains a valuation v′

such that σv′ 6|= φ and σv = σv′ . The latter result together with Lemma 4.35 implies
that v vG v

′, which contradicts the fact that v /∈ ↓Z ′.

90

4.5. Discussion

The lemma above implies the NP-hardness.

Lemma 4.39. Given two canonical zones Z,Z ′ and a finite set of constraints G,
checking if Z 6vG Z

′ is NP-hard.

Lemma 4.39 together with Lemma 4.32 proves that checking Z 6vG Z ′ is NP-
complete (Theorem 4.30).

4.5 Discussion

The goal in this chapter was to devise an algorithm for checking if the relation
Z vG Z

′ holds or not, given two zones Z,Z ′ and a finite set of atomic constraints G.
An algorithm for checking the relation Z vG Z

′ when G does not contain diagonal
constraints was presented in Section 4.2 and an algorithm when G is allowed to
contain diagonal constraints was discussed in the following Section 4.3.

For the diagonal-free case, there already exists the LU simulation relation, which
can be checked in quadratic (in the number of clocks present in the underlying
automaton) time. The time to decide vG in the diagonal-free case is also at most
quadratic, however, this complexity actually depends on the number of upper and
lower bound (non-diagonal) constraints present in G. If G contains only lower-
bound (or only upper-bound) non-diagonal constraints, then the relation vG can,
in fact, be checked in linear time. The complexity approaches the upper bound
when G contains many lower as well as many upper bound constraints.

The algorithm for checking Z vG Z ′ when G is allowed to contain diagonal
constraints, makes use of the algorithm present for the diagonal-free case. In the
worst case, it might be required to call the diagonal-free algorithm exponentially
many (in the number of diagonal constraints present in G) times. However, it might
be possible to conclude whether Z vG Z

′ holds or not with much fewer such checks
in certain cases. Instead of using the diagonal-free version of the vG relation, the
LU simulation relation can also be used to conclude when Z vG Z

′ holds. Although
this would be sound, it only computes an approximation of vG and therefore may
end up concluding Z vG Z

′ does not hold in certain cases where it actually holds.
Section 4.4 proved that deciding Z vG Z

′ when G contains diagonal constraints
is NP-complete. Therefore, instead of using the algorithm presented in Section 4.3,
the problem Z vG Z

′ can also be encoded as a formula in a suitable theory and then
decided by using satisfiability solvers for that theory. An attempt at this was made
for an earlier version of the relation vG (deciding which was also NP-complete) in
the work [GMS18], but it did not perform well in terms of total execution time.
However, finding better encoding is one possible direction to be investigated further.

Section 4.1 proved that the relation vG is finite, whenever G is a finite set of
atomic constraints and whenever vG is finite, the reachability algorithm using this
vG is guaranteed to terminate. Chapter 3 provided a specific construction for this
set G that makes the relation vG a simulation relation for Updatable Timed Au-
tomata. Recall that this G is not always finite given an updatable timed automaton.
However, every automaton for which this G is finite, the reachability algorithm us-
ing the relation vG can be used successfully to check if a given state of the input

91

Chapter 4. Algorithm for checking simulation

automaton is reachable or not. The decidability proofs for subclasses of Updatable
Timed Automata use the region construction. The results in this chapter and the
previous, provide an alternative way of proving decidability. If it can be proved
that for a subclass of Updatable Timed Automata, the reduced A-map computa-
tion (Algorithm 4) always terminates with a finite reduced A-map, reachability can
be decided for that class of automata. The next chapter proves decidability for
certain classes of Updatable Timed Automata using this way.

92

Chapter 5

Applications of the simulation
relation vG

Chapter 3 defined the relation vG, made it a simulation relation for Updatable
Timed Automata and Chapter 4 described an algorithm for checking vG between
two zones. This algorithm can be used to check reachability in every updatable
timed automata for which the reduced A-map computation (Algorithm 4) termi-
nates. The question now is for which automata do Algorithm 4 terminate? This
chapter presents some of the known subclasses of Updatable Timed Automata for
which reachability is decidable and proves that for all those classes the reduced
A-map computation terminates, enabling the use of the algorithm discussed in
Chapter 4. This chapter concludes with a modified reachability problem, which can
also be decided using the algorithm in Chapter 4.

5.1 Subclasses with decidable reachability

In [BDFP04], Bouyer et al. detailed a list of subclasses1 of Updatable Timed
Automata for which the reachability problem is decidable. This section proves that
for all these classes of automata, the reduced A-map computation terminates and
for all the undecidable classes there are automata for which the reduced A-map
computation does not terminate. This list of decidability results are recalled in
Table 5.1. In this table c and d are integers with c > 0 and d ≥ 0.

Theorem 5.1. Given an updatable timed automaton A, if A belongs to a sub-
class of Updatable Timed Automata for which reachability is decidable according to
Table 5.1, then the reduced A-map computation terminates.

Proof. Given an atomic constraint ϕ and an update up of form x := y, the constraint
pre(ϕ, g, up) contains the same constant as ϕ. Therefore, this update alone cannot

1Along with the updates mentioned in Table 5.1, [BDFP04] also considers non-deterministic
updates of the form x :< c, x :< y + d, etc.. This thesis only considers the deterministic updates.

93

Chapter 5. Applications of the simulation relation vG

{x := 0} ∪ without diagonals containing diagonals

x := d, x := y decidable decidable
x := x+ c decidable undecidable
x := x− c undecidable undecidable

Table 5.1: Subclasses of UTA with decidable reachability

generate infinitely many constraints and hence the reduced A-map computation
terminates. On the other hand, with up being of the form x := d, pre(ϕ, g, up) is
a trivial constraint when ϕ is a non-diagonal constraint and when ϕ is a diagonal
constraint, pre(ϕ, g, up) may contain a different constant than ϕ but the diagonal
constraint becomes a non-diagonal constraint and therefore, again, it cannot result
in infinitely many propagations. Therefore, for both of the classes in Row 1 of
Table 5.1, the reduced A-map computation terminates.

Now consider the update x := x + c for some integer c > 0. The decidability
holds only when the automaton is diagonal-free. For a non-diagonal constraint ϕ of
the form x / cx or cx / x, when upx = x+c, the constraint pre(ϕ, g, up) contains the
constant cx− c, which is strictly smaller than cx. Since the constants in constraints
needs to be non-negative, this update can again not result in infinite propagations.
Therefore, the reduced A-map computation terminates.

For the undecidable classes, there are examples for which the reduced A-map
computation does not terminate. This is expected, since termination of reduced
A-map computation implies decidability. For each of the examples mentioned be-
low, if G is its corresponding reduced A-map, then the set G(q0) becomes infinite
resulting in non-termination of the reduced A-map computation.

q0 q1

y := y + 1

x− y ≤ 1

Figure 5.1: Non-terminating reduced A-map: update of the form x := x + c and
diagonal constraints

For the automaton in Figure 5.1, in the reduced A-map G, the set G(q0) =
{x − y ≤ 1, x − y ≤ 2, x − y ≤ 3, . . . }. Intuitively, additive updates x := x + c
have the effect of subtraction updates, when diagonal constraints are present and
therefore the problem becomes undecidable in the presence of diagonals.

q0 q1

x := x− 1

x ≤ 1

(a) no diagonal constraints

q0 q1

x := x− 1

x− y ≤ 1

(b) contains diagonal constraints

Figure 5.2: Non-terminating reduced A-map: update of the form x := x− c

For the automaton in Figure 5.2a, the set G(q0) = {x ≤ 1, x ≤ 2, x ≤ 3, . . . }.
For the automaton in Figure 5.2b, G(q0) = {x− y ≤ 1, x− y ≤ 2, x− y ≤ 3, . . . }.

94

5.2. Timed Automata with Bounded Subtraction

5.2 Timed Automata with Bounded Subtraction

Checking reachability in Updatable Timed Automata with updates being only of
the form x := 0 (reset) and x := x− c (subtraction update), where c ∈ N, is known
to be undecidable [BDFP04]. However, in order to model preemptive scheduling,
a decidable subclass of this was introduced by Fersman et al. in [FKPY07], called
Timed Automata with Bounded Subtraction. The decidability was proved by using
a modified region automaton construction, this section provides an alternate proof
of decidability through the finiteness of reduced A-maps.

The only restriction present in this subclass is: whenever a transition with a
subtraction update (x := x− c, x is a clock and c ∈ N) is enabled from a reachable
configuration (q, v), the value v(x) must be bounded by a known constant. The
following definition provides the formal syntax of this class of automata.

Definition 5.2 (Timed Automata with Bounded Subtraction [FKPY07]). A timed
automaton with “subtraction” is an updatable timed automaton with updates re-
stricted to the form x := 0 and x := x− c for c ∈ N. The guards may contain both
diagonal and non-diagonal constraints and their conjunctions.

A timed automaton with subtraction is called a timed automaton with “bounded
subtraction” if there exists a constant Mx for every clock x, such that, for ev-
ery reachable configuration (q, v) of the automaton: if there exists a transition
(q, g, up, q′) such that upx = x− c with c ∈ N and if v |= g, then v(x) ≤Mx.

Theorem 5.3 ([FKPY07]). Given a timed automaton with bounded subtraction, if
the bounds Mx are known for every clock x, then, checking reachability is decidable.

As examples, the automaton in Figure 3.5 is a timed automaton with subtrac-
tion, whereas, the automaton in Figure 3.3 is a timed automaton with bounded
subtraction. The reduced A-map construction does not terminate for the former
while it does terminate for the latter. However, even for timed automata with
bounded subtraction, the reduced A-map computation may not terminate.

q0 q1 q2

y ≤ 3

x := x− 1
x ≤ 1

Figure 5.3: Non-terminating reduced A-map computation for a timed automaton
with bounded subtraction with the bounds Mx = 3 and My = 3

The reduced A-map computation of Algorithm 3 does not terminate for the
automaton in Figure 5.3. This is because of the constraint x ≤ 1 present in the
transition from q1 to q2. This constraint x ≤ 1 first gets added to the set G(q1) and
then propagates to G(q0) as the constraint pre(x ≤ 1, y ≤ 3, x := x − 1) = x ≤ 2.
As the computation progresses, the constraints x ≤ i for i ∈ N≥1 get added to
the set G(q0) and therefore the fixpoint computation fails to terminate. Note that,
for this automaton the value of the constant N described in Proposition 3.37 is
max(3, 1) + (2 × 1 × 3 × 22) = 27. Since the constraint x ≤ 28 will eventually get

95

Chapter 5. Applications of the simulation relation vG

added to G(q0), Algorithm 4 will be able to conclude that the fixpoint computation
does not terminate for this automaton.

In the automaton of Figure 5.3, for every reachable configuration (qi, v), where
i ∈ {0, 1, 2}, it is always true that v(x) ≤ v(y). This is because the only update
present in the automaton, reduces the value of x. Now, every configuration (q0, v)
from where the transition (q0, y ≤ 3, x := x − 1, q1) is enabled, v(x) ≤ v(y) ≤ 3.
Therefore Mx = 3 serves as the bound for the clock x and since y ≤ 3 is present in
the guard of this transition – the only transition with a subtraction update – the
value My = 3 also serves as the bound for the clock y. Therefore, the automaton
in Figure 5.3 is a timed automaton with bounded subtraction.

The bounds on the clocks imposed by Definition 5.2 are semantic in nature.
Therefore, these do not affect the A-map construction. It is possible to define
a modified class of automata, that further puts a syntactic bound on the clocks,
keeping it equally expressive as timed automata with bounded subtraction with
known bounds and for which the reduced A-map computation is guaranteed to
terminate.

Definition 5.4 (Timed Automata with Syntactically Bounded Subtraction). A
timed automaton with syntactically bounded subtraction is a timed automaton with
subtraction, such that, for every transition (q, g, up, q′) and clock x, if upx = x− c
for some c ∈ N then the guard g contains an upper bound constraint x / c′ for some
c′ ∈ N.

The following result states that every timed automaton with bounded subtrac-
tion can be modified into a timed automaton with syntactically bounded subtrac-
tion, preserving the runs of the automaton. The proof follows from the following
observation: for every transition t = (q, g, up, q′) containing a subtraction update,
for every reachable valuation v satisfying the guard g, for every clock x, the relation
v(x) ≤Mx holds. Therefore, every such valuation will also satisfy the (new) guard
g ∧ x ≤Mx. This construction relies on the fact that the bounds Mx are known.

Lemma 5.5. For every timed automaton with bounded subtraction A′ where the
bounds Mx for every clock x are known, there exists a timed automaton with syn-
tactically bounded subtraction A such that the runs of A and A′ are the same.

Proof. Given A′ construct A as follows: for every transition tA′ = (q, g, up, q′)
change the guard of this transition to g′ := g∧ (

∧
x∈B x ≤Mx) where B is the set of

clocks x with update of the form x := x− c with c > 0. From Definition 5.2 it then
follows that, for every reachable configuration (q, v) in A, if v |= g then v |= g′.

The A-map computation with pre(ϕ, up) presented in Section 3.3.2 may not ter-
minate for some timed automaton with syntactically bounded subtraction, however,
due to the optimizations presented in Table 3.1 the reduced A-map computation
always terminates for this class of automata. This is proved in the following result.
In the following, an A-map (or a reduced A-map) G : q 7→ G(q) is said to be finite
if each of the sets G(q) is finite.

96

5.3. Clock Bounded Reachability

Lemma 5.6. For every timed automaton with syntactically bounded subtraction A,
the reduced A-map is finite, therefore, the reduced A-map computation terminates
for every timed automaton with syntactically bounded subtraction.

Proof. Let A be a timed automaton with syntactically bounded subtraction. Let M
be the maximum constant appearing among the guards and updates in A. Define
G to be the set of all atomic constraints with constant at most M . It will be shown
that the map G assigning G(q) = G for all q, is a reduced A-map. Since G is a finite
set, the map G is also finite, therefore the lemma will follow.

From the construction of G, it follows that the first two conditions of Defini-
tion 3.34 hold. It remains to be shown that pre(ϕ, g, up) ∈ G, for every ϕ ∈ G
and for every transition (q, g, up, q′) of A. Choose a constraint ϕ ∈ G. Note that
pre(ϕ, g, up) is a constraint having a larger constant than ϕ only if up contains
subtractions (since the other possible update is only a reset to 0 in this class).
Thus, if up does not contain subtractions, from the construction of G it follows that
pre(ϕ, g, up) ∈ G. Now, if upx = x − c for some clock x and c ∈ N>0, then from
Definition 5.4, the guard g contains x /1 c1 for some /1∈ {<,≤} and c1 ∈ N≥0. If
up−1(ϕ) is some x / d, then Case 1 of Table 3.1 gives pre(ϕ, g, up) = >. If up−1(ϕ)
is d / x, from Case 2 of the table, pre(ϕ, g, up) = c1 ≤ x or pre(ϕ, g, up) = d / x
with d ≤ c1, which are both present in G by construction.

Finally, assume that up−1(ϕ) is a diagonal constraint x− y / d or d / x− y and
Case 3 of Table 3.1 does not apply. Then, upx = x−c1 with c1 ≥ 0 and upy = y−c2
with c2 ≥ 0 (a reset for x or y is not possible). Moreover, if c1 > 0 (resp. c2 > 0)
then g contains some x /1 c

′
1 (resp. y /2 c

′
2). If c1 > 0 then, since Case 3 does not

apply, d ≤ c′1 ≤ M and up−1(ϕ) ∈ G. If c1 = 0 and c2 > 0 then the constraint ϕ
is respectively x − y / d + c2 or d + c2 / x − y. Since 0 ≤ d < d + c2 ≤ M , the
constraint up−1(ϕ) is already in G. Therefore, the third condition of Definition 3.34
is also satisfied, proving that the map G is indeed a reduced A-map.

Given a timed automaton with bounded subtraction A, an equivalent timed
automaton with syntactically bounded subtraction A′ can be constructed (thanks
to Lemma 5.5). Due to Lemma 5.6, the reduced A′-map will be finite. Therefore,
the relation vG with such an A′-map will yield a sound and complete procedure
for checking reachability in the automaton A. This gives an alternate proof of
Theorem 5.3. This also makes a zone-based algorithm available for checking reach-
ability unlike the region-based approach originally proposed in [FKPY07]. How
schedulability can be modelled using timed automata with syntactically bounded
subtraction will be discussed in Chapter 6.

5.3 Clock Bounded Reachability

In this thesis, so far, only the classical reachability problem has been discussed, that
asks: given an updatable timed automaton, does there exist a run of the automaton
terminating at a specified state? A modified reachability problem can also be asked:
given an updatable timed automaton A and a bound B ∈ R≥0, does there exist
a run (q0, v0) → (q1, v1) → · · · → (qn, vn) of A, ending at a specified state qn,

97

Chapter 5. Applications of the simulation relation vG

satisfying the property that vi(x) ≤ B, for every clock x and every valuation vi?
This problem is called the clock bounded reachability problem.

This problem is decidable in general, since, there can only be finitely many
zones reachable during the zone graph exploration. However, to optimize the enu-
meration through simulations, a simulation relation is required. If the A-map can
be computed then vG can be used for this purpose. It turns out, while consider-
ing clock bounded reachability, every input automaton can be modified (by adding
constraints to its guards) into another automaton, preserving the clock-bounded
behaviours and having finite reduced A-map.

Given an updatable timed automaton A, asking for clock bounded reachability
is same as asking reachability in the automaton AB, where the automaton AB is
derived from A by adding the constraint

∧
x∈X x ≤ B in every guard of A. Clearly,

whenever a state in AB is reachable, in every accepting run the value of no clock
can grow beyond the bound B. It turns out, for all such automata AB, the reduced
AB-map computation terminates and therefore reachability can be checked in AB,
using the reachability algorithm with the simulation vG.

Theorem 5.7. Given an updatable timed automaton A and a bound B ∈ R≥0, the
reduced AB-map is finite.

Proof. Let M be the maximum constant appearing in a guard of AB (note that
the constants in the updates are not considered). Let G be the set of all atomic
constraints with constant at most M , as defined in the proof of Lemma 5.6. It will
be shown that pre(ϕ, g, up) ∈ G, for every ϕ ∈ G and for every transition (q, g, up, q′)
and thus the map G : q 7→ G(q) with G(q) = G is a reduced AB-map. The proof
proceeds similarly to Lemma 5.6, although here there is an added convenience that
the guard g contains an upper constraint for every clock. Suppose g contains x / c.
Then, when up−1(ϕ) is an upper constraint x / d, pre(ϕ, g, up) is > (Case 1); when
ϕ is d / x, pre(ϕ, g, up) gives a constraint with constant atmost c; when ϕ is a
diagonal constraint x − y / d or d / x − y and Case 3 does not apply then d ≤ c
and hence pre(ϕ, g, up) is a constraint in G.

Theorem 5.7 implies, given an updatable timed automatonA and a bound B, the
clock bounded reachability problem can be checked by first constructing AB and
then using Algorithm 1 with the simulation relation vG, where G is the reduced
AB-map (can be computed using Algorithm 4).

5.4 Discussion

This chapter discussed the usefulness of the simulation relation vG defined in Chap-
ter 3. It showed that this relation can be used for checking reachability in all the
subclasses of UTA mentioned in [BDFP04], in particular, the full class of Timed
Automata (containing diagonal constraints). However, non-deterministic updates
discussed in [BDFP04] have not been considered. It was also shown that the rela-
tion vG can be used for checking reachability in Timed Automata with Bounded

98

5.4. Discussion

Subtraction, therefore, while checking (preemptive) schedulability. Lastly, a modi-
fied version of reachability problem was discussed and shown that this relation vG
can also be used for checking this problem.

99

Chapter 5. Applications of the simulation relation vG

100

Chapter 6

Implementation and experiments

This chapter provides a short note on the existing implementation of TChecker [HP]
and the prototype implementation of the simulation relation vG (Chapter 3) and
the algorithm for checking the relation (q, Z) vG (q, Z ′) (Chapter 4) in TChecker.
This chapter further reports on the experiments performed using this prototype
implementation. Two case studies are reported on two variants of the schedulability
problem. The first case study (Section 6.2) is based on job-shop scheduling. In this
problem, there are a set of tasks that need to be scheduled in a fixed number
of reusable resources (machines). The model considered in this case study is a
modified version of the timed automata modelling of job-shop scheduling described
in [AAM06]. The original model considered only diagonal-free timed automata, the
modified model is produced by adding diagonal constraints to the original model.
This modified modelling is part of the work [GMS19]. The second case study
(Section 6.3) considers a more general schedulability problem, where tasks gets
released through a timed automaton – periodically or aperiodically. Also, while a
task is being executed, another task is allowed to preempt this running task. The
model considered in this case study is a modified version of the network of timed
automata described in [FPY02] modelling preemptive job-shop scheduling. This
modified modelling was presented in the work [GMS20].

The Timed Automata and Updatable Timed Automata models defined in Chap-
ter 2 did not consider events (also known as actions) on transitions (Remark 1).
Events are not relevant when considering the reachability problem in a single timed
automaton. When reachability is checked in a network of timed automata, first,
a product timed automaton is constructed from the network and then the reach-
ability is checked on this product automaton. The events are important when
constructing this product automaton. However, once the product automaton has
been constructed, events become irrelevant for checking reachability. Since this
thesis considers only the reachability problem – assuming, instead of a network of
(updatable) timed automata, the product automaton is given – events on transi-
tions have not been considered so far. However, while modelling real-time systems,
events are indeed useful. When modelling a system as a network of (Updatable)

101

Chapter 6. Implementation and experiments

Timed Automata, the individual automata can synchronize with each other via
events (also called synchronizing actions), present on the transitions. In a network,
each individual automaton can have a set of events local to itself and also there
can be certain events that are shared among multiple component automata of the
network. These shared events are used as synchronizing events. For example, con-
sider the two automata A1 and A2 in Figure 6.1. The event a is a synchronizing
event in this network. The transition q0 → q1 in A1, when taken, emits the signal
a. Whereas, the transition q′0 → q′1 in A2 listens to the signal a and this transition
can only be taken when the signal a is emitted by some transition. Therefore, in
this network, although the transition in A2 is enabled from the initial time itself
(because of the guard y ≤ 20, true when y = 0), it can only be taken once y ≥ 10,
because of the transition present in A1.

q0 q1
x ≥ 10

a!

(a) The automaton A1

q′0 q′1
y ≤ 20

a?

(b) The automaton A2

Figure 6.1: Network of two timed automata with a synchronizing event a

6.1 Implementation

This section gives a short description of the implementation of TChecker [HP] –
an open source tool for checking reachability in diagonal-free Timed Automata.
This, however, will not be an exhaustive description of the implementation of
TChecker. This section describes the parts of TChecker that were required to
be modified in order to implement the simulation relation vG (Chapter 3) and the
algorithm for checking this relation between two zones (Chapter 4). A more de-
tailed description of TChecker can be found in the wiki (https://github.com/ticktac-
project/tchecker/wiki) and in the documentation built while installing TChecker.

The simulation relation vG has been implemented on TChecker v0.3 and can be
found at https://github.com/mukherjee-sayan/tchecker.

6.1.1 A quick tour of TChecker

Parsing an input. TChecker can parse every updatable timed automaton (with
updates only of the form x := y + d, for some clocks x, y and some integer d).
This parsing happens in two steps. In the first step, an initial representation of the
input (an object of type system declaration t) is built. In the next step, a more
detailed model (an object of type system t) is built. The zone graph is built from
this final representation. This final model contains all the information about the
states and transitions, with the invariants, guards and updates being parsed.

Building the zone graph. Reachability algorithms implemented in TChecker
fix their own semantics of the zone graphs to be built. These get set through the
function factory present in the namespace zg. The semantics set whether the

102

https://github.com/ticktac-project/tchecker/wiki
https://github.com/ticktac-project/tchecker/wiki
https://github.com/mukherjee-sayan/tchecker

6.1. Implementation

zones present in the zone graph are time-elapsed or not and also whether the zones
are extrapolated or not. The folder /src/tck-reach contains implementations
of the available algorithms. Each of the algorithms contain a run function, that
first sets the semantics of the zone graph and then proceeds to check reachability.
This run function also computes the appropriate clock bounds function required
for the algorithm. This run function calls another run function (defined in the
file /include/tchecker/algorithms/covreach/algorithm.hh). This second run

function builds the reachability graph according to Algorithm 1. This reachability
graph (an object of a particular graph t class, defined in the reachability algorithm)
gets built according to the semantics set for the zone graph.

Working with zones. Zones are implemented as Difference Bound Matrices
(DBM) [Dil90] in TChecker. Each entry in a DBM is referred to as a difference
bound (representing a pair of the form (/, c)) and is implemented as the class db t.
All the operations on zones, including checking if one zone is simulated by (or
contained in) the other, are defined in the file /include/tchecker/dbm/dbm.hh.

6.1.2 Constructing the parameters of vG

Implementation of the static analysis for computing the parameters of vG, con-
sisted of two steps. First is a new data-structure to represent A-map and second is
the fixpoint computation (Algorithm 4) for computing the reduced A-map (Defini-
tion 3.34). This new data structure is implemented as a class named a map t and it
contains for each location (implemented as loc id t – an alias for uint32 t) of the
automaton, two vectors G (containing only diagonal constraints), Gdf (containing
only non-diagonal constraints). a map t is declared inside the namespace amap in
the file /include/tchecker/clockbounds/clockbounds.hh.

The file /include/tchecker/clockbounds/solver.hh contains the definition
of the fixpoint computation (Algorithm 4). The functions required for computing
the reducedA-map are kept inside the namespace amap. The function compute amap

computes the reduced A-map given a system (an object of system t). The fixpoint
computation requires the computation of the constraint pre(ϕ, g, up) according to
Table 3.1, this is computed by the function compute pre. Given an input updat-
able timed automaton, whether the fixpoint computation will terminate or not,
can be checked using the constant N described in Proposition 3.37. The function
find cutoff bound computes this constant N . If a constraint with constant greater
than N gets computed during the fixpoint computation, then an error is thrown
stating that the tool is unable to check reachability for this input automaton, since
the fixpoint computation will not terminate.

When reachability is checked for a network of Timed Automata, the clock bounds
(L,U , M or G) are first computed for the individual component automata. Then, a
product automaton is constructed. Each state in this product automaton is a tuple
of locations of the original network. For each such tuple qprod = (q1, q2, . . . , qn), its
G(qprod) is defined as G(q1)∪G(q2)∪· · ·∪G(qn). This may yield wrong answers if the
network involves clocks that are shared among more than one component automata.
It is not yet clear how to compute A-map in the presence of shared clocks. The

103

Chapter 6. Implementation and experiments

benchmarks that have been considered in this chapter do not involve shared clocks.
The class a map t contains the function bounds that implements these sets G for
tuples of locations (objects of the class vloc t).

Remark 9. The input automata in TChecker can also contain invariants in states.
When considering a state q of an input automaton, the atomic constraints present
in the invariant of q are added to the set (implemented as a vector) G(q).

6.1.3 Implementing Z vG Z
′

Given two zones Z and Z ′, the algorithm for checking Z vG Z ′ (presented in
Chapter 4) was required to be implemented in order to use the relation vG in the
reachability algorithm. Three functions have been implemented in this purpose, in
the file /src/dbm/dbm.cc. The function is g le implements Algorithm 6 and the
function is g le star implements Algorithm 7. These functions take as arguments
two dbms (representing two zones), a set of diagonal constraints and a set of non-
diagonal constraints. Algorithm 5 has been implemented as the function is g le nd

for checking the relation Z vGnd Z
′, given two zones Z, Z ′ and a set of non-diagonal

constraints Gnd.

TChecker also did not allow updates of the form x := y − d where d ∈ N.
Although it could parse inputs with such updates, it could not check reachability
in the presence of these updates. The function reset (also implemented in the file
/src/dbm/dbm.cc) has been modified to incorporate updates with subtractions.

6.1.4 Running TChecker with vG simulation

While checking reachability in TChecker, some options need to be selected. First,
the reachability algorithm needs to be chosen. This is done using the flag -a. A
new algorithm option has been added named gsim that implements the reachability
algorithm with the simulation relation described in this thesis. The label of the
state for which reachability is being checked also needs to be provided while running
TChecker, using the flag -l. Finally, the order in which the nodes of the zone graph
are explored can be set while running TChecker, using the flag -s and selecting bfs

or dfs. By default, bfs is used as the search order.

The file /src/tck-reach/tck-reach.cc contains the function main that sets
these parameters provided while running TChecker on an input automaton. The
new algorithm gsim sets the zone graph parameters as: (i) the zones present in the
graph are time elapsed and (ii) no extrapolation used on zones. These parameters
are set inside the run function present in the file /src/tck-reach/zg-gsim.cc.

The following command checks reachability with the simulation relation vG:

tck-reach -a gsim -l <label-of-target-state> -s bfs

<path-to-input-file>

The next two sections describe two case studies, where the input models contain
diagonal constraints and, in some examples, updates as well.

104

6.2. Job-Shop scheduling

6.2 Job-Shop scheduling

The problem of job-shop scheduling has been modeled as (network of) timed au-
tomata by Abdeddäım et al. in [AAM06]. Accepting runs of this model translates
to feasible schedules. This job-shop scheduling problem considers the following
scenario: there is a given set of jobs, each job J is an ordered sequence of tasks
{(m1, d1), (m2, d2), . . . , (mk, dk)}, where each pair (mi, di) represents a task that
needs to be executed by the resource mi and it takes duration di. The set of all
resources is finite. Each job also has a known deadline D. The problem is to know
whether it is possible to execute all the jobs without missing any of the deadlines.

The model to be described in this section is an extension of the (diagonal-
free) timed automata model introduced for job-shop scheduling. The benchmark
models the following situation: there are n jobs J1, J2, . . . , Jn and k machines
m1,m2, . . . ,mk. Each job Ji consists of two tasks given by the tuples T 1

i :=
(m1

i , a
1
i , b

1
i) and T 2

i = (m2
i , a

2
i , b

2
i) where m, a, b (with appropriate indices) denote

respectively the machine on which the task needs to be executed and [a, b] is an
interval such that the (not precisely known) time needed to execute the task falls in
this interval. In addition to this, each job has an overall deadline Di. The question
now is: can these tasks be scheduled so that all jobs finish within their deadline?
This problem has been modeled using diagonal-free Timed Automata. Now, add
a further constraint (excluding the indices for clarity): for a job J with tasks T 1

and T 2, let t1 and t2 be the execution times. It is known that t1 ∈ [a1, b1] and
t2 ∈ [a2, b2]. Now, add a dependency between the tasks: if t1 ≥ c1, then t2 ≤ c2

and if t1 ≤ d1 then t2 ≥ d2 for suitable constants c1, c2, d1, d2. This says that, if
the first task is executed for a longer time, the second task needs a shorter time
to finish and vice versa. This kind of a dependency has a natural modeling using
diagonal constraints. Figure 6.2 illustrates a part of the UPPAAL-style automaton
for a job J capturing the timing requirements - this model makes use of the fea-
ture of committed locations in UPPAAL [BY03]. Time is not allowed to elapse in
this state, and in a product automaton, the components with committed locations
execute first. This modeling template of the job scheduling problem with depen-
dent tasks can easily be extended when jobs have more tasks and there are similar
dependencies between them. In addition to this automaton, the mutual exclusion
between machines – each machine can have atmost one task at a time – is mod-
eled by using additional boolean variables. The experiments are performed with
varied number of jobs and this produces different timed automata with diagonal
constraints. Note that, although this model is acyclic, there are “cross simulations”
which help in pruning the search: the same state q can be reached by multiple paths
and simulations help in cutting out new searches.

Each model reported in Table 6.1 is a product of k timed automata. In the table,
the name of the model is written followed by the number k denoting the number
of automata involved in the product. Along with this, the number of diagonal
constraints present in each of them is also reported. The first three benchmarks
make the algorithm enumerate the entire zone graph (by checking reachability of a
non-existent state). Whereas, the last two benchmarks check if the jobs are schedu-
lable (by checking if the state f of Figure 6.2 is reachable in all of the component

105

Chapter 6. Implementation and experiments

s1 T 1 s2 T 2 C f

{x1, z}

a1 ≤ x1 ≤ b1

{y1} {x2}

a2 ≤ x2 ≤ b2

{y2}

x1 − y1 ≥ c1 ∧ x2 − y2 ≤ c2
z ≤ D ∧

x1 − y1 ≤ d1 ∧ x2 − y2 ≥ d2

∧ z ≤ D

Figure 6.2: Timed automaton model capturing the timing requirements in a schedul-
ing problem. The state C marked red is a committed location, which is a convenient
modeling feature in UPPAAL and TChecker. Time is not allowed to elapse in such
a state.

TChecker with vG UPPAAL
Model #D Nodes count time Nodes count time

Job Shop 3 12 206 0.008s 31711 23.318s
Job Shop 5 20 8459 1.795s - timeout
Job Shop 7 28 - timeout - timeout

Job Shop sched 3 12 206 0.008s 31607 23.977s
Job Shop sched 4 20 1272 0.114s - timeout

Table 6.1: The column #D gives the number of diagonal constraints. There are
two methods reported in the table. First algorithm (TChecker with vG) is the im-
plementation of simulation based reachability using state based guards and pre and
the second algorithm (UPPAAL) is the result of running the model (A) with diago-
nal constraints in UPPAAL. Nodes count denotes the number of nodes enumerated
during a breadth-first exploration of the zone graph. The first three models com-
pute the entire zone graph, whereas, the last two check if the jobs are schedulable.
Time is reported in seconds and the timeout is set to 15 minutes.

automata). In the models reported, the values of the variables have been set to:
a1 = 1, b1 = 8, a2 = 6, b2 = 11, c1 = 5, c2 = 7, d1 = 2, d2 = 10 and D = 20.

6.3 Preemptive scheduling

This section presents a model of a variant of the schedulability problem considered
by Fersman et al. in [FPY02], with similar ideas but with simpler data structures.
The problem considers a set of tasks and every task (ti) has a fixed execution time
(Ci) and a deadline (Di). Once a task gets added to the task queue, it needs to
be executed before its deadline. The scheduling policy allows preemption, that is,
while a task is being executed, if a new task gets added to the queue, then the
scheduler can preempt the current task, execute the new task and then resume
executing the preempted task. The scheduler follows the Earliest Deadline First
(EDF) scheduling strategy: the running task is the one with the closest deadline.
There exists a queue containing tasks that need to be executed before each of
their deadlines. The problem is to know whether it is possible to schedule all the

106

6.3. Preemptive scheduling

tasks under EDF, or whether atleast one of the tasks in the queue will violate its
deadline. For simplicity in modelling, a restriction is put: at any point of time,
there is only one instance of a particular task in the task queue. The network of
timed automata in Figure 6.3 models this problem of schedulability. The network
consists of the following automata: (i) a scheduler automaton – this chooses the
task that needs to be run now, among the tasks present in the task queue, (ii) an
automaton corresponding to each task – this automaton keeps track of the current
status of the task, whether it is present in the queue, whether it is being executed at
the moment, whether it has been preempted or whether it has missed its deadline,
and (iii) a task release automaton – this timed automaton controls the release of
tasks into the task queue, this can model periodic tasks or non-periodic tasks.

Scheduler automaton. For every task ti, a boolean variable queuedi is used
to denote whether the task ti has been added to the queue (queuedi = 1) or not
(queuedi = 0). The scheduler automaton selects which task gets executed depending
on the time left to reach its deadline. The automaton has a state to remember that
the task queue is currently empty (queue = ∅). The state taskrunning denotes that
one of the tasks (present in the queue) is being executed. The remaining states, all
marked red, constitute the gadget that chooses the task to be executed. A state
is marked red to denote that it is a committed state, meaning no time is allowed
to elapse in this state. Assuming there are n tasks, there are n layers of these
states. In the ith layer, there are (i + 1)-many states, tempi0, tempi1, . . . , tempii.
The set of all tasks is assumed to be ordered. The state tempij in the automaton
denotes that among the first i tasks, t1, t2, . . . , ti (some of these tasks might not be
queued), task tj (which must be queued) has the closest deadline among the tasks
that are queued. The state tempi0 denotes that none of the first i tasks are queued.
Note that, after checking the first i tasks, if the task with the earliest deadline is
tj, then after checking the (i + 1)th task, the task with the earliest deadline can
either be t(i+1) or remain tj. The automaton thus has a transition from tempij to
temp(i+1)(i+1) checking if the deadline of ti+1 is (strictly) closer than the deadline of
tj. This is checked by the guard Di+1−d′i+1 < Dj−d′j, where d′j is a clock that gets
reset as soon as the task tj gets added to the queue (i.e. on every transition with
synchronization releasej). Otherwise, after checking the (i + 1)th task, tj remains
to be the task with the earliest deadline. This is possible in two scenarios - (i) the
task t(i+1) is not present in the queue (queuedi+1 = 0) or (ii) the deadline of t(i+1)

is atleast as far as the deadline of tj (checked by the guard Dj − d′j ≤ Di+1− d′i+1).
There are these two edges from tempij to temp(i+1)j, for every i = 1, 2, . . . , n−1 and
1 ≤ j ≤ i. The states tempni (for i = 1, 2, . . . , n) denote that among all the n tasks,
the task ti has the earliest deadline and hence this task must be executed. This is
ensured using the transition tempni → taskrunning with the synchronization runi.
This “triangle-like” gadget selects the task with the earliest deadline among the
tasks present in the queue. This gadget can be modified to model other scheduling
strategies in place of EDF.

While a task is being executed, that is, while the automaton is at the state
taskrunning, if a task gets released, then the scheduler automaton again needs to
choose the task with the earliest deadline, among the queued tasks (including this

107

Chapter 6. Implementation and experiments

free

queued

running

preempted

error

releasei?
{di}
q u eu edi := 1

ru n i?
{ci}

ci ≤ Ci ∧ di ≤ Di

releasej? ∀j ≠ i

di ≥ D
i ∧ ci < Ci

d i ≥ Di

ru n i?

releasej?
ru n j?
d o n ej?

releasej?
ru n j?
d o n ej?

releasej?
ru n j?

d o n ej?

di ≤ Di ∧ ci ≥ Ci

do n ei!
q u eu edi := 0

ci ≤ Di ∧ ci ≥ Cj
ci := ci − Cj

∀j ≠ i

∀j ≠ i

∀j ≠ i
∀j ≠ i

Automaton for task ti

ci < Ci

di ≤ Di

}

}

}{

qu eu e = ∅

qu eu e ≠ ∅

taskrunning

temp10 temp11

temp20 temp21 temp22

qu eu ed1 = = 0
qu eu ed1 = = 1

qu eu ed2 = = 0

qu eu ed2 = = 1

qu eu ed2 = = 0
qu eu ed2 = = 1 ∧
D1 − d′�1 ≤ D2 − d′�2

qu eu ed2 = = 1 ∧
D2 − d′�2 < D1 − d′�1

tempn0 tempni
…

releasei?
{d′�i}

qu eu edtasks := 1ru ni!

…

releasei?
{d′�i} qu eu edtasks + = 1

qu eu edn = = 0 qu eu edn = = 0 qu eu edn = = 1 ∧
Di − d′�i ≤ Dn− d′�n

⋮ ⋮ ⋮ …

donei? qu eu edtasks = = 1
qu eu edtasks := 0

donei?
qu eu edtasks > 1
qu eu edtasks − = 1

Scheduler automaton

∀i∀i

∀i

Figure 6.3: EDF scheduler and task handler

108

6.3. Preemptive scheduling

newly queued task). For this, there is an edge taskrunning → ‘queue 6= ∅’ with
the synchronization releasei, for every i = 1, 2, . . . , n.

After a task gets finished, there are two cases - either the queue becomes empty
(the edge taskrunning → ‘queue = ∅’) or the queue remains non-empty (the edge
taskrunning → ‘queue 6= ∅’). These edges are synchronized using the signal donei
for every i = 1, 2, . . . , n.

Automaton for individual tasks. The automaton for task ti maintains the state
of a task, whether the task has been added to the task queue (queued), whether it is
running (running) or it has been preempted (preempted) or if the deadline of this
task has been violated (error). The state free denotes that the task has not been
released yet. As soon as the task gets released, a clock di gets reset, that tracks
the deadline of the task. This is done in the transition free→ queued. (This clock
di is essentially a copy of the clock d′i present in the scheduler automaton. These
copies are used to avoid using shared clocks.) Another clock ci is used to maintain
the total execution time of the task. This clock gets reset as soon as the task starts
to be executed, on the transition queued→ running. Since a task can be released
while another task is being executed, assuming there are n many tasks, there are
(n − 1) many edges running → preempted on each of the signals releasej where
j 6= i. While a task is preempted, there can be other tasks getting released, run
or finished. In order to account for the cases for releasing and executing of other
tasks, there is a self loop on each of the signals releasej and runj, for j 6= i. Since
no other instance of ti gets released into the queue while the task ti is preempted,
there is no self loop on either releasei or runi. Note, while the automaton is in
the state preempted, the clock ci keeps elapsing time, although the task is not
being executed. So, while the task ti is preempted, when another task tj gets
finished (communicated through the synchronization donej), the computation time
of tj is deducted from the clock ci. This is done using the update ci := ci − Cj

on the edge preempted
donej?−−−−→ preempted. In this edge, there is also the guard

ci ≤ Di. This ensures that this automaton (for task ti) is a timed automaton with
bounded subtraction. Therefore, the reduced A-map computation terminates for
this automaton, as described in Chapter 5. In the state running, the invariant
ci ≤ Ci ∧ di ≤ Di ensures that the task is yet to finish its execution and also the
deadline has not been violated. The invariant at the state preempted also ensures
that, while at this state, the deadline of the task has not been violated yet. There
are two edges to the error state, from running and from preempted, both checking
that the deadline is going to be (or has been) violated. The edge running → free
ensures that the task has been executed within its deadline. The self loops on the
states free and queued ensure that there is no deadlock when another task gets
released or being executed or has been done.

Task release automaton. The release of a task is controlled using a task release
automaton. Two such automata have been considered for the experiments. These
are depicted in Figure 6.4 and Figure 6.5. Both of these automata ensure that a task
ti gets released only if it is not already present in the task queue (i.e. queuedi = 0).

109

Chapter 6. Implementation and experiments

q0
queuedi == 0

releasei!

...

...

Figure 6.4: Aflower: non-deterministically releases a task whenever the task is not
already present in the queue

r0 r1 r1 rn ti
x ≤ 0

release1!

x ≤ 0

release2!

x ≤ 0

releasen!
. . .

donei?

{x}

x ≤ 0

releasei!

...

...

Figure 6.5: Awc: first release all the tasks in zero time, then release a task as soon
as the queued instance finishes its execution

Periodic task release automaton. A periodic task with a period P is a task,
that gets released after every P time units. In order to ensure the fact that not
more than one instance of a task gets added to the task queue, the deadline for each
periodic task considered for the experiments, is lesser than or equal to its period. A
set of periodic tasks is modeled using the automaton in Figure 6.6. This automaton
uses a clock pi for each task ti to compute the time till its last release. Now, all the
tasks are first released before any time has elapsed (ensured by the guards x ≤ 0).
After this, whenever a task has not been released for its period, it gets released.
This is ensured by the self loops in the state rn.

r0 r1 r1 rn
x ≤ 0

release1!
{p1}

x ≤ 0

release2!
{p2}

x ≤ 0

releasen!
{pn}

∧
i(pi ≤ Pi)

. . .

pi ≥ Pi

{pi}

releasei!

...

...

Figure 6.6: Aperiodic: task releasing automaton for a set of periodic tasks {ti | i =
1, 2, . . . , n}. The state rn has an invariant

∧
i(pi ≤ Pi). The states r0, . . . , rn−1

are marked red to denote that they are committed states. This automaton first
releases all tasks in zero time, then releases the task ti after every Pi time units, for
i = 1, 2, . . . , n, Pi being the period of task ti.

Some preliminary experiments of preemptive scheduling are reported in Ta-
ble 6.2. The SporadicPeriodic model is from the tool TIMES [AFM+03]. This
example has three periodic tasks and one sporadic task, that is controlled by a task

110

6.4. Miscellaneous examples

releasing automaton. Multiple examples are run for different values of a constant
N present in the task releasing automaton. For each of these models, the answer to
schedulability matches with the answer of TIMES. The Mine-Pump example is pre-
sented in [GCO01]. This example has six periodic tasks. The benchmark considers
only the first five tasks – (58, 200, 200), (37, 250, 250), (37, 300, 300), (39, 350, 350),
(33, 800, 800), (33, 1000, 1000), where each task is represented as (computation time,
deadline, period). For this benchmark as well, the answer to schedulability matches
with the result in [GCO01].

Model Schedulable? Nodes count time

SporadicPeriodic-5 Yes 677 0.028s
SporadicPeriodic-20 No 852 0.031s

Mine-Pump Yes 31352 8.654s

Flower task triggering automaton: (computation time, deadline)
(1,2), (1,2), (1,2) No 204 0.006s
(1,10), (1,10), (1,10), (1,4) Yes 87475 73.695s

Worst-case task triggering automaton: (computation time, deadline)
(1,2), (1,2), (1,2) No 20 0.001s
(1,10), (1,10), (1,10), (1,4) Yes 441 0.026s

Table 6.2: Nodes Count is the number of nodes enumerated during a breadth-first-
search; Flower task triggering automaton is given in Figure 6.4 and Worst-case
task triggering automaton is given in Figure 6.5

6.4 Miscellaneous examples

This section reports on the performance on three miscellaneous examples in Ta-
ble 6.3. The first example (Fischer) is based on the model provided in [Rey07]. The
second model (Cex) is the automaton presented in [Bou03] with an added param-
eter to make the model larger as discussed in [Rey07]. The third example is the
automaton given in Figure 3.3. The first two examples in this section contain diag-
onal constraints and only resets, whereas, the third example contains subtraction
updates as well as diagonal constraints.

6.5 Discussion

For the benchmarks containing only resets (Table 6.1 and first two sets of examples
in Table 6.3), two algorithms have been considered. For each algorithm, the number
of nodes enumerated and the time taken are reported. The experiments were run
on a laptop with 2.3 GHz Dual-core processor, 8 GB RAM, running macOS 11.

The first algorithm (TChecker with vG) gives a significant gain over the second
algorithm (UPPAAL) both in the nodes count and time. A brief explanation of this

111

Chapter 6. Implementation and experiments

TChecker with vG UPPAAL
Model # D Nodes count time Nodes count time

Fischer 3 3 104 0.002s 4272 0.129s
Fischer 4 4 458 0.015s 357687 321.110s
Fischer 5 5 1904 0.151s - timeout
Fischer 7 6 29187 12.282s - timeout

Cex 1 2 7 0.0001s 26 0.034s
Cex 2 4 141 0.005s 2180 0.037s
Cex 3 6 3109 0.553s 182394 119.980s
Cex 4 8 62762 51.493s - timeout

Figure 3.3 × 1 1 3 0.0001s - -
Figure 3.3 × 3 3 54 0.019s - -
Figure 3.3 × 5 5 978 18.664s - -

Table 6.3: Nodes count is the number of nodes enumerated during a breadth-first
exploration of the zone graph; # D denotes the number of diagonal constraints
present in the model

phenomenon is provided below. The performance of the reachability algorithm is
dependent on three factors:

• the parameters on which the extrapolation or simulation is based on: the
maximum constant based M -simulations which use the maximum constant
appearing in the guards, versus the LU -simulations which make a distinction
between lower bound guards c / x and upper bound guards x / c (refer to
[BBLP06] for the exact definitions of extrapolations based on these parame-
ters, and [HSW16] for simulations based on these parameters); LU -simulations
are superior to M -simulations.

• the way the parameters are computed: global parameters which associate
a bound to each clock versus the more local state based parameters which
associate a set of bounds functions to each state [BBFL03]; local bounds are
superior to global bounds.

• when diagonal constraints are present, whether zones get split or not: each
time a zone gets split, new enumerations start from each of the new nodes;
clearly, a no-splitting-of-zones approach is superior to zone splitting.

The algorithm implemented in TChecker uses the superior heuristic in all the
three optimizations above. The no-splitting-of-zones was possible thanks to the
simulation based approach, which temporarily splits zones for checking Z vG Z ′

(Theorem 4.28), but never starts a new exploration from any of the split nodes. To
the best of our knowledge, the algorithm for handling diagonal constraints imple-
mented in UPPAAL 4.1 does not use the three optimizations. In particular, it is
not clear how the extrapolation approach can avoid the zone splitting in an efficient
manner. The improvement of the vG based approach gets amplified when bigger
products with many more diagonals are considered.

112

6.5. Discussion

Along with the method of handling diagonal constraints in UPPAAL reported
in this section, another method would be to compute the diagonal-free equivalent
of the automaton and then using the diagonal-free engine present in UPPAAL.
Both of these approaches are in principle prone to a 2#D blowup compared to
the first approach, where D gives the number of diagonal constraints. The table
shows that a good extent of this blowup indeed happens. Comparisons with two
other works dealing with the same problem have not been reported in the table:
the refined diagonal free conversion [Rey07] and the LU simulation extended with
LUd simulation for diagonals discussed in the work [GMS18]. However, the results
reported in this thesis are better than the tables reported in these papers.

113

Chapter 6. Implementation and experiments

114

Chapter 7

Conclusion

This chapter provides a brief summary of the results obtained in this thesis. It then
concludes by listing down a few research directions to be explored in future.

This thesis considered the reachability problem in Updatable Timed Automata
(UTA) and also, in particular, its subclass, Timed Automata (with or without di-
agonal constraints). The restricted class of diagonal-free Timed Automata enjoy
an efficient zone based reachability algorithm. This thesis tried to adapt this al-
gorithm to handle diagonal constraints and updates. The zone based reachability
algorithm is not guaranteed to terminate, unless a suitable simulation relation is
used. Therefore, in order to adapt the algorithm, a simulation relation was required
to be defined and also in order to use this relation in the reachability algorithm, an
algorithm had to be devised to check this relation between two zones.

This thesis proposed the relation vG – parameterized by a set of atomic con-
straints (Definition 2.1). This relation was first defined between two valuations
(Definition 3.1) and subsequently was lifted to a relation between two zones (Defi-
nition 3.4). The goal was to make this relation a simulation relation for UTA.

Before trying to make vG a simulation relation, this relation vG was first com-
pared with the vLU simulation relation available for diagonal-free Timed Automata.
Given a set of non-diagonal constraints G, the L,U bounds can be defined cor-
responding to that G (Definition 3.12). It turned out, given such a G and its
corresponding L,U , the relation vG relates more valuations (Theorem 3.13) and
therefore more zones (Corollary 3.14) than vLU .

Simulation relations (Definition 2.16) are, firstly, relations between two con-
figurations (having the same state) of UTA. The relation vG has, therefore, been
further lifted to a relation vG between two configurations (Definition 3.15) and then
to a relation between two nodes of the zone graph (Definition 3.16). While defining
these two relations, instead of using a single G for every state of the automaton,
a family of sets G = {G(q) | q is a state of the updatable timed automaton} was
used. This parameter G had to be computed carefully to ensure vG becomes a
simulation relation for UTA, and therefore also for Timed Automata.

115

Chapter 7. Conclusion

Chapter 3 described a suitable parameter G (Definition 3.34) that made vG
a simulation relation (Theorem 3.36). A fixpoint computation was proposed to
compute this parameter (Lemma 3.35, Algorithm 3). This fixpoint computation,
however, was not guaranteed to terminate for every updatable timed automata. A
method for checking when this computation terminates was also presented. It was
proved that during the fixpoint computation, if a constraint with “large enough”
constant gets added to one of the sets G(q), then the fixpoint computation will not
terminate (Proposition 3.37). Given an updatable timed automaton, deciding if the
fixpoint computation terminates or not was shown to be in PTIME when the con-
stants in the automaton are represented in unary, whereas, it is PSPACE-complete
when the constants are encoded in binary (Theorem 3.43). This termination check,
although hard, does not add an overhead to the reachability procedure, since it
is done on-the-fly, while computing the parameter G. The non-termination of the
fixpoint computation is not a problem, since Chapter 5 proved that the fixpoint
computation indeed terminates for the known decidable subclasses of UTA.

Chapter 4 then proved that the relation vG is, in fact, finite (Theorem 4.1). This
means whenever vG can be used (with suitable G) as the simulation relation, the
reachability algorithm will terminate. Since vG can be used as soon as the fixpoint
computation terminates and since checking reachability is undecidable in UTA, the
fixpoint computation cannot terminate for every updatable timed automaton.

After proving this finiteness of vG, Chapter 4 dealt with the second goal of the
thesis – an algorithm for checking the relation vG between two zones. Devising this
algorithm made the relation vG usable in a reachability algorithm.

To begin with, Section 4.2 gave an algorithm (Algorithm 5) for checking the
relation Z vG Z ′, when G does not contain diagonal constraints. In this case, it
was shown that if Z 6vG Z ′, then it is due to at most two constraints present in
G (Theorem 4.8). This gave a quadratic time algorithm for checking this relation,
that matched the bound for checking the vLU simulation between zones.

When G is also allowed to contain diagonal constraints, it turned out, checking
Z vG Z

′ can be reduced to checking two vG− relations, where G− consists of all the
constraints of G minus one diagonal constraint (Theorem 4.28). This result trans-
lated into a recursive algorithm (Algorithms 6 and 7) for checking Z vG Z

′. This
algorithm used the algorithm developed for the diagonal-free case, at most exponen-
tially (in the number of diagonal constraints present in G) many times. However,
the algorithm contains some heuristics that can help decide the relation with fewer
diagonal-free checks. Chapter 4 concluded by showing that checking Z 6vG Z ′,
when G contains diagonal constraints is, in fact, NP-complete (Theorem 4.30). The
hardness was proved by showing a reduction from 3-SAT (Lemma 4.38).

Finally, Chapter 6 reported on the implementations of the relation vG, the
fixpoint computation (Algorithm 4) and the algorithm for checking vG between
two zones, in the tool TChecker. Some preliminary experiments were reported
based on two variants of the schedulability problem. Section 6.2 reported on the
classic job-shop scheduling problem. This problem has already been modelled using
Timed Automata, a slightly modified version of the problem was considered in
this section that allows the use of diagonal constraints while modelling. The more

116

Chapter 7. Conclusion

complex preemptive scheduling problem was discussed in Section 6.3. This problem
has been modelled using Timed Automata with Bounded Subtraction [FKPY07],
a subclass of Updatable Timed Automata, containing diagonal constraints. An
alternate modelling (to make it implementable in the version of TChecker that has
been used in the experiments) of this problem was provided and the experimental
results were reported. These results show improvement over the existing methods.

Future directions

Following are a few questions that can be explored in future:

• While considering Updatable Timed Automata, this thesis has not considered
the non-deterministic updates x :∼ y+ d where ∼ ∈ {<, ≤, 6=, ≥, >}. How
to construct the parameter so that vG remains a simulation relation even in
the presence of these kind of updates?

• When the parameter of the proposed simulation relation contains smaller com-
ponent sets, it results in more simulations and therefore smaller zone graphs.
The improvement in [GMS20] from [GMS19] suggests that the proposed static
analysis (for computing the parameter) may not be the optimum one. The
question that therefore remains is: given an updatable timed automaton, is
it possible to compute an even better parameter that results in more number
of simulations?

• With a zone based algorithm now available for Timed Automata with diago-
nal constraints and with some of the updates, can the various optimizations
studied for diagonal-free Timed Automata – for example, to avoid the state-
space explosion problem, the local time semantics based technique studied by
Govind et al. in [GHSW19] – be lifted to these classes as well?

• Some extensions of Timed Automata have been studied – for example, Push-
down Timed Automata studied by Akshay et al. in [AGP21] – that use zone
based algorithm together with an off-the-shelf simulation relation. The simu-
lation relation proposed in this thesis can also be plugged into such algorithms.
Moreover, since this relation can also handle diagonal constraints and updates,
can those extended models be further extended with these features?

• Along with Timed Automata, another tool that is used for modelling real-
time systems is Timed Logic. The satisfiability of formulae in timed logics can
sometimes be checked by first converting the formula into a timed automaton
and then checking emptiness of the language of that automaton. Can diagonal
constraints (or updates) be used to get ‘smaller’ automata while converting a
logic formula, which may then possibly speed up the satisfiability check?

• Event Clock Automata (ECA) defined by Alur et al. in [AFH99] is a model
that, unlike Timed Automata, enjoys determinizability. This model uses event
clocks instead of the usual clocks used in Timed Automata. The notions of

117

Chapter 7. Conclusion

zones have been defined for ECA by Geeraerts et al. in [GRS11]. They also
show that when the zone graph of timed automata is adapted to these kinds of
zones, its computation is still not guaranteed to terminate without a widening
operator. Can we define our simulation relation in terms of event clocks to
get a suitable widening operator for Event Clock Automata?

• Parametric Timed Automata (PTA) defined by Alur et al. in [AHV93] is also
an extension of Timed Automata that has been used in practice. In this class,
the guards present in the transitions of the automaton contain parameters in
place of constants. Although most of the decision problems are undecidable
in this class, several syntactic subclasses have been considered and several
decision problems have also been studied – [And19] contains a survey. Can
the simulation relation proposed in this thesis be used in the context of PTAs?

118

Bibliography

[AAM06] Yasmina Abdeddäım, Eugene Asarin, and Oded Maler. Scheduling with
timed automata. Theor. Comput. Sci., 354(2):272–300, 2006. doi:

10.1016/j.tcs.2005.11.018.

[AAS12] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Jari Stenman. Dense-
timed pushdown automata. In Proceedings of the 27th Annual IEEE
Symposium on Logic in Computer Science, LICS 2012, Dubrovnik,
Croatia, June 25-28, 2012, pages 35–44. IEEE Computer Society, 2012.
doi:10.1109/LICS.2012.15.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems.
In Michael S. Paterson, editor, Automata, Languages and Programming
(ICALP), pages 322–335, Berlin, Heidelberg, 1990. Springer Berlin Hei-
delberg. doi:10.1007/BFb0032042.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235, April 1994. doi:10.1016/

0304-3975(94)90010-8.

[AFH99] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. Event-clock au-
tomata: A determinizable class of timed automata. Theor. Comput.
Sci., 211(1-2):253–273, 1999. doi:10.1016/S0304-3975(97)00173-4.

[AFM+03] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson,
and Wang Yi. TIMES: A tool for schedulability analysis and code
generation of real-time systems. In FORMATS, volume 2791 of Lecture
Notes in Computer Science, pages 60–72. Springer, 2003.

[AGP21] S. Akshay, Paul Gastin, and Karthik R. Prakash. Fast zone-based al-
gorithms for reachability in pushdown timed automata. In Alexan-
dra Silva and K. Rustan M. Leino, editors, Computer Aided Veri-
fication - 33rd International Conference, CAV 2021, Virtual Event,
July 20-23, 2021, Proceedings, Part I, volume 12759 of Lecture Notes
in Computer Science, pages 619–642. Springer, 2021. doi:10.1007/

978-3-030-81685-8_30.

119

http://dx.doi.org/10.1016/j.tcs.2005.11.018
http://dx.doi.org/10.1016/j.tcs.2005.11.018
http://dx.doi.org/10.1109/LICS.2012.15
http://dx.doi.org/10.1007/BFb0032042
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/S0304-3975(97)00173-4
http://dx.doi.org/10.1007/978-3-030-81685-8_30
http://dx.doi.org/10.1007/978-3-030-81685-8_30

Bibliography

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric
real-time reasoning. In S. Rao Kosaraju, David S. Johnson, and Alok
Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 592–601. ACM, 1993. doi:10.1145/167088.167242.

[AM04] Rajeev Alur and P. Madhusudan. Decision problems for timed
automata: A survey. In SFM, volume 3185 of Lecture Notes
in Computer Science, pages 1–24. Springer, 2004. doi:10.1007/

978-3-540-30080-9_1.

[And19] Étienne André. What’s decidable about parametric timed automata?
Int. J. Softw. Tools Technol. Transf., 21(2):203–219, 2019. doi:10.

1007/s10009-017-0467-0.

[And21] Étienne André. IMITATOR 3: Synthesis of timing parameters beyond
decidability. In Alexandra Silva and K. Rustan M. Leino, editors, Com-
puter Aided Verification - 33rd International Conference, CAV 2021,
Virtual Event, July 20-23, 2021, Proceedings, Part I, volume 12759
of Lecture Notes in Computer Science, pages 552–565. Springer, 2021.
doi:10.1007/978-3-030-81685-8_26.

[ATP01] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths
in weighted timed automata. In Maria Domenica Di Benedetto and
Alberto L. Sangiovanni-Vincentelli, editors, Hybrid Systems: Compu-
tation and Control, 4th International Workshop, HSCC 2001, Rome,
Italy, March 28-30, 2001, Proceedings, volume 2034 of Lecture Notes
in Computer Science, pages 49–62. Springer, 2001. doi:10.1007/

3-540-45351-2_8.

[BBFL03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim Guld-
strand Larsen. Static guard analysis in timed automata verification.
In Tools and Algorithms for the Construction and Analysis of Sys-
tems, 9th International Conference (TACAS), pages 254–277, 2003.
doi:10.1007/3-540-36577-X_18.

[BBLP06] Gerd Behrmann, Patricia Bouyer, Kim Guldstrand Larsen, and Radek
Pelánek. Lower and upper bounds in zone-based abstractions of timed
automata. Int. J. Softw. Tools Technol. Transf., 8(3):204–215, 2006.
doi:10.1007/s10009-005-0190-0.

[BC05] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of
timed automata. J. Autom. Lang. Comb., 10(4):393–405, April 2005.
doi:10.25596/jalc-2005-393.

[BCM16] Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Sym-
bolic optimal reachability in weighted timed automata. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification
- 28th International Conference, CAV 2016, Toronto, ON, Canada,

120

http://dx.doi.org/10.1145/167088.167242
http://dx.doi.org/10.1007/978-3-540-30080-9_1
http://dx.doi.org/10.1007/978-3-540-30080-9_1
http://dx.doi.org/10.1007/s10009-017-0467-0
http://dx.doi.org/10.1007/s10009-017-0467-0
http://dx.doi.org/10.1007/978-3-030-81685-8_26
http://dx.doi.org/10.1007/3-540-45351-2_8
http://dx.doi.org/10.1007/3-540-45351-2_8
http://dx.doi.org/10.1007/3-540-36577-X_18
http://dx.doi.org/10.1007/s10009-005-0190-0
http://dx.doi.org/10.25596/jalc-2005-393

Bibliography

July 17-23, 2016, Proceedings, Part I, volume 9779 of Lecture Notes
in Computer Science, pages 513–530. Springer, 2016. doi:10.1007/

978-3-319-41528-4_28.

[BD00] Béatrice Bérard and Catherine Dufourd. Timed automata and additive
clock constraints. Inf. Process. Lett., 75(1-2):1–7, 2000. doi:10.1016/
S0020-0190(00)00075-2.

[BDFP00a] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine
Petit. Are timed automata updatable? In E. Allen Emerson and
A. Prasad Sistla, editors, Computer Aided Verification, 12th Interna-
tional Conference (CAV), volume 1855 of Lecture Notes in Computer
Science, pages 464–479. Springer, 2000. doi:10.1007/10722167_35.

[BDFP00b] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine
Petit. Expressiveness of updatable timed automata. In MFCS, volume
1893 of Lecture Notes in Computer Science, pages 232–242. Springer,
2000. doi:10.1007/3-540-44612-5_19.

[BDFP04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine
Petit. Updatable timed automata. Theor. Comput. Sci., 321(2-3):291–
345, 2004. doi:10.1016/j.tcs.2004.04.003.

[BDGP98] Béatrice Bérard, Volker Diekert, Paul Gastin, and Antoine Petit. Char-
acterization of the expressive power of silent transitions in timed au-
tomata. Fundam. Inf., 36(2,3):145–182, August 1998. doi:10.3233/

FI-1998-36233.

[BER94] Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. On the
automatic verification of systems with continuous variables and un-
bounded discrete data structures. In Panos J. Antsaklis, Wolf Kohn,
Anil Nerode, and Shankar Sastry, editors, Hybrid Systems II, Proceed-
ings of the Third International Workshop on Hybrid Systems, Ithaca,
NY, USA, October 1994, volume 999 of Lecture Notes in Computer Sci-
ence, pages 64–85. Springer, 1994. doi:10.1007/3-540-60472-3_4.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaandrager.
Minimum-cost reachability for priced timed automata. In Maria
Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli, ed-
itors, Hybrid Systems: Computation and Control, 4th International
Workshop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings,
volume 2034 of Lecture Notes in Computer Science, pages 147–161.
Springer, 2001. doi:10.1007/3-540-45351-2_15.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial
order reductions for timed systems. In Davide Sangiorgi and Robert
de Simone, editors, CONCUR ’98: Concurrency Theory, 9th Interna-
tional Conference, Nice, France, September 8-11, 1998, Proceedings,

121

http://dx.doi.org/10.1007/978-3-319-41528-4_28
http://dx.doi.org/10.1007/978-3-319-41528-4_28
http://dx.doi.org/10.1016/S0020-0190(00)00075-2
http://dx.doi.org/10.1016/S0020-0190(00)00075-2
http://dx.doi.org/10.1007/10722167_35
http://dx.doi.org/10.1007/3-540-44612-5_19
http://dx.doi.org/10.1016/j.tcs.2004.04.003
http://dx.doi.org/10.3233/FI-1998-36233
http://dx.doi.org/10.3233/FI-1998-36233
http://dx.doi.org/10.1007/3-540-60472-3_4
http://dx.doi.org/10.1007/3-540-45351-2_15

Bibliography

volume 1466 of Lecture Notes in Computer Science, pages 485–500.
Springer, 1998. doi:10.1007/BFb0055643.

[BLR05] Patricia Bouyer, François Laroussinie, and Pierre-Alain Reynier. Diag-
onal constraints in timed automata: Forward analysis of timed systems.
In Paul Pettersson and Wang Yi, editors, Formal Modeling and Analy-
sis of Timed Systems (FORMATS), pages 112–126, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. doi:10.1007/11603009_10.

[BMS13] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in
timed automata. In Parosh Aziz Abdulla and Igor Potapov, edi-
tors, Reachability Problems - 7th International Workshop, RP 2013,
Uppsala, Sweden, September 24-26, 2013 Proceedings, volume 8169
of Lecture Notes in Computer Science, pages 1–18. Springer, 2013.
doi:10.1007/978-3-642-41036-9_1.

[Bou03] Patricia Bouyer. Untameable timed automata! In Helmut Alt and
Michel Habib, editors, STACS 2003, pages 620–631, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. doi:10.1007/3-540-36494-3_54.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata.
Formal Methods Syst. Des., 24(3):281–320, 2004. doi:10.1023/B:

FORM.0000026093.21513.31.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algo-
rithms and tools. In Lectures on Concurrency and Petri Nets, volume
3098 of Lecture Notes in Computer Science, pages 87–124. Springer,
2003.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Trans. Program. Lang. Syst., 8(2):244–263, April 1986. doi:

10.1145/5397.5399.

[CJ99] Hubert Comon and Yan Jurski. Timed automata and the theory of
real numbers. In Jos C. M. Baeten and Sjouke Mauw, editors, CON-
CUR ’99: Concurrency Theory, 10th International Conference, Eind-
hoven, The Netherlands, August 24-27, 1999, Proceedings, volume 1664
of Lecture Notes in Computer Science, pages 242–257. Springer, 1999.
doi:10.1007/3-540-48320-9_18.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms, Third Edition. The MIT Press,
3rd edition, 2009.

[Dil90] David L. Dill. Timing assumptions and verification of finite-state con-
current systems. In Joseph Sifakis, editor, Automatic Verification Meth-
ods for Finite State Systems (CAV), pages 197–212, Berlin, Heidelberg,
1990. Springer Berlin Heidelberg. doi:10.1007/3-540-52148-8_17.

122

http://dx.doi.org/10.1007/BFb0055643
http://dx.doi.org/10.1007/11603009_10
http://dx.doi.org/10.1007/978-3-642-41036-9_1
http://dx.doi.org/10.1007/3-540-36494-3_54
http://dx.doi.org/10.1023/B:FORM.0000026093.21513.31
http://dx.doi.org/10.1023/B:FORM.0000026093.21513.31
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/3-540-48320-9_18
http://dx.doi.org/10.1007/3-540-52148-8_17

Bibliography

[DT98] Conrado Daws and Stavros Tripakis. Model checking of real-time
reachability properties using abstractions. In Bernhard Steffen, editor,
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 313–329, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg. doi:10.1007/BFb0054180.

[DY96] C. Daws and S. Yovine. Reducing the number of clock variables of timed
automata. In 17th IEEE Real-Time Systems Symposium (RTSS), pages
73–81, Dec 1996. doi:10.1109/REAL.1996.563702.

[FJ15] John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed
automata is pspace-complete. Inf. Comput., 243:26–36, 2015. URL:
https://doi.org/10.1016/j.ic.2014.12.004, doi:10.1016/j.ic.
2014.12.004.

[FKPY07] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task au-
tomata: Schedulability, decidability and undecidability. Inf. Comput.,
205(8):1149–1172, 2007.

[FPY02] Elena Fersman, Paul Pettersson, and Wang Yi. Timed automata with
asynchronous processes: Schedulability and decidability. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
volume 2280 of Lecture Notes in Computer Science, pages 67–82.
Springer, 2002.

[FQSW20] Martin Fränzle, Karin Quaas, Mahsa Shirmohammadi, and James Wor-
rell. Effective definability of the reachability relation in timed au-
tomata. Inf. Process. Lett., 153, 2020. doi:10.1016/j.ipl.2019.

105871.

[GCO01] Thorsten Gerdsmeier and Rachel Cardell-Oliver. Analysis of scheduling
behaviour using generic timed automata. Electronic Notes in Theoret-
ical Computer Science, 42:143 – 157, 2001. Computing: The Aus-
tralasian Theory Symposium (CATS 2001).

[GHSW19] R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz.
Revisiting local time semantics for networks of timed automata. In
Wan J. Fokkink and Rob van Glabbeek, editors, 30th International
Conference on Concurrency Theory, CONCUR 2019, August 27-30,
2019, Amsterdam, the Netherlands, volume 140 of LIPIcs, pages 16:1–
16:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:

10.4230/LIPIcs.CONCUR.2019.16.

[GMS18] Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Reachability in
timed automata with diagonal constraints. In Sven Schewe and Lijun
Zhang, editors, 29th International Conference on Concurrency The-
ory, CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118
of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.28.

123

http://dx.doi.org/10.1007/BFb0054180
http://dx.doi.org/10.1109/REAL.1996.563702
https://doi.org/10.1016/j.ic.2014.12.004
http://dx.doi.org/10.1016/j.ic.2014.12.004
http://dx.doi.org/10.1016/j.ic.2014.12.004
http://dx.doi.org/10.1016/j.ipl.2019.105871
http://dx.doi.org/10.1016/j.ipl.2019.105871
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2019.16
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2019.16
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.28

Bibliography

[GMS19] Paul Gastin, Sayan Mukherjee, and B. Srivathsan. Fast algorithms
for handling diagonal constraints in timed automata. In Isil Dillig
and Serdar Tasiran, editors, Computer Aided Verification - 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes
in Computer Science, pages 41–59. Springer, 2019. doi:10.1007/

978-3-030-25540-4_3.

[GMS20] Paul Gastin, Sayan Mukherjee, and B Srivathsan. Reachability for
Updatable Timed Automata Made Faster and More Effective. In
Nitin Saxena and Sunil Simon, editors, 40th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2020), volume 182 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 47:1–47:17, Dagstuhl, Ger-
many, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:

10.4230/LIPIcs.FSTTCS.2020.47.

[GRS11] Gilles Geeraerts, Jean-François Raskin, and Nathalie Sznajder. Event
clock automata: From theory to practice. In Uli Fahrenberg and
Stavros Tripakis, editors, Formal Modeling and Analysis of Timed
Systems - 9th International Conference, FORMATS 2011, Aalborg,
Denmark, September 21-23, 2011. Proceedings, volume 6919 of Lec-
ture Notes in Computer Science, pages 209–224. Springer, 2011. doi:

10.1007/978-3-642-24310-3_15.

[HHW97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH:
A model checker for hybrid systems. Int. J. Softw. Tools Technol.
Transf., 1(1-2):110–122, 1997. doi:10.1007/s100090050008.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata? J. Comput. Syst. Sci.,
57(1):94–124, 1998. doi:10.1006/jcss.1998.1581.

[HOW16] Christoph Haase, Joël Ouaknine, and James Worrell. Relating reach-
ability problems in timed and counter automata. Fundam. Infor-
maticae, 143(3-4):317–338, 2016. URL: https://doi.org/10.3233/
FI-2016-1316, doi:10.3233/FI-2016-1316.

[HP] Frédéric Herbreteau and Gerald Point. Tchecker. URL: https://

github.com/ticktac-project/tchecker.

[HSTW16] Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor
Walukiewicz. Why liveness for timed automata is hard, and what we
can do about it. In Akash Lal, S. Akshay, Saket Saurabh, and Sandeep
Sen, editors, 36th IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, FSTTCS 2016,
December 13-15, 2016, Chennai, India, volume 65 of LIPIcs, pages
48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.FSTTCS.2016.48.

124

http://dx.doi.org/10.1007/978-3-030-25540-4_3
http://dx.doi.org/10.1007/978-3-030-25540-4_3
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2020.47
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2020.47
http://dx.doi.org/10.1007/978-3-642-24310-3_15
http://dx.doi.org/10.1007/978-3-642-24310-3_15
http://dx.doi.org/10.1007/s100090050008
http://dx.doi.org/10.1006/jcss.1998.1581
https://doi.org/10.3233/FI-2016-1316
https://doi.org/10.3233/FI-2016-1316
http://dx.doi.org/10.3233/FI-2016-1316
https://github.com/ticktac-project/tchecker
https://github.com/ticktac-project/tchecker
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.48

Bibliography

[HSW16] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better
abstractions for timed automata. Inf. Comput., 251:67–90, 2016.
doi:10.1016/j.ic.2016.07.004.

[KLM+15] Gijs Kant, Alfons W. Laarman, Jeroen Meijer, Jaco van de Pol, Ste-
fan Blom, and Tom van Dijk. Ltsmin: High-performance language-
independent model checking. In TACAS, 2015.

[KNSS00] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy
Sproston. Verifying quantitative properties of continuous probabilistic
timed automata. In Catuscia Palamidessi, editor, CONCUR 2000 -
Concurrency Theory, 11th International Conference, University Park,
PA, USA, August 22-25, 2000, Proceedings, volume 1877 of Lecture
Notes in Computer Science, pages 123–137. Springer, 2000. doi:10.

1007/3-540-44618-4_11.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a nutshell. International Journal on Software Tools for Technology
Transfer, 1(1-2):134–152, 1997.

[LRST09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets with
stopwatches. In Stefan Kowalewski and Anna Philippou, editors, 15th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2009), volume 5505 of Lecture Notes
in Computer Science, pages 54–57, York, United Kingdom, March 2009.
Springer.

[NMA+02] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded
Maler, and Navendu Jain. Verification of timed automata via satisfi-
ability checking. In Werner Damm and Ernst-Rüdiger Olderog, edi-
tors, Formal Techniques in Real-Time and Fault-Tolerant Systems, 7th
International Symposium, FTRTFT 2002, Co-sponsored by IFIP WG
2.2, Oldenburg, Germany, September 9-12, 2002, Proceedings, volume
2469 of Lecture Notes in Computer Science, pages 225–244. Springer,
2002. doi:10.1007/3-540-45739-9_15.

[Rey07] Pierre-Alain Reynier. Diagonal constraints handled efficiently in UP-
PAAL. In Research report LSV-07-02, Laboratoire Spécification et
Vérification. ENS Cachan, France, 2007.

[RSM19] Victor Roussanaly, Ocan Sankur, and Nicolas Markey. Abstraction
refinement algorithms for timed automata. In Isil Dillig and Serdar
Tasiran, editors, Computer Aided Verification - 31st International Con-
ference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Pro-
ceedings, Part I, volume 11561 of Lecture Notes in Computer Science,
pages 22–40. Springer, 2019. doi:10.1007/978-3-030-25540-4_2.

125

http://dx.doi.org/10.1016/j.ic.2016.07.004
http://dx.doi.org/10.1007/3-540-44618-4_11
http://dx.doi.org/10.1007/3-540-44618-4_11
http://dx.doi.org/10.1007/3-540-45739-9_15
http://dx.doi.org/10.1007/978-3-030-25540-4_2

Bibliography

[SLDP09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. Pat: Towards flex-
ible verification under fairness. In Ahmed Bouajjani and Oded Maler,
editors, Computer Aided Verification, pages 709–714, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[THV+17] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István
Majzik. Theta: A framework for abstraction refinement-based model
checking. In 2017 Formal Methods in Computer Aided Design (FM-
CAD), pages 176–179, 2017. doi:10.23919/FMCAD.2017.8102257.

[TYB05] Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking
timed büchi automata emptiness efficiently. Formal Methods Syst. Des.,
26(3):267–292, 2005. doi:10.1007/s10703-005-1632-8.

[Wan04] Farn Wang. Efficient verification of timed automata with bdd-like data
structures. Int. J. Softw. Tools Technol. Transf., 6(1):77–97, 2004.
doi:10.1007/s10009-003-0135-4.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. In-
ternational Journal on Software Tools for Technology Transfer, 1(1-
2):123–133, 1997.

126

http://dx.doi.org/10.23919/FMCAD.2017.8102257
http://dx.doi.org/10.1007/s10703-005-1632-8
http://dx.doi.org/10.1007/s10009-003-0135-4

	Introduction
	Handling diagonal constraints and updates: existing methods
	Contributions of this thesis

	Preliminaries
	Timed Automata
	Updatable Timed Automata
	The Reachability problem
	Regions
	Zones
	Zone based reachability algorithm
	Zone Graph
	Building the zone graph
	Simulation Relation
	Reachability algorithm: Overall framework

	A new simulation relation
	The relation G-preorder
	Comparing (diagonal-free) G-preorder with LU-preorder
	Making G-preorder a simulation relation
	Constructing an appropriate parameter: initial try
	Constructing an appropriate parameter: better try

	Termination of parameter computation
	Discussion

	Algorithm for checking simulation
	The relation G-preorder is finite
	Checking Z diagonal-free-G-preorder Z' where G is diagonal-free
	Checking non-relation due to single upper bound non-diagonal
	Checking non-relation due to single lower bound non-diagonal
	Checking non-relation due to one upper and one lower bound non-diagonal
	Algorithm for checking Z-simulated-by-Z'-diagonal-free

	Checking Z simulated by Z' where G contains diagonals
	Complexity of checking Z not simulated by Z'
	Discussion

	Applications of the simulation relation G
	Subclasses with decidable reachability
	Timed Automata with Bounded Subtraction
	Clock Bounded Reachability
	Discussion

	Implementation and experiments
	Implementation
	A quick tour of TChecker
	Constructing the parameters of G-map
	Implementing Z-simulated-by-Z'
	Running TChecker with G simulation

	Job-Shop scheduling
	Preemptive scheduling
	Miscellaneous examples
	Discussion

	Conclusion
	Bibliography

