Bayesian games, Repeated Games, Information Design and Persuasion

Tristan Tomala (HEC Paris)

"ReLaX" Workshop on Games, CMI, February 1 - February 4, 2021

Outline

(1) Bayesian games
(2) Zero-sum games
(3) Sender Receiver games
(4) Information design
(5) Games of information design
(6) Splitting games

Bayesian games

A Bayesian game, or game with incomplete information is given by:

- A finite set of players $i=1, \ldots, N$;
- A set of states $\Omega=\Theta \times \prod_{i} M_{i}$ with a prior probability distribution $p \in \Delta(\Omega)$;
- A set of actions A_{i} for each player i;
- A payoff function $u_{i}: \Omega \times A \rightarrow \mathbb{R}$ for each player i.
(1) A state $\omega=\left(\theta, m_{1}, \ldots, m_{N}\right)$ is drawn from p, Player i is informed of m_{i}.
(2) Players choose actions simultaneously.

The game at the second stage is possibly dynamic: actions represent pure strategies in the continuation (extensive form) game.

Bayes-Nash equilibrium

A Bayes-Nash equilibrium is a strategy profile $\sigma=\left(\sigma_{1}, \ldots, \sigma_{N}\right)$ with $\sigma_{i}: M_{i} \rightarrow \Delta\left(A_{i}\right)$ such that:

For each player i, each message m_{i} with $p\left(m_{i}\right)>0$, each action a_{i},

$$
\mathbb{E}\left[u_{i}\left(\theta, m_{i}, m_{-i}, \sigma_{i}\left(m_{i}\right), \sigma_{-i}\left(m_{-i}\right)\right) \mid m_{i}\right] \geq \mathbb{E}\left[u_{i}\left(\theta, m_{i}, m_{-i}, a_{i}, \sigma_{-i}\left(m_{-i}\right)\right) \mid m_{i}\right]
$$

This is an Nash equilibrium of the normal form game with payoff $\mathbb{E}\left[u_{i}(\theta, m, \sigma(m))\right]$.
This exists when:

- States and actions are finite;
- States are finite or countable, actions sets are compact metric, payoffs are continuous.

Outline

(1) Bayesian games
(2) Zero-sum games
(3) Sender Receiver games
(4) Information design
(5) Games of information design
(6) Splitting games

Zero-sum games

We consider two-player zero-sum games with independent types (for simplicity).

- There are two players, the finite state space is $K \times L$ with prior distribution $p(k) q(I)$.
- Action sets are A, B. Payoffs are $u_{1}=-u_{2}=g(k, I, a, b)$.

The game has a value if

$$
\sup _{\sigma} \inf _{\tau} \mathbb{E}_{p, q}[g(k, l, \sigma, \tau)]=\inf _{\tau} \sup _{\sigma} \mathbb{E}_{p, q}[g(k, l, \sigma, \tau)]:=V(p, q)
$$

- If $|L|=1$ or $|K|=1$, this is a game with Lack of Information on one-side. (Otherwise, on both sides).

Lack on one-side $|L|=1$

Examples: $K=\left\{k_{0}, k_{1}\right\}, p=\left(\frac{1}{2}, \frac{1}{2}\right)$. Let G_{k} be the payoff matrix in state k.

$$
\begin{array}{rlrl}
G_{k_{0}}=\left(\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right) & G_{k_{1}}=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right) \\
G_{k_{0}} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & G_{k_{1}}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
G_{k_{0}}=\left(\begin{array}{ccc}
4 & 0 & 2 \\
4 & 0 & -2
\end{array}\right) & G_{k_{1}} & =\left(\begin{array}{ccc}
0 & 4 & -2 \\
0 & 4 & 2
\end{array}\right)
\end{array}
$$

Concavity

Let $G(p)$ be the game with prior distribution p and let $V(p)$ be its value.

Theorem (Aumann Maschler)

$V(\cdot)$ is a concave function of p.

This follows from the following statement:
Suppose that for each q, player 1 guarantees $f(q)$ in $G(q)$ and let $p=\sum_{m} \lambda_{m} p_{m}$. Then, player 1 guarantees $\sum_{m} \lambda_{m} f\left(p_{m}\right)$ in $G(p)$.

The theorem follows with $f(q)=V(q)$:

$$
V(p) \geq \sum_{m} \lambda_{m} V\left(p_{m}\right)
$$

We prove now this statement.

Experiments and splittings

Let M be a finite set of messages. A statistical (Blackwell) experiment is $x: K \rightarrow \Delta(M)$. We have

$$
\mathbb{P}(k, m)=p(k) x(m \mid k)=\lambda_{m} p_{m}(k)
$$

where $\lambda_{m}=\mathbb{P}(m)=\sum_{k} p(k) x(m \mid k)$ and

$$
p_{m}(k)=\mathbb{P}(k \mid m)=\frac{\mathbb{P}(k, m)}{\mathbb{P}(m)}=p(k) x(m \mid k) / \lambda_{m}
$$

Also,

$$
p(k)=\sum_{m} \mathbb{P}(k, m)=\sum_{m} \lambda_{m} p_{m}(k)
$$

Splitting

A splitting of $p \in \Delta(K)$ is a distribution (random posterior) \tilde{p} such that $\mathbb{E}(\tilde{p})=p$. With finite support, this is convex combination

$$
p=\sum_{m} \lambda_{m} p_{m}
$$

Any experiment induces a splitting.

Splitting lemma

Conversely, since

$$
\mathbb{P}(k, m)=p(k) x(m \mid k)=\lambda_{m} p_{m}(k)
$$

Splitting lemma (Aumann Maschler, 65)

Any splitting of p

$$
p=\sum_{m} \lambda_{m} p_{m}
$$

is induced by the experiment $x(m \mid k)=\lambda_{m} p_{m}(k) / p(k)$

Auxiliary game

- Consider the game $\tilde{G}(p)$ where player 1 can send a message m to player 2 before choosing actions. Let $\tilde{V}(p)$ be its value.
- If $p=\sum_{m} \lambda_{m} p_{m}$, then player 1 can send the message m and guarantee $f\left(p_{m}\right)$ afterwards. So $\tilde{V}(p) \geq \sum_{m} \lambda_{m} f\left(p_{m}\right)$.
- Consider now the game $\tilde{G}^{*}(p)$ where player 2 does not observe the message. Player 2 has less strategies in $\tilde{G}^{*}(p)$ than in $\tilde{G}(p)$. So, $\tilde{V}^{*}(p) \geq \tilde{V}(p)$.
- But then $\tilde{G}^{*}(p) \equiv G(p)$. So

$$
V(p) \geq \tilde{V}(p) \geq \sum_{m} \lambda_{m} f\left(p_{m}\right)
$$

QED.

Concavification

Let $u(p)$ be the value of the game without information:
$u(p)$ is the value of the matrix game $D(p)=\sum_{k} p(k) G_{k}$.
Let $\operatorname{Cav} u(p)$ be its concave closure:

$$
\begin{aligned}
\operatorname{Cav} u(p) & =\inf \{f(p): f \geq u, f \text { concave }\} \\
& =\sup \left\{\sum_{m} \lambda_{m} u\left(p_{m}\right): \sum_{m} \lambda_{m} p_{m}=p\right\}
\end{aligned}
$$

Lemma

$$
V(p) \geq \operatorname{Cav} u(p)
$$

Repeated game

$G_{n}(p)$ is the n-stage repeated game with average payoff where:

- State k is drawn from p once and for all and known by player 1 ;
- Actions are chosen at each stage and are observed; Payoffs are not observed.
$V_{n}(p)$ is the value of $G_{n}(p) . V_{\infty}(p)$ is the (uniform) value of $G_{\infty}(p)$ (if it exists).

Theorem (Aumann Maschler)

(1) $\operatorname{Cav} u(p) \leq V_{n}(p) \leq \operatorname{Cav} u(p)+\frac{c t e}{\sqrt{n}}$
(2) $V_{\infty}(p)=\operatorname{Cav} u(p)$.

We know that $V_{n}(p), V_{\infty}(p) \geq \operatorname{Cav} u(p)$.

Examples

$$
G_{k_{0}}=\left(\begin{array}{cc}
1 & 1 \\
0 & 0
\end{array}\right) \quad G_{k_{1}}=\left(\begin{array}{cc}
0 & 0 \\
1 & 1
\end{array}\right)
$$

$u(p)=\max \{p, 1-p\}$ convex. Full revelation.

$$
G_{k_{0}}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) \quad G_{k_{1}}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

$u(p)=p(1-p)$ concave. No revelation.

Examples

$$
G_{k_{0}}=\left(\begin{array}{ccc}
4 & 0 & 2 \\
4 & 0 & -2
\end{array}\right) \quad G_{k_{1}}=\left(\begin{array}{ccc}
0 & 4 & -2 \\
0 & 4 & 2
\end{array}\right)
$$

Partial revelation

$V_{n}(p) \leq \operatorname{Cav} u(p)+\frac{c t e}{\sqrt{n}}$

- Fix a strategy σ of player 1 and a history of actions

$$
h_{n}=\left(a_{1}, b_{1}, \ldots, a_{n-1}, b_{n-1}\right) . \text { Let } p_{n}(k)=\mathbb{P}\left(k \mid h_{n}\right) .
$$

- Interpret $\sigma\left(a_{n}=m \mid k, h_{n}\right)$ as an experiment $x(m \mid k)$.
- $\lambda_{m}=\sum_{k} p_{n}(k) \times(m \mid k)$ is the probability of playing $a_{n}=m$.
- Let $\tau\left(h_{n}\right)$ be a best-response to λ in $D\left(p_{n}\right)$:

$$
\sum_{k} p_{n}(k) G_{k}\left(\lambda, \tau\left(h_{n}\right)\right) \leq u\left(p_{n}\right)
$$

We have

$$
\begin{aligned}
\mathbb{E}\left[G_{k}\left(a_{n}, b_{n}\right) \mid h_{n}\right] & \leq \sum_{k} p_{n}(k) G_{k}\left(\lambda, \tau\left(h_{n}\right)\right)+C \sum_{k} p_{n}(k) \sum_{m}\left|x(m \mid k)-\lambda_{m}\right| \\
& \leq u\left(p_{n}\right)+C \sum_{m} \lambda_{m} \sum_{k}\left|p_{n+1}(k)-p_{n}(k)\right|
\end{aligned}
$$

Then (with the Martingale property),

$$
\mathbb{E}\left[\bar{G}_{n}\right] \leq \mathbb{E} \frac{1}{n} \sum_{t} u\left(p_{t}\right)+\frac{\operatorname{cte}(p)}{\sqrt{n}} \leq \operatorname{Cav} u(p)+\frac{\operatorname{cte}(p)}{\sqrt{n}}
$$

$V_{\infty}(p) \leq \operatorname{Cav} u(p)$

We need to prove that player 2 guarantees Cav $u(p)$ in the infinite (limit) game.

- There exists a vector $\xi \in \mathbb{R}^{K}$ such that

$$
\operatorname{Cav} u(p)=\langle p, \xi\rangle \text { and } \forall q, u(q) \leq\langle q, \xi\rangle
$$

Given history h_{n}, define a vector $v \in \mathbb{R}^{k}$ with $v_{k}=(1 / n) \sum_{t} G_{k}\left(a_{t}, b_{t}\right)$. Define $q \in \Delta(K)$ by

$$
q_{k}=\frac{\left(v_{k}-\xi_{k}\right)_{+}}{\sum_{j}\left(v_{j}-\xi_{j}\right)_{+}}
$$

- If q is well defined, player 2 plays an optimal strategy in $D(q)$.
- Player 2 plays arbitrarily otherwise.
$V_{\infty}(p) \leq \operatorname{Cav} u(p)$

Let $v_{n}=(1 / n) \sum_{t} G\left(a_{t}, b_{t}\right)$ and $\pi\left(v_{n}\right)$ be the projection on $C=\{w \leq \xi\}$.
By construction, $v_{n}-\pi\left(v_{n}\right)=\lambda q$ with $\lambda>0$ and

$$
\left\langle\mathbb{E}\left[G\left(a_{n+1}, b_{n+1}\right) \mid h_{n}\right], q\right\rangle \leq u(q) \leq\langle q, \xi\rangle=\left\langle q, \pi\left(v_{n}\right)\right\rangle
$$

For any strategy σ of player 1 , if $v_{n} \notin C$,

$$
\mathbb{E}\left[\left\langle G\left(a_{n+1}, b_{n+1}\right)-\pi\left(v_{n}\right), v_{n}-\pi\left(v_{n}\right)\right\rangle \mid h_{n}\right] \leq 0
$$

If a sequence of vectors is such that

$$
\left\langle x_{n+1}-\pi\left(\bar{x}_{n}\right), \bar{x}_{n}-\pi\left(\bar{x}_{n}\right)\right\rangle \leq 0
$$

then $d\left(\bar{x}_{n}, C\right) \rightarrow 0$. QED

Outline

(1) Bayesian games
(2) Zero-sum games
(3) Sender Receiver games
(4) Information design
(5) Games of information design
(6) Splitting games

Sender Receiver Games

A Sender Receiver game is a two-player Bayesian game where:

- The set of states is Θ with a prior probability p.
- Player 1 knows the state and chooses a message $m \in M$.
- Player 2 does not know the state and observes m. Then he chooses an action $a \in A$.
- Player 1's payoff is $u(\theta, a)$, player 2's payoff is $v(\theta, a)$.

Player 1 is an expert, Player 2 is a decision maker.
Information is transmitted strategically.
Since utilities are different, information is transmitted imperfectly.

Example

Consider the Sender-Receiver game defined by:

	a_{1}	a_{2}
θ_{1}	$(1,5)$	$(0,1)$
θ_{2}	$(1,-10)$	$(0,1)$

- Player 1 only cares about player 2 taking action a_{1}.
- For player $2, a_{2}$ is a safe bet, a_{1} is a risky bet.
- The only equilibrium is babbling (non-informative).

Equilibrium condition for player 2

- A behavior strategy for player 1 is $\sigma: \Theta \rightarrow \Delta(M)$ denoted $\sigma(m \mid \theta)$.
- A strategy σ of player 1 is formally an experiment and is equivalent to a splitting $p=\sum_{m} \lambda_{m} p_{m}$.
- A behavior strategy for player 2 is $\tau: M \rightarrow \Delta(A)$ denoted $\tau(a \mid m)$.
- Player 2 who receives the message m has belief p_{m}.

Player 2 with belief p over the states, chooses a mixed action from the set:

$$
Y(p)=\left\{\alpha \in \Delta(A): \sum_{\theta} p(\theta) v(\theta, \alpha)=\max _{a} \sum_{\theta} p(\theta) v(\theta, a)\right\}
$$

- At a best-reply, player 2 chooses $y_{m} \in Y\left(p_{m}\right)$.

Equilibrium condition for player 1

Suppose that player 2 chooses $y_{m} \in \Delta(A)$ after receiving message m.
Consider the best-reply of player 1 .

- For each state θ and each message m,

$$
\sigma(m \mid \theta)>0 \Rightarrow u\left(\theta, y_{m}\right)=\max _{m^{\prime}} u\left(\theta, y_{m^{\prime}}\right):=U_{\theta}
$$

- Notice that $\sigma(m \mid \theta)>0 \Leftrightarrow p_{m}(\theta)>0$. Player 1 is indifferent between all messages (and thus posteriors) induced with positive probability.
- So for each $m, u\left(\theta, y_{m}\right) \leq \max _{m^{\prime}} u\left(\theta, y_{m^{\prime}}\right)=U_{\theta}$ with equality if $p_{m}(\theta)>0$.

Equilibrium characterization

Consider the set \mathcal{E} of tuples $(p, U, V) \in \Delta(\Theta) \times \mathbb{R}^{\Theta} \times \mathbb{R}$, such that $\exists y \in \Delta(A):$
(i) $U_{\theta} \geq u(\theta, y)$ with equality if $p(\theta)>0$,
(ii) $y \in Y(p)$,
(iii) $V=\sum_{\theta} p(\theta) v(\theta, y)$.

Denote

$$
\operatorname{conv}_{U}(\mathcal{E})=\left\{\sum \lambda_{m}\left(p_{m}, U, V_{m}\right): \forall m,\left(p_{m}, U, V_{m}\right) \in \mathcal{E}\right\}
$$

Theorem (Aumann-Hart, Forges)

There is an equilibrium of $G(p)$ with payoff (U, V) if and only if $(p, U, V) \in \operatorname{conv}_{U}(\mathcal{E})$

Compare with Cav $u(p)$. Convexify the non-revealing payoffs. Indifference condition for player 1.

Full revelation

A game with full revelation in equilibrium.

	a_{1}	a_{2}
θ_{1}	$(1,1)$	$(0,0)$
θ_{2}	$(0,0)$	$(3,3)$

No revelation

A game with no revelation in equilibrium.

	a_{1}	a_{2}	a_{3}
θ_{1}	$(3,-4)$	$(2,-1)$	$(1,0)$
θ_{2}	$(3,0)$	$(2,-1)$	$(1,-4)$

- We have,

$$
Y(p)=\left\{\begin{array}{l}
\left\{a_{1}\right\} \text { if } p<1 / 4 \\
\left\{a_{2}\right\} \text { if } 1 / 4<p<3 / 4 \\
\left\{a_{3}\right\} \text { if } p>3 / 4
\end{array}\right.
$$

- It is not possible to split p and keep player 1 indifferent.

Partial revelation

A game with partial revelation in equilibrium.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}
θ_{1}	$(1,10)$	$(3,8)$	$(0,5)$	$(3,0)$	$(1,-8)$
θ_{2}	$(1,-8)$	$(3,0)$	$(0,5)$	$(3,8)$	$(1,10)$

We have,

$$
Y(p)=\left\{\begin{array}{l}
\left\{a_{1}\right\} \text { if } p>4 / 5 \\
\left\{a_{2}\right\} \text { if } 4 / 5>p>5 / 8 \\
\left\{a_{3}\right\} \text { if } 5 / 8>p>3 / 8 \\
\left\{a_{4}\right\} \text { if } 3 / 8>p>1 / 5 \\
\left\{a_{5}\right\} \text { if } 1 / 5>p
\end{array}\right.
$$

Partial revelation

- For $p=1 / 4$, player 2 plays a_{4} and player 1 's payoff are $(3,3)$.
- For $p=3 / 4$, player 2 plays a_{2} and player 1 's payoff are $(3,3)$.
- Player 1 can induce those beliefs by the splitting

$$
\frac{1}{2}=(1 / 2) \frac{1}{4}+(1 / 2) \frac{3}{4}
$$

- Or by the strategy $\sigma\left(m_{1} \mid \theta_{1}\right)=\frac{3}{4}=\sigma\left(m_{2} \mid \theta_{2}\right)$.
- This equilibrium payoff dominates NR and CR.
- Player 1 obtains the maximal payoff 3.

Outline

(1) Bayesian games
(2) Zero-sum games
(3) Sender Receiver games
(4) Information design
(5) Games of information design
(6) Splitting games

Bayesian persuasion

Consider a sender-receiver environment $p \in \Delta(\Theta), u(\theta, a), v(\theta, a)$.

- Player 1 is an information designer if he can choose the information structure $x: \Theta \rightarrow \Delta(M)$ which delivers a message to player 2 .
- Player 1 is no longer informed of the state, but chooses how information is disclosed to player 2.
- The sender receiver game is played à la Stackelberg:
- Player 1 chooses the experiment x once and for all. It is publicly observed.
- Nature draws θ from p and m from x.
- Player observes x and chooses an action.
- Player 1 is able to commit on its randomizations: distributions of messages are observable and verifiable.
This model is called Bayesian Persuasion (Kamenica and Gentzkow, 2011).

Receiver

Player 2 with belief p over the states, chooses a mixed action from the set:

$$
Y(p)=\left\{\alpha \in \Delta(A): \sum_{\theta} p(\theta) v(\theta, \alpha)=\max _{a} \sum_{\theta} p(\theta) v(\theta, a)\right\}
$$

An equilibrium strategy of player 2 is a tie-breaking-rule (TBR): a selection $\gamma(p) \in Y(p)$.

Example

	a_{1}	a_{2}
θ_{1}	$(1,5)$	$(0,1)$
θ_{2}	$(1,-10)$	$(0,1)$

Solving the game

A strategy σ of player 1 is an experiment and is equivalent to a splitting $p=\sum_{m} \lambda_{m} p_{m}$.

Given that the receiver chooses $\operatorname{TBR} \gamma(p)$, the program of the sender is

$$
\max \left\{\sum_{m} \lambda_{m} \sum_{\theta} p_{m}(\theta) u\left(\theta, \gamma\left(p_{m}\right)\right): p=\sum_{m} \lambda_{m} p_{m}\right\}
$$

Denote $U_{\gamma}(p)=\sum_{\theta} p(\theta) u(\theta, \gamma(p))$ then,

Lemma (Kamenica-Gentzkow, 11)

The equilibrium payoff of player 1 is

$$
\sup \left\{\sum_{m} \lambda_{m} U_{\gamma}\left(p_{m}\right): p=\sum_{m} \lambda_{m} p_{m}\right\}=\operatorname{Cav} U_{\gamma}(p)
$$

Example

	a_{1}	a_{2}
θ_{1}	$(1,5)$	$(0,1)$
θ_{2}	$(1,-10)$	$(0,1)$

Outline

(1) Bayesian games
(2) Zero-sum games
(3) Sender Receiver games
(4) Information design
(5) Games of information design
(6) Splitting games

Games between information designers

Environment

- Finite multidimensional state space $\Theta=\Theta_{1} \times \cdots \times \Theta_{n}$.
- Prior $p^{0} \in \Delta(\Theta)$ (possibly correlated).
- Designer $i=1, \ldots, n$ chooses a statistical experiment $x_{i}: \Theta_{i} \rightarrow \Delta\left(M_{i}\right)$ (information structure), where $M_{i}=M_{i}^{1} \times \cdots \times M_{i}^{k}$ is a finite set of message profiles.
- Each agent $j=1, \ldots, k$ chooses an action $a_{j} \in A_{j}$.
- Designer i has payoff $u_{i}\left(a, \theta_{1}, \ldots, \theta_{n}\right)$, with $a \in A=A_{1} \times \cdots \times A_{k}$.
- Agent j has payoff $v_{j}\left(a, \theta_{1}, \ldots, \theta_{n}\right)$.

Timing of the $(n+k)$-player Information Design Game G_{M}

Finite sets of messages are given.
(1) Designers choose experiments $\left(x_{1}, \ldots, x_{n}\right)$ simultaneously.
(2) Agents publicly observe $\left(x_{1}, \ldots, x_{n}\right)$.

A k-player Bayesian subgame $G_{M}(x)$ is then played:
(3) Nature draws the state $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ according to $p^{0} \in \Delta(\Theta)$, and a uniformly distributed sunspot $\omega \in[0,1]$.
(4) A profile of messages $m_{i}=\left(m_{i}^{1}, \ldots, m_{i}^{k}\right)$ from each designer i is drawn with probability $x_{i}\left(m_{i} \mid \theta_{i}\right)$.
(5) Agents publicly observe ω, each agent j privately observes the profile of messages $m^{j} \in M^{j}=\prod_{i \in N} M_{i}^{j}$ and chooses an action a_{j}.

Subgame Perfect Equilibrium

For each profile of experiments of the designers $x \in \prod_{i} \Delta\left(M_{i}\right)^{\Theta_{i}}$, the Bayesian game $G_{M}(x)$ is a finite game, so its set of Nash equilibrium outcomes

$$
\mathcal{E}_{M}(x) \subseteq\{y: M \rightarrow \Delta(A)\}=\Delta(A)^{M}
$$

is non-empty.
Since there is public correlation, $\mathcal{E}_{M}(x)$ is convex (set of public correlated equilibria of $G_{M}(x)$).

Theorem (Existence, Koessler et al. 2021)

For every profile of finite message sets, the $(n+k)$-player information design G_{M} game admits a subgame perfect equilibrium $(x, y), y \in \mathcal{E}_{M}(x)$.

Relies on Simon and Zame (1990).

Outline

(1) Bayesian games
(2) Zero-sum games
(3) Sender Receiver games
(4) Information design
(5) Games of information design
(6) Splitting games

Splitting games

- There are two finite sets K, L and initial "states" $p^{0} \in P=\Delta(K)$, $q^{0} \in Q=\Delta(L)$. At every stage n, in states $\left(p^{n}, q^{n}\right)$,
- Player 1 chooses a splitting $s \in S\left(p^{n}\right)=\left\{s \in \Delta(P): E_{s}\left(\boldsymbol{p}^{n}\right)=p^{n}\right\}$,
- Player 2 chooses a splitting $t \in S\left(q^{n}\right)=\left\{t \in \Delta(Q): E_{t}\left(\boldsymbol{q}^{n}\right)=q^{n}\right\}$,
- the next states $\left(p^{n+1}, q^{n+1}\right)$ are drawn from $s \otimes t$.
- The stage payoff is $u\left(p^{n}, q^{n}\right)$ with $u: P \times Q \rightarrow \mathbb{R}$ continuous.

Discounted game: $\sum \lambda(1-\lambda)^{n-1} u\left(p^{n}, q^{n}\right)$.
Long game: $u\left(p^{\infty}, q^{\infty}\right)$.

Splitting games

- Splitting games are games of information design: Player 1 designs information about k, Player 2 about I.
At the end of the day, a decision maker takes an optimal decision $z(p, q)$ as a function of his posterior beliefs (p, q).
$u(p, q)$ is the payoff of Player 1 induced by this decision.
- These are special stochastic games with "acyclic" transitions.

Back to repeated games with incomplete information

- Splitting games were introduced as proxy for repeated games with incomplete information on both sides where:
- Player 1 knows k, Player 2 knows I,
- they repeatedly choose actions i, j which are observed,
- payoffs $G_{i j}^{k l}$ are unobserved.
- Let,

$$
u(p, q)=\operatorname{Val}\left(\sum_{k, l} p^{k} q^{\prime} G_{i j}^{k \prime}\right)
$$

Concave-Convex functions

What is the correct generalization of $\operatorname{Cav} u$?

- $\operatorname{Cav}_{p} \operatorname{Vex}_{q} u(p, q)$. This is the MaxMin of the undiscounted repeated game with incomplete information on both sides.
- $\operatorname{Vex}{ }_{q} \operatorname{Cav}_{p} u(p, q)$. This is the MinMax of the undiscounted repeated game with incomplete information on both sides.
- In general

$$
\operatorname{Cav}_{p} \operatorname{Vex}_{q} u(p, q)<\operatorname{Vex}_{q} \operatorname{Cav}_{p} u(p, q)
$$

Therefore the undiscounted repeated game has no value.

Mertens-Zamir

Yet,

Theorem (Mertens-Zamir, 1971)

In the repeated game with incomplete information on both sides, $v(p, q):=\lim v_{\lambda}(p, q)$ exists and is the unique continuous function such that

$$
v(p, q)=\operatorname{Cav} \min (u, v)(p, q)=\operatorname{Vex} \max (u, v)(p, q)
$$

- v is concave-convex and $\operatorname{Cav}_{p} \operatorname{Vex}_{q} u(p, q)<v(p, q)<\operatorname{Vex}_{q} \operatorname{Cav}_{p} u(p, q)$.
- Sketch of proof: As long as $u(p, q) \geq v(p, q)$, Player 1 stays silent. As soon as $u(p, q)<v(p, q)$, Player 1 Plays optimally in the discounted game.
Player 1 thus gets a convex combination of $\max (u, v)\left(p_{t}, q_{t}\right)$ which is $\geq \operatorname{Vex} \max (u, v)(p, q)$.
- MZ prove existence and uniqueness of v.

Splitting game

In the splitting game with stage payoff $u(p, q)$, then

Theorem

$v=\lim v_{\lambda}$ (Laraki 2001). It is also the value of the undiscounted game (Oliu
Barton 2017) and of the long game (Koessler et al. 2021).
One can show that v is the unique function such that

- If $u(p, q)<v(p, q)$, there exists $v \in S(p)$ such that $v(p, q)=v(s, q) \geq u(s, q)$
- If $u(p, q)>v(p, q)$, there exists $t \in S(q)$ such that $v(p, q)=v(p, t) \leq u(p, t)$
This defines an optimal strategy for each player.

Approximation of the MZ function

Assume $|K|=|L|=1$.

- Consider grids $P^{n}=\left\{0, \frac{1}{n}, \ldots, \frac{i}{n}, 1\right\}, Q^{m}=\left\{0, \frac{1}{m}, \ldots, \frac{j}{m}, 1\right\}$ on $[0,1]=\Delta(K)=\Delta(L)$.
- Let $U=\left(u_{i j}\right)$ be the matrix $u_{i, j}=u\left(\frac{i}{n}, \frac{j}{m}\right)$.

Lemma (Koessler et al. 2021)

There exists a unique matrix V which is column-concave, row-convex such that $v_{00}=u_{00}, v_{01}=u_{01}, v_{10}=u_{10}, v_{11}=u_{11}$ and,

$$
\begin{aligned}
& \text { if } v_{i, j}>u_{i, j}, \text { then } v_{i, j}=\frac{1}{2}\left(v_{i-1, j}+v_{i+1, j}\right), \\
& \text { if } v_{i, j}<u_{i, j}, \text { then } v_{i, j}=\frac{1}{2}\left(v_{i, j-1}+v_{i, j+1}\right) .
\end{aligned}
$$

- This matrix can be found by solving linear systems.
- This induces a piecewise linear function which uniformly approximates the function u.

Thank you!

R. J. Aumann and S. Hart. Long cheap talk. Econometrica, 71(6):1619-1660, 2003.
R. J. Aumann, M. B. Maschler, and R. Stearns. Repeated Games of Incomplete Information. MIT Press, Cambridge, Massachusetts, 1995.
D. Bergemann and S. Morris. Information design, bayesian persuasion, and bayes correlated equilibrium. The American Economic Review, 106(5): 586-591, 2016.
Françoise Forges. Correlated equilibrium in games with incomplete information revisited. Theory and decision, 61(4):329-344, 2006.
Françoise Forges. An approach to communication equilibria. Econometrica, 54 (6):1375-1385, 1986.

Françoise Forges. Five legitimate definitions of correlated equilibrium in games with incomplete information. Theory and Decision, 35:277-310, 1993.
Françoise Forges. Games with incomplete information: from repetition to cheap talk and persuasion. mimeo, 2019.
E. Kamenica and M. Gentzkow. Bayesian Persuasion. American Economic Review, 101(6):2590-2615, 2011.
Frédéric Koessler, Marie Laclau, Jérôme Renault, and Tristan Tomala. Long information design. mimeo, 2021a.

Frédéric Koessler, Marie Laclau, Jérôme Renault, and Tristan Tomala. Splitting games over finite sets. mimeo, 2021b.
Frédéric Koessler, Marie Laclau, and Tristan Tomala. Interactive information design. forthcoming in Mathematics of Operations Research, 2021c.
J-F. Mertens and S. Zamir. The value of two-person zero-sum repeated games with lack of information on both sides. International Journal of Game Theory, 1(1):39-64, 1971.
J-F. Mertens, S. Sorin, and S. Zamir. Repeated games. Cambridge University Press, 2015.
Roger B Myerson. Bayesian equilibrium and incentive-compatibility: An introduction. Social goals and social organization: Essays in memory of Elisha Pazner, pages 229-260, 1985.
M. Oliu-Barton. The splitting game: Uniform value and optimal strategies. Dynamic Games and Applications, pages 1-23, 2017.
L. K. Simon and W. R. Zame. Discontinuous games and endogenous sharing rules. Econometrica, pages 861-872, 1990.
S. Sorin. A First Course on Zero-Sum Repeated Games. Springer, 2002.
I. Taneva. Information design. mimeo, 2016.

