Externalities in One-Sided Markets

Sunil Simon

IIT Kanpur

Joint work with Sagar Massand

Allocation problem

Allocation of indivisible items

- A finite set of agents N.
- A finite set of indivisible items A.
- Question. Does there exist a "good" allocation of items to agents?

Desirable allocation criteria

- Fairness:
 - envy-free allocation,
 - proportional allocation,
 - max-min share guarantee.
- Stability.

One-sided markets

House allocation problem [Shapley and Scarf]

- A set of agents *N* and a set of items *A*.
- Assume that |N| = |A|.
- Preference ordering over the items $(\prec_i)_{i \in \mathbb{N}}$.
- An allocation $\pi : N \to A$ (an injective function).

Question. Does there exist a "good" allocation of items?

Question. Does there exists a "good" reallocation of items given an initial allocation?

One-sided markets

House allocation problem [Shapley and Scarf]

- A set of agents *N* and a set of items *A*.
- Assume that |N| = |A|.
- Preference ordering over the items $(\prec_i)_{i \in \mathbb{N}}$.
- An allocation $\pi : N \rightarrow A$ (an injective function).

Question. Does there exist a "good" allocation of items?

Question. Does there exists a "good" reallocation of items given an initial allocation?

Related models

- Stable matching problem (Gale and Shapley) two types of agents.
- Roommates problem there are no types.

Stable outcomes

- 2-stable: An allocation where no pair of players is able to improve their individual utilities by mutual exchange of items.
- core-stable: An allocation where no coalition of players is able to improve the utilities of all the players involved by exchanging items.

Question. Does there exist a stable allocation of items? Question. Does there exists a stable reallocation of items given an initial allocation?

Question. Does there exist a stable allocation of items? Question. Does there exists a stable reallocation of items given an initial allocation?

Theorem. A core-stable outcome always exists in one-sided markets. Solution. Top trading cycle algorithm [Gale].

Question. Does there exist a stable allocation of items? Question. Does there exists a stable reallocation of items given an initial allocation?

Theorem. A core-stable outcome always exists in one-sided markets. Solution. Top trading cycle algorithm [Gale].

Algorithm

- Let π^* be an arbitrary initial allocation.
- **Step 1.** Given an allocation *π*, create a graph on the item set as follows:
 - ▶ $x \rightarrow y$, if y is the most-preferred item for agent $\pi^{-1}(x)$ from the items in the graph at the moment.

Question. Does there exist a stable allocation of items? Question. Does there exists a stable reallocation of items given an initial allocation?

Theorem. A core-stable outcome always exists in one-sided markets. Solution. Top trading cycle algorithm [Gale].

Algorithm

- Let π^* be an arbitrary initial allocation.
- **Step 1.** Given an allocation *π*, create a graph on the item set as follows:
 - ► $x \rightarrow y$, if y is the most-preferred item for agent $\pi^{-1}(x)$ from the items in the graph at the moment.
- Step 2. For any cycle $(x_1, x_2, ..., x_k, x_1)$, assign x_i to $\pi^{-1}(x_{i-1})$ (taking $x_k = x_{1-1}$). Remove these items.
- Repeat steps 1 & 2 until there are no items remaining in the graph.

- Agents utilities depend on:
 - valuation for the allocated item,
 - items which are allocated to other agents (within a neighbourhood).
- Agents have cardinal utilities.
- Utilities are non-transferable.

- Agents utilities depend on:
 - valuation for the allocated item,
 - items which are allocated to other agents (within a neighbourhood).
- Agents have cardinal utilities.
- Utilities are non-transferable.

$$u_i(\pi) = v_i(\pi(i)) + r_i(\pi)$$

Requirement: A compact representation for r_i .

The model - Graphical Matching Problem (GMP)

- A set of agents N and a set of items A where |A| = |N|.
- A directed agent graph $G = (N, \tau, w)$,
 - $w_{i,j}$ denotes the weight of edge (i,j).
- An undirected item graph $H = (A, \lambda)$.

The model - Graphical Matching Problem (GMP)

- A set of agents N and a set of items A where |A| = |N|.
- A directed agent graph G = (N, τ, w),
 w_{i,i} denotes the weight of edge (i, j).
- An undirected item graph $H = (A, \lambda)$.
- $i_{\tau} = \{j \mid (j, i) \in \tau\}$ neighbourhood of agent *i*.
- $a_{\lambda} = \{b \mid (a, b) \in \lambda\}$ neighbourhood of item *a*.

Allocation

- Allocation a bijection $\pi : N \rightarrow A$.
- $N(i, \pi) = \{j \in N \mid \pi(j) \in (\pi(i))_{\lambda}\}$ agent *i*'s neighbours under allocation π .
- $d_i(\pi) = i_{\tau} \cap N(i, \pi)$ agents influencing *i*'s utility.

Utility

•
$$r_i(\pi) = \sum_{j \in d_i(\pi)} w_{j,i}$$
 - externalities on a player *i*.

- $v_i : A \rightarrow R_{>0}$ intrinsic valuation over items for agent *i*.
- $u_i(\pi) = v_i(\pi(i)) + r_i(\pi)$ agent *i*'s final utility.

Allocation

- Allocation a bijection $\pi : N \rightarrow A$.
- $N(i, \pi) = \{j \in N \mid \pi(j) \in (\pi(i))_{\lambda}\}$ agent *i*'s neighbours under allocation π .
- $d_i(\pi) = i_{\tau} \cap N(i, \pi)$ agents influencing *i*'s utility.

Utility

•
$$r_i(\pi) = \sum_{j \in d_i(\pi)} w_{j,i}$$
 - externalities on a player *i*.

- $v_i : A \rightarrow R_{\geq 0}$ intrinsic valuation over items for agent *i*.
- $u_i(\pi) = v_i(\pi(i)) + r_i(\pi)$ agent *i*'s final utility.

Uniform valuation - $v_i(a) = c$ for all $i \in N$ and $a \in A$.

Sunil Simon



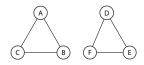


Figure: Item graph

Figure: Agent graph

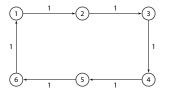


Figure: Agent graph

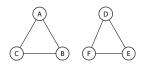


Figure: Item graph

Suppose for all $i \in N$, for all $a \in A$, $v_i(a) = 0$.

• An allocation *π* = ((1, 2, 3)), (4, 5, 6)).

•
$$N(1,\pi) = \{3,2\}, d_1(\pi) = \emptyset, u_1(\pi) = 0.$$

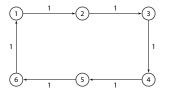


Figure: Agent graph

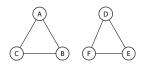


Figure: Item graph

Suppose for all $i \in N$, for all $a \in A$, $v_i(a) = 0$.

• An allocation $\pi = ((1, 2, 3)), (4, 5, 6)).$

•
$$N(1,\pi) = \{3,2\}, d_1(\pi) = \emptyset, u_1(\pi) = 0.$$

•
$$N(2,\pi) = \{1,3\}, d_2(\pi) = \{1\}, u_2(\pi) = 1.$$

Related frameworks

Related models

- Bouveret et al., 2017: Fair division of a graph.
- Chevaleyre et al., 2017: Distributed fair allocation of indivisible goods.
- Ghodsi et al., 2018: Fair allocation of indivisible items with externalities.
- Elkind et al., 2019: Schelling games on graphs.

Blocking pair

(i, j) in π is a *blocking pair* if there exists an allocation π' such that $u_j(\pi') > u_j(\pi)$ and $u_i(\pi') > u_i(\pi)$.

Blocking pair

(i, j) in π is a *blocking pair* if there exists an allocation π' such that $u_j(\pi') > u_j(\pi)$ and $u_i(\pi') > u_i(\pi)$.

2-stable allocation

An allocation π is 2-stable if it has no blocking pair.

No pair of players is able to improve their individual utilities by mutual exchange of items.

Blocking coalition

An allocation π has a blocking coalition $X \subseteq N$ ($X \neq \emptyset$) if there exists a bijection $\mu : X \to X$ such that $\forall i \in X, \pi'(i) = \pi(\mu(i))$ with $u_i(\pi') > u_i(\pi)$.

Blocking coalition

An allocation π has a blocking coalition $X \subseteq N$ ($X \neq \emptyset$) if there exists a bijection $\mu : X \to X$ such that $\forall i \in X, \pi'(i) = \pi(\mu(i))$ with $u_i(\pi') > u_i(\pi)$.

Core-stable allocation

An allocation π is core-stable if it has no blocking coalition.

No coalition of players is able to improve the utilities of all involved players by exchanging items.

Stable allocations

Question. In a GMP, does stable allocations always exists?

Question. In a GMP, does stable allocations always exists?

• No neighbourhood externalities: A core stable outcome always exists and can be computed in polynomial time [Shapley, Scarf].

Question. In a GMP, does stable allocations always exists?

- No neighbourhood externalities: A core stable outcome always exists and can be computed in polynomial time [Shapley, Scarf].
- With neighbourhood externalities: A 2-stable allocation need not always exists.

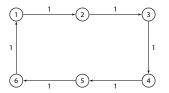


Figure: Item graph

Figure: Agent graph

- ((1, 2, 3)), (4, 5, 6)).
- ((1, 2, 4)), (3, 5, 6)).
- ((1, 2, 5), (3, 4, 6)).

Stable allocation

Theorem. For a symmetric instance of GMP, a 2-stable allocation always exists.

Proof idea

- Solution local search.
- Proof of termination.

 $arphi(\pi) = \sum_{i \in \mathsf{N}} u_i(\pi) + v_i(\pi)$ is a progress measure.

Stable allocation

Theorem. For a symmetric instance of GMP, a 2-stable allocation always exists.

Proof idea

- Solution local search.
- Proof of termination.

$$arphi(\pi) = \sum_{i \in N} u_i(\pi) + v_i(\pi)$$
 is a progress measure.

Corollary. In a symmetric GMP with uniform valuation, where the underlying player graph is unweighted, we can compute a 2-stable allocation in polynomial time.

Proof idea

- $2nc \leq \varphi(\pi) \leq 2nc + 2|\tau|$.
- Each resolution step increases the progress measure by at least two.

The general case

Theorem. Computation of 2-stable allocations is PLS-complete even for symmetric instances of GMP with uniform valuation.

Theorem. Local search takes exponential time in worst case to compute a 2-stable allocation.

The general case

Theorem. Computation of 2-stable allocations is PLS-complete even for symmetric instances of GMP with uniform valuation.

Theorem. Local search takes exponential time in worst case to compute a 2-stable allocation.

Degree two graphs

For a symmetric instance of GMP with uniform valuation with the degree of the agent graph being bounded by two, there exists a polynomial time algorithm to compute a 2-stable allocation.

The general case

Theorem. Computation of 2-stable allocations is PLS-complete even for symmetric instances of GMP with uniform valuation.

Theorem. Local search takes exponential time in worst case to compute a 2-stable allocation.

Degree two graphs

For a symmetric instance of GMP with uniform valuation with the degree of the agent graph being bounded by two, there exists a polynomial time algorithm to compute a 2-stable allocation.

Proof idea

Polynomially bounded potential function expressed in terms of the degree of each agent. $\varphi(\pi) = \sum_{i \in N} (2n - g(i))f_i(u_i(\pi))$ where $f_i(u_i(\pi)) \in \{0, 1, 2, 3\}$.

Sunil Simon

The general case

Theorem. Computation of 2-stable allocations is PLS-complete even for symmetric instances of GMP with uniform valuation.

Theorem. Local search takes exponential time in worst case to compute a 2-stable allocation.

Degree two graphs

For a symmetric instance of GMP with uniform valuation with the degree of the agent graph being bounded by two, there exists a polynomial time algorithm to compute a 2-stable allocation.

Bounded degree graphs

Computation of 2-stable allocations is PLS-complete even for symmetric instances of GMP with uniform valuation even when the maximum degree of the graph is at most six.

• Natural restriction to look at a clique on the item graph.

- Natural restriction to look at a clique on the item graph.
- Reduces to one-sided matching market.

- Natural restriction to look at a clique on the item graph.
- Reduces to one-sided matching market.
- What about bipartite item graphs?

- Natural restriction to look at a clique on the item graph.
- Reduces to one-sided matching market.
- What about bipartite item graphs?

Complete, bipartite item graphs

For a symmetric GMP instance, if the underlying item graph is a complete, bipartite graph $H = (U, V, U \times V)$ with U and V being the 2 partitions, a 2-stable allocation can be computed in $O(n^{\min(|U|,|V|)+4})$.

General instance

Existence

Observation. A 2-stable allocation may not always exists.

Theorem. Deciding the existence of a 2-stable allocation is NP-complete.

General instance

Existence

Observation. A 2-stable allocation may not always exists.

Theorem. Deciding the existence of a 2-stable allocation is NP-complete.

Restricted instances

- Some structures where stable allocations exist and can be efficiently computed.
 - Core stable: agent graph is acyclic.
 - 2-stable: restricted cyclic agent graph with positive weights.

Solution. Variants of serial dictatorship.

Envy-freeness

- Agent utilities dependent on other agents' allocation.
- Slightly modified notion of envy-freeness for the model.

Envy-freeness

- Agent utilities dependent on other agents' allocation.
- Slightly modified notion of envy-freeness for the model.

Swap envy-freeness

An allocation π is swap envy-free if it has no agents i, j such that $u_i(\pi') > u_i(\pi)$ where $\pi'(i) = \pi(j), \pi'(j) = \pi(i)$ and $\pi'(k) = \pi(k) \ \forall k \in N - \{i, j\}.$

Envy-freeness

- Agent utilities dependent on other agents' allocation.
- Slightly modified notion of envy-freeness for the model.

Swap envy-freeness

An allocation π is swap envy-free if it has no agents i, j such that $u_i(\pi') > u_i(\pi)$ where $\pi'(i) = \pi(j), \pi'(j) = \pi(i)$ and $\pi'(k) = \pi(k) \ \forall k \in N - \{i, j\}.$

Computation

Theorem. For GMP with uniform valuation where the underlying player graph is an unweighted cycle, deciding if there exists a swap envy-free allocation is NP-complete.

Theorem. For GMP with symmetric neighbourhood, deciding the existence of a swap envy-free allocation is NP-complete.

Conclusion

A model for resource allocation which incorporates agents' influence within a local neighbourhood structure.

Conclusion

A model for resource allocation which incorporates agents' influence within a local neighbourhood structure.

Questions

- Analysis of stability based on complexity measures on graphs.
- Core-stability in symmetric neighbourhood.
- Other forms of externalities that have compact representations.
- Quality of stable outcomes.
- Fairness notions including approximations of envy-free allocations.