
Bayesian games, Repeated Games, Information
Design and Persuasion

Tristan Tomala (HEC Paris)

“ReLaX” Workshop on Games, CMI, February 1 - February 4, 2021



Outline

1 Bayesian games

2 Zero-sum games

3 Sender Receiver games

4 Information design

5 Games of information design

6 Splitting games



Bayesian games

A Bayesian game, or game with incomplete information is given by:

• A finite set of players i = 1, . . . ,N ;

• A set of states Ω = Θ×∏i Mi with a prior probability distribution
p ∈ ∆(Ω);

• A set of actions Ai for each player i ;

• A payoff function ui : Ω× A → R for each player i .

1 A state ω = (θ,m1, . . . ,mN) is drawn from p, Player i is informed of mi .

2 Players choose actions simultaneously.

The game at the second stage is possibly dynamic: actions represent pure
strategies in the continuation (extensive form) game.



Bayes-Nash equilibrium

A Bayes-Nash equilibrium is a strategy profile σ = (σ1, . . . , σN) with
σi : Mi → ∆(Ai ) such that:

For each player i , each message mi with p(mi ) > 0, each action ai ,

E[ui(θ,mi ,m−i , σi (mi ), σ−i (m−i)) | mi ] ≥ E[ui(θ,mi ,m−i , ai , σ−i (m−i )) | mi ]

This is an Nash equilibrium of the normal form game with payoff
E[ui (θ,m, σ(m))].

This exists when:

- States and actions are finite;

- States are finite or countable, actions sets are compact metric, payoffs are
continuous.
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Zero-sum games

We consider two-player zero-sum games with independent types (for
simplicity).

• There are two players, the finite state space is K × L with prior
distribution p(k)q(l).

• Action sets are A,B. Payoffs are u1 = −u2 = g(k , l , a, b).

The game has a value if

sup
σ

inf
τ
Ep,q[g(k , l , σ, τ)] = inf

τ
sup
σ

Ep,q[g(k , l , σ, τ)] := V (p, q)

• If |L| = 1 or |K | = 1, this is a game with Lack of Information on one-side.
(Otherwise, on both sides).



Lack on one-side |L| = 1

Examples: K = {k0, k1}, p = ( 1
2
, 1

2
). Let Gk be the payoff matrix in state k .

Gk0 =

(

1 1
0 0

)

Gk1 =

(

0 0
1 1

)

‘

Gk0 =

(

1 0
0 0

)

Gk1 =

(

0 0
0 1

)

Gk0 =

(

4 0 2
4 0 −2

)

Gk1 =

(

0 4 −2
0 4 2

)



Concavity

Let G(p) be the game with prior distribution p and let V (p) be its value.

Theorem (Aumann Maschler)

V (·) is a concave function of p.

This follows from the following statement:

Suppose that for each q, player 1 guarantees f (q) in G(q) and let
p =

∑

m λmpm. Then, player 1 guarantees
∑

m λmf (pm) in G(p).

The theorem follows with f (q) = V (q):

V (p) ≥
∑

m

λmV (pm)

We prove now this statement.



Experiments and splittings

Let M be a finite set of messages. A statistical (Blackwell) experiment is
x : K → ∆(M). We have

P(k ,m) = p(k)x(m|k) = λmpm(k)

where λm = P(m) =
∑

k p(k)x(m|k) and

pm(k) = P(k | m) =
P(k ,m)

P(m)
= p(k)x(m|k)/λm

Also,
p(k) =

∑

m

P(k ,m) =
∑

m

λmpm(k)

Splitting

A splitting of p ∈ ∆(K ) is a distribution (random posterior) p̃ such that
E(p̃) = p. With finite support, this is convex combination

p =
∑

m

λmpm

Any experiment induces a splitting.



Splitting lemma

Conversely, since
P(k ,m) = p(k)x(m|k) = λmpm(k)

Splitting lemma (Aumann Maschler, 65)

Any splitting of p

p =
∑

m

λmpm

is induced by the experiment x(m|k) = λmpm(k)/p(k)



Auxiliary game

• Consider the game G̃(p) where player 1 can send a message m to player 2
before choosing actions. Let Ṽ (p) be its value.

• If p =
∑

m λmpm, then player 1 can send the message m and guarantee

f (pm) afterwards. So Ṽ (p) ≥
∑

m λmf (pm).

• Consider now the game G̃∗(p) where player 2 does not observe the
message. Player 2 has less strategies in G̃∗(p) than in G̃(p). So,
Ṽ ∗(p) ≥ Ṽ (p).

• But then G̃∗(p) ≡ G(p). So

V (p) ≥ Ṽ (p) ≥
∑

m

λmf (pm)

QED.



Concavification

Let u(p) be the value of the game without information:

u(p) is the value of the matrix game D(p) =
∑

k p(k)Gk .

Let Cav u(p) be its concave closure:

Cav u(p) = inf{f (p) : f ≥ u, f concave}
= sup

{

∑

m

λmu(pm) :
∑

m

λmpm = p
}

Lemma

V (p) ≥ Cav u(p)



Repeated game

Gn(p) is the n-stage repeated game with average payoff where:

• State k is drawn from p once and for all and known by player 1;

• Actions are chosen at each stage and are observed; Payoffs are not
observed.

Vn(p) is the value of Gn(p). V∞(p) is the (uniform) value of G∞(p) (if it
exists).

Theorem (Aumann Maschler)

1 Cav u(p) ≤ Vn(p) ≤ Cav u(p) + cte√
n

2 V∞(p) = Cav u(p).

We know that Vn(p),V∞(p) ≥ Cav u(p).



Examples

Gk0 =

(

1 1
0 0

)

Gk1 =

(

0 0
1 1

)

‘
u(p) = max{p, 1− p} convex. Full revelation.

Gk0 =

(

1 0
0 0

)

Gk1 =

(

0 0
0 1

)

u(p) = p(1 − p) concave. No revelation.



Examples

Gk0 =

(

4 0 2
4 0 −2

)

Gk1 =

(

0 4 −2
0 4 2

)

0

4

1 p1

2

1

4

3

4

Partial revelation



Vn(p) ≤ Cav u(p) + cte√
n

• Fix a strategy σ of player 1 and a history of actions
hn = (a1, b1, . . . , an−1, bn−1). Let pn(k) = P(k |hn).

• Interpret σ(an = m|k , hn) as an experiment x(m|k).
• λm =

∑

k pn(k)x(m|k) is the probability of playing an = m.

• Let τ(hn) be a best-response to λ in D(pn):
∑

k

pn(k)Gk(λ, τ(hn)) ≤ u(pn)

We have

E[Gk (an, bn)|hn] ≤
∑

k

pn(k)Gk (λ, τ(hn)) + C
∑

k

pn(k)
∑

m

|x(m|k)− λm|

≤ u(pn) + C
∑

m

λm

∑

k

|pn+1(k)− pn(k)|

Then (with the Martingale property),

E[Ḡn] ≤ E
1

n

∑

t

u(pt) +
cte(p)√

n
≤ Cav u(p) +

cte(p)√
n



V∞(p) ≤ Cav u(p)

We need to prove that player 2 guarantees Cav u(p) in the infinite (limit)
game.

• There exists a vector ξ ∈ R
K such that

Cav u(p) = 〈p, ξ〉 and ∀q, u(q) ≤ 〈q, ξ〉

Given history hn, define a vector v ∈ R
k with vk = (1/n)

∑

t Gk (at , bt). Define
q ∈ ∆(K ) by

qk =
(vk − ξk)+
∑

j(vj − ξj)+

• If q is well defined, player 2 plays an optimal strategy in D(q).

• Player 2 plays arbitrarily otherwise.



V∞(p) ≤ Cav u(p)

Let vn = (1/n)
∑

t G(at , bt) and π(vn) be the projection on C = {w ≤ ξ}.
By construction, vn − π(vn) = λq with λ > 0 and

〈E[G(an+1, bn+1) | hn], q〉 ≤ u(q) ≤ 〈q, ξ〉 = 〈q, π(vn)〉

For any strategy σ of player 1, if vn /∈ C ,

E[〈G(an+1, bn+1)− π(vn), vn − π(vn)〉 | hn] ≤ 0

If a sequence of vectors is such that

〈xn+1 − π(x̄n), x̄n − π(x̄n)〉 ≤ 0

then d(x̄n,C ) → 0. QED
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Sender Receiver Games

A Sender Receiver game is a two-player Bayesian game where:

• The set of states is Θ with a prior probability p.

• Player 1 knows the state and chooses a message m ∈ M .

• Player 2 does not know the state and observes m. Then he chooses an
action a ∈ A.

• Player 1’s payoff is u(θ, a), player 2’s payoff is v(θ, a).

Player 1 is an expert, Player 2 is a decision maker.

Information is transmitted strategically.

Since utilities are different, information is transmitted imperfectly.



Example

Consider the Sender-Receiver game defined by:

a1 a2
θ1 (1, 5) (0, 1) 1

2

θ2 (1,−10) (0, 1) 1

2

• Player 1 only cares about player 2 taking action a1.

• For player 2, a2 is a safe bet, a1 is a risky bet.

• The only equilibrium is babbling (non-informative).



Equilibrium condition for player 2

• A behavior strategy for player 1 is σ : Θ → ∆(M) denoted σ(m | θ).
• A strategy σ of player 1 is formally an experiment and is equivalent to a
splitting p =

∑

m λmpm.

• A behavior strategy for player 2 is τ : M → ∆(A) denoted τ(a | m).

• Player 2 who receives the message m has belief pm.

Player 2 with belief p over the states, chooses a mixed action from the set:

Y (p) =

{

α ∈ ∆(A) :
∑

θ

p(θ)v(θ, α) = max
a

∑

θ

p(θ)v(θ, a)

}

• At a best-reply, player 2 chooses ym ∈ Y (pm).



Equilibrium condition for player 1

Suppose that player 2 chooses ym ∈ ∆(A) after receiving message m.

Consider the best-reply of player 1.

• For each state θ and each message m,

σ(m | θ) > 0 ⇒ u(θ, ym) = max
m′

u(θ, ym′ ) := Uθ

• Notice that σ(m | θ) > 0 ⇔ pm(θ) > 0. Player 1 is indifferent between all
messages (and thus posteriors) induced with positive probability.

• So for each m, u(θ, ym) ≤ maxm′ u(θ, ym′ ) = Uθ with equality if
pm(θ) > 0.



Equilibrium characterization

Consider the set E of tuples (p,U ,V ) ∈ ∆(Θ)× R
Θ × R, such that

∃y ∈ ∆(A):

(i) Uθ ≥ u(θ, y) with equality if p(θ) > 0,

(ii) y ∈ Y (p),

(iii) V =
∑

θ p(θ)v(θ, y).

Denote

convU(E) =
{

∑

λm(pm,U ,Vm) : ∀m, (pm,U ,Vm) ∈ E
}

Theorem (Aumann-Hart, Forges)

There is an equilibrium of G(p) with payoff (U ,V ) if and only if
(p,U ,V ) ∈ convU(E)

Compare with Cav u(p). Convexify the non-revealing payoffs. Indifference
condition for player 1.



Full revelation

A game with full revelation in equilibrium.

a1 a2
θ1 (1, 1) (0, 0)

θ2 (0, 0) (3, 3)



No revelation

A game with no revelation in equilibrium.

a1 a2 a3
θ1 (3,−4) (2,−1) (1, 0) p

θ2 (3, 0) (2,−1) (1,−4) 1− p

• We have,

Y (p) =











{a1} if p < 1/4

{a2} if 1/4 < p < 3/4

{a3} if p > 3/4

• It is not possible to split p and keep player 1 indifferent.



Partial revelation

A game with partial revelation in equilibrium.

a1 a2 a3 a4 a5
θ1 (1, 10) (3, 8) (0, 5) (3, 0) (1,−8) p

θ2 (1,−8) (3, 0) (0, 5) (3, 8) (1, 10) 1− p

We have,

Y (p) =































{a1} if p > 4/5

{a2} if 4/5 > p > 5/8

{a3} if 5/8 > p > 3/8

{a4} if 3/8 > p > 1/5

{a5} if 1/5 > p



Partial revelation

• For p = 1/4, player 2 plays a4 and player 1’s payoff are (3, 3).

• For p = 3/4, player 2 plays a2 and player 1’s payoff are (3, 3).

• Player 1 can induce those beliefs by the splitting

1

2
= (1/2)

1

4
+ (1/2)

3

4

• Or by the strategy σ(m1 | θ1) = 3

4
= σ(m2 | θ2).

• This equilibrium payoff dominates NR and CR.

• Player 1 obtains the maximal payoff 3.
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Bayesian persuasion

Consider a sender-receiver environment p ∈ ∆(Θ), u(θ, a), v(θ, a).

• Player 1 is an information designer if he can choose the information
structure x : Θ → ∆(M) which delivers a message to player 2.

• Player 1 is no longer informed of the state, but chooses how information
is disclosed to player 2.

• The sender receiver game is played à la Stackelberg:

• Player 1 chooses the experiment x once and for all. It is publicly observed.

• Nature draws θ from p and m from x .

• Player observes x and chooses an action.

• Player 1 is able to commit on its randomizations: distributions of
messages are observable and verifiable.

This model is called Bayesian Persuasion (Kamenica and Gentzkow, 2011).



Receiver

Player 2 with belief p over the states, chooses a mixed action from the set:

Y (p) =

{

α ∈ ∆(A) :
∑

θ

p(θ)v(θ, α) = max
a

∑

θ

p(θ)v(θ, a)

}

An equilibrium strategy of player 2 is a tie-breaking-rule (TBR): a selection
γ(p) ∈ Y (p).



Example

a1 a2
θ1 (1, 5) (0, 1) 1

2

θ2 (1,−10) (0, 1) 1

2

0

1

1 p
2

3

1

2

b



Solving the game

A strategy σ of player 1 is an experiment and is equivalent to a splitting
p =

∑

m λmpm.

Given that the receiver chooses TBR γ(p), the program of the sender is

max
{

∑

m

λm

∑

θ

pm(θ)u(θ, γ(pm)) : p =
∑

m

λmpm

}

Denote Uγ(p) =
∑

θ p(θ)u(θ, γ(p)) then,

Lemma (Kamenica-Gentzkow, 11)

The equilibrium payoff of player 1 is

sup
{

∑

m

λmUγ(pm) : p =
∑

m

λmpm

}

= CavUγ(p)



Example

a1 a2
θ1 (1, 5) (0, 1) 1

2

θ2 (1,−10) (0, 1) 1

2

0

1

1 p
2

3

1

2

CavUγ(
1

2
) = 3

4

b

b

b

b
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Games between information designers

Environment

• Finite multidimensional state space Θ = Θ1 × · · · ×Θn.

• Prior p0 ∈ ∆(Θ) (possibly correlated).

• Designer i = 1, . . . , n chooses a statistical experiment xi : Θi → ∆(Mi )
(information structure), where Mi = M1

i × · · · ×Mk
i is a finite set of

message profiles.

• Each agent j = 1, . . . , k chooses an action aj ∈ Aj .

• Designer i has payoff ui(a, θ1, . . . , θn), with a ∈ A = A1 × · · · × Ak .

• Agent j has payoff vj(a, θ1, . . . , θn).



Timing of the (n + k)-player Information Design Game GM

Finite sets of messages are given.

1 Designers choose experiments (x1, . . . , xn) simultaneously.

2 Agents publicly observe (x1, . . . , xn).

A k-player Bayesian subgame GM(x) is then played:

3 Nature draws the state θ = (θ1, . . . , θn) according to p0 ∈ ∆(Θ), and a
uniformly distributed sunspot ω ∈ [0, 1].

4 A profile of messages mi = (m1
i , . . . ,m

k
i ) from each designer i is drawn

with probability xi (mi | θi ).

5 Agents publicly observe ω, each agent j privately observes the profile of
messages mj ∈ M j =

∏

i∈N M j
i and chooses an action aj .



Subgame Perfect Equilibrium

For each profile of experiments of the designers x ∈ ∏i ∆(Mi)
Θi , the Bayesian

game GM(x) is a finite game, so its set of Nash equilibrium outcomes

EM(x) ⊆ {y : M → ∆(A)} = ∆(A)M

is non-empty.

Since there is public correlation, EM(x) is convex (set of public correlated
equilibria of GM(x)).

Theorem (Existence, Koessler et al. 2021)

For every profile of finite message sets, the (n + k)−player information design
GM game admits a subgame perfect equilibrium (x , y), y ∈ EM(x).

Relies on Simon and Zame (1990).
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Splitting games

• There are two finite sets K , L and initial “states” p0 ∈ P = ∆(K ),
q0 ∈ Q = ∆(L). At every stage n, in states (pn, qn),

• Player 1 chooses a splitting s ∈ S(pn) =

{

s ∈ ∆(P) : Es(p
n) = pn

}

,

• Player 2 chooses a splitting t ∈ S(qn) =

{

t ∈ ∆(Q) : Et(q
n) = qn

}

,

• the next states (pn+1, qn+1) are drawn from s ⊗ t.

• The stage payoff is u(pn, qn) with u : P × Q → R continuous.

Discounted game:
∑

λ(1− λ)n−1u(pn, qn).

Long game: u(p∞, q∞).



Splitting games

• Splitting games are games of information design: Player 1 designs
information about k , Player 2 about l .

At the end of the day, a decision maker takes an optimal decision z(p, q)
as a function of his posterior beliefs (p, q).

u(p, q) is the payoff of Player 1 induced by this decision.

• These are special stochastic games with “acyclic” transitions.



Back to repeated games with incomplete information

• Splitting games were introduced as proxy for repeated games with
incomplete information on both sides where:

- Player 1 knows k , Player 2 knows l ,

- they repeatedly choose actions i , j which are observed,

- payoffs G kl
ij are unobserved.

- Let,

u(p, q) = Val

(

∑

k,l

pkqlG kl
ij

)



Concave–Convex functions

What is the correct generalization of Cav u?

• Cav pVex qu(p, q). This is the MaxMin of the undiscounted repeated
game with incomplete information on both sides.

• Vex qCav pu(p, q). This is the MinMax of the undiscounted repeated
game with incomplete information on both sides.

• In general
Cav pVex qu(p, q) < Vex qCav pu(p, q)

Therefore the undiscounted repeated game has no value.



Mertens-Zamir

Yet,

Theorem (Mertens-Zamir, 1971)

In the repeated game with incomplete information on both sides,
v(p, q) := lim vλ(p, q) exists and is the unique continuous function such that

v(p, q) = Cav min(u, v)(p, q) = Vex max(u, v)(p, q)

• v is concave–convex and Cav pVex qu(p, q) < v(p, q) < Vex qCav pu(p, q).

• Sketch of proof: As long as u(p, q) ≥ v(p, q), Player 1 stays silent.

As soon as u(p, q) < v(p, q), Player 1 Plays optimally in the discounted
game.

Player 1 thus gets a convex combination of max(u, v)(pt , qt) which is
≥ Vex max(u, v)(p, q).

• MZ prove existence and uniqueness of v .



Splitting game

In the splitting game with stage payoff u(p, q), then

Theorem

v = lim vλ (Laraki 2001). It is also the value of the undiscounted game (Oliu
Barton 2017) and of the long game (Koessler et al. 2021).

One can show that v is the unique function such that

• If u(p, q) < v(p, q), there exists v ∈ S(p) such that
v(p, q) = v(s, q) ≥ u(s, q)

• If u(p, q) > v(p, q), there exists t ∈ S(q) such that
v(p, q) = v(p, t) ≤ u(p, t)

This defines an optimal strategy for each player.



Approximation of the MZ function

Assume |K | = |L| = 1.

• Consider grids Pn = {0, 1

n
, . . . , i

n
, 1}, Qm = {0, 1

m
, . . . , j

m
, 1} on

[0, 1] = ∆(K ) = ∆(L).

• Let U = (uij) be the matrix ui ,j = u( i
n
, j

m
).

Lemma (Koessler et al. 2021)

There exists a unique matrix V which is column-concave, row-convex such
that v00 = u00, v01 = u01, v10 = u10, v11 = u11 and,

if vi ,j > ui ,j , then vi ,j =
1

2
(vi−1,j + vi+1,j),

if vi ,j < ui ,j , then vi ,j =
1

2
(vi ,j−1 + vi ,j+1).

• This matrix can be found by solving linear systems.

• This induces a piecewise linear function which uniformly approximates the
function u.



Thank you !
Forges (1986); Taneva (2016); Bergemann and Morris (2016); Forges (1993,
2006); Sorin (2002); Kamenica and Gentzkow (2011); Mertens et al. (2015);
Aumann et al. (1995); Myerson (1985); Aumann and Hart (2003); Forges
(2019); Koessler et al. (2021c); Oliu-Barton (2017); Koessler et al. (2021a);
Mertens and Zamir (1971); Simon and Zame (1990); Koessler et al. (2021b)
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