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Classic Mechanism Design Problem

I Players/agents/voters have private information.

I They collectively want to achieve some goals.

I Equivalent reformulation: A mechanism designer wishes to
achieve these goals.

I The goals depend on the private information of agents.

I How does the designer achieve her goals? Is it possible to
achieve them?

I “Reverse Engineering” problem (Aumann).



Classic Mechanism Design Problem

I The mechanism designer designs a “mechanism” which
consists of (i) a choice of message to be sent be each player
and (ii) an outcome function that gives an outcome for all
possible message-tuples.

I Once information is realized, players are playing a game.

I Fix an appropriate solution concept for a game.

I The mechanism is successful (given the solution concept), if
equilibrium outcomes coincide with the goals of the designer
(for all possible information realizations).

I Question: What goals can be achieved under these
circumstances?

I Applications: Voting, Auctions etc.



Goal of the Talk

I The standard equilibrium notion for mechanism design is
dominant strategies or strategy-proofness.

I Strategy-proofness is a demanding - many negative results
(Gibbard-Satterthwaite Theorem in voting).

I We consider an alternative solution concept undominated
strategies that has the same informational basis.

I Relatively less studied because of difficult technical issues.

I Introduce the problem and report some recent progress.

I Main message: Designer can do “better” using undominated
strategies.



The Model

I Finite set of agents N = {1, . . . n} and set of (fixed)
alternatives A.

I Each agent i ∈ N’s private information or type is θi where
θi ∈ Θ.

I Neither designer nor players other than i can observe θi .



The Model

I In an “ordinal” model, θi determines an ordering over A,
R(θi ). Interpretation: aR(θi )b implies a is at least as good as
b. Strict component P(θi ): aP(θi )b implies aR(θi )b and not
bR(θi ).

I In a “cardinal” model, θi specifies a valuation or utility
function v : A×Θi → <.

I A type profile is an n-tuple θ ≡ (θ1, . . . , θn).



Social Choice Correspondences and Social Choice
Functions

A social choice correspondence SCC F associates a non-empty
subset of alternatives F (θ) ⊂ A for every type profile θ ∈ Θn..

A social choice function is a singleton- valued SCC.



Mechanisms and Implementation

A mechanism G = (M, g) consists of a message space
M ≡ ×i∈NMi and an outcome function g : M → A.

I Each player i chooses a message mi ∈ Mi . The resulting
outcome is g(m1, . . . ,mn).

I For every θ ∈ Θn, the pair (G , θ) constitutes a game.

I Let E be a solution concept, i.e. E (G , θ) ⊂ M for all θ ∈ Θn.

The mechanism G implements F if g(E (G , θ)) = F (θ) for all
θ ∈ Θn.



Solution concepts: Dominant Strategies

I The most widely used solution concept is dominant strategies.

I [m̄ ∈ E (G , θ)]⇒ [g(m̄i ,m−i )R(θi )g(mi ,m−i )] for all
mi ∈ Mi ,m−i ∈ M−i , i ∈ N.

I m̄i is optimal for i at θi irrespective of the messages sent by
other players.



Solution concepts: Bayes-Nash Equilibrium

I Another popular solution concept is Bayes-Nash equilibrium.

I Appropriate for the ordinal model but can be adapted suitably
to the ordinal model.

I Player have a “belief” µ over types, i.e. µ(θ) ≥ 0 and∑
θ µ(θ) = 1.

I [m̄ ∈ E (G , θ)]⇒ [
∫
θ−i

v(g(m̄i , m̄−i ), θi )d(µ(θ−i |θi )) ≥∫
θ−i

v(g(mi , m̄−i ), θi )d(µ(θ−i |θi )] for all mi ∈ Mi and i ∈ N.

I m̄i is optimal for i at θi in expectation, assuming other players
play according to m̄.



Solution Concepts: Undominated Strategies

I We focus on the solution concept undominated strategies.

I [m̄ ∈ E (G , θ)]⇒ [@i ∈ N,@m′i ∈ Mi such that
g(m′i ,m−i )R(θi )g(m̄i ,m−i ) for all m−i ∈ M−i and
g(m′i , m̂−i )P(θi )g(m̄i , m̂−i ) for some m̂−i ∈ M−i ].

I m̄i is undominated for player i of type θi , i.e. there does not
exist another message for i that does at least as well as m̄i for
any possible message of the other players and does strictly
better for some message.

I Set-valued notion unlike dominant strategies.



Solution concepts: Remarks

I In the solution concepts, equilibrium message for i at profile θ
depends only on her type.

I In dominant strategies and undominated strategies, the
following is true: For every θ ∈ Θn,
E (G , θ) = (E1(G , θ1)× . . .× En(G , θn)) where Ei (G , θi ) is the
set of equilibrium messages for voter i of type θi .

I Consistent with the private information environment.

I Implementation in Bayes-Nash equilibrium depends on beliefs
- on the other hand, both dominant strategies and
undominated are “detail-free” in that respect.

I In dominant strategy implementation, there is a message
m̄i (θi ) that weakly dominates every other message m′i ∈ Mi .

I Not true in undominated implementation.

I There can be different messages that do not dominate each
other.



The Revelation Principle

I Let f be a SCF.

I A direct mechanism is the mechanism Df ≡ (Θ, f ) i.e. players
announce their types and f is the outcome function.

I The SCF f can be truthfully implemented according to E if
θi ∈ Ei (Df , θi ), for all θi ∈ Θi and i , i.e. truth-telling is an
equilibrium for every player of every type. If dominant
strategy is the solution concept, then f is strategy-proof.

I Note that we are not insisting θi = Ei (Df , θi )., i.e. there could
be non truth-telling equilibrium type announcements as well.



The Revelation Principle

Theorem
(Revelation Principle): Suppose F can be implemented in
dominant strategies (or Bayes-Nash equilibrium). Then any SCF
f ∈ F can be truthfully implemented.

Proof.
Suppose G = (M, f ) implements F . Let f ∈ F . For every θ ∈ Θ,
there exists m̄i (θi ) ∈ Mi such that m̄i (θi ) ∈ Ei (G , θi ) for all i ∈ N
and g(m̄) = f (θ). Construct direct mechanism Df . Note θi in Df

is a message that corresponds to mi (θi ) in Mi . Messages that are
not equilibrium messages for some θi are eliminated in Df . If E is
either dominant strategies or BNE, then θi will be an equilibrium in
Df .



The Revelation Principle

I Without loss of generality Θi ⊂ Mi where G = (M, g) is the
implementing mechanism.

I Critical feature of dominant strategies and BNE that make
the Revelation Principle work: if mi is an equilibrium for type
θi , it continues to remain an equilibrium when “redundant”
strategies of other players are eliminated.

I Revelation Principle enormously simplifies mechanism design
for solution concepts that satisfy it - the direct mechanism is
a “canonical mechanism”.

I θi ∈ E (Df , θi ) is also called the incentive-compatibility
requirement. Necessary for implementing f .



The Revelation Principle

I Implementation via undominated strategies does not satisfy
the “stability with respect to the deletion of redundant
messages” condition satisfied by implementation by dominant
strategies or BNE.

I Consider messages m̄i ,m
′
i ∈ Mi such that

g(m′i ,m−i )Pi (θi )g(m̄i ,m−i ) for all m−i ∈ M−i \ m̂−i and
g(m̄i , m̂−i )Pi (θi )g(m′i , m̂−i ).

I Both m̄i and m′i are undominated at θi . However, m̄i is
dominated by m′i if m̂−i is deleted.

I The Revelation does not hold for implementation in
undominated strategies as the next Example shows.



Example (Jackson 1992)

I N = {1, 2}.
I A = {a, b}.
I Θ1 = {θ1, θ′1}, Θ2 = {θ2}.
I aP(θ1)b, bP(θ′1)a and aP(θ2)b.

I f (θ1, θ2) = b, f (θ′1, θ2) = a.

I Player 1’s worse alternative is selected in both states.

I In the direct mechanism, lying is a dominant strategy for
player 1 in both states.

I However, f can be implemented in undominated strategies by
the following crazy mechanism!



Example (Jackson, 1992)

M2

m2

m1 b a a a . . . a a a a . . .
b a a a . . . b b b b . . .
b b a a . . . b b b b . . .
b b b a . . . b b b b . . .

M1
...

...
...

...
...

...
...

...
m̃1 a b b b . . . b b b b . . .

a a a a . . . a b b b . . .
a a a a . . . a a b b . . .
a a a a . . . a a a b . . .
...

...
...

...
...

...
...

...



Example

I m1 is the only message undominated at θ1.

I m̃1 is the only message undominated at θ′1.

I m2 is the only undominated message at θ2.

I g(m1,m2) = b and g(m̃1,m2) = a as required for
implementing f .



The Jackson (1992) Result

I Recall that the incentive-compatibility compatibility condition
ensured that truth-telling was an equilibrium in the direct
mechanism.

I Since direct mechanisms are not useful here, what is the
“appropriate” incentive-compatibility condition?

I NONE!

Jackson (1992) proved the following amazing result!

Theorem (Jackson 1992): Every SCF defined on an arbitrary
domain (satisfying very weak conditions) is implementable in
undominated strategies.

Every SCF defined on the complete domain P is implementable in
undominated strategies.



A Difficulty

I The mechanism in the example works by using the following
trick: infinite string of messages each dominating the one
preceding it.

I This is unsatisfactory. For example, when player 1’s (row
player) preference is aP(θ1)b, she has no best-response among
the “lower block” of messages.

I Jackson proposed further restrictions on mechanisms in oder
to avoid this difficulty.



Bounded Mechanisms

The mechanism (M, g) is bounded if the following property is true:
for all i ∈ N and θi ∈ Θi :

If message mi ∈ Mi is weakly dominated at θi , there exists a
message m′i ∈ Mi that weakly dominates mi at θi and is
undominated at θi .

If Mi is finite for all i , G = (M,R) must be bounded. However
non-finite mechanisms can also be bounded.

What are the SCCs that are implementable in undominated
strategies by bounded mechanisms (IUSBM)?

Not a very easy question to answer. We will have a sufficient
condition later.



A Restriction Imposed by Boundedness

I Suppose F can be IUSBM implemented. Let G = (M, g)
implement it.

I Let θ be a type-profile and a ∈ F (θ).

I Then there exists an (undominated) message profile at θ, m̃
such that g(m̃) = a.

I Let i be a player and θ′i be another type for the player.

I Either m̃i is undominated at θ′i or there exists another
message m′i that is undominated (by boundedness) at θ′i
which dominates m̃i .



Strategy-Resistance

I In the former case a ∈ F (θ′i , θ−i ).

I In the latter case b = g(m′i , m̃−i )R(θ′i )a.

I In each case, there exists b ∈ F (θ′i , θ−i ) such that bR(θ′i )a.

I Jackson (1992) refers to this condition as strategy-resistance
and is necessary for IUSBM.

I Strategy-resistance is not sufficient for IUSBM (Ohseto
(1994)).



Börgers (1991)

I Börgers (1991) raised the issue of implementing
Pareto-efficient outcomes.

I Implementing specific sub-correspondences of the Pareto
correspondence is not a problem. Dictatorship can be
obviously implemented.

I However the correspondence of best-ranked alternatives can
also be implemented.
FT (θ) = {a|a is P(θi ) maximal for some i ∈ N}.



Implementing FT : “pseudo-random” dictatorship

I Each player i announces an integer si in the set {1, . . . , n}
and θi .

I Let r be the residue of
∑

i si mod n.

I Outcome is the maximal element according to the ordering of
the r + 1th player, i.e. the maximal element of P(θr+1).

I Suppose i ’s true type is θi . Suppose θ′i is such that
maxP(θi ) 6= maxP(θ′i ). Then the strategy (θi , si ) weakly
dominates (θ′i , si ).

I Moreover, announcing true ordering and arbitrary integer is
undominated.



Implementing Compromises

I Can one implement SCCs that contain outcomes that are not
first-ranked by some player?

I Difficulty: Making sure that announcing false orderings is
dominated seems to require agents to have a strategy that
gives their maximal alternatives according to their true
preferences. But this strategy may also weakly dominate the
strategy that gives a compromise.



Implementing Compromises

I Börgers (1991) shows that a variant of approval voting
implements the Pareto correspondence in the case of m = 3.
Fails for m ≥ 4.

I According to the paper“....if agents play ”undominated
strategies” it is not obvious how to ensure Pareto efficient
collective decisions for all possible preference profiles without
excluding compromises.”

I Proves an impossibility result (for three alternatives or two
players) by imposing an additional axiom: there exists a
profile where choosing a top-ranked alternative is not allowed.



The Pareto-Correspondence: Mukherjee, Muto,
Ramaekers, Sen (2019)

I MMRS(2019) the entire Pareto Correspondence can be
implemented.

I Idea: Augmented modulo game.

I Players have strategies that give compromise outcomes
(playing Green). They also have a strategy that gives the
maximal element at any ordering (playing Blue). However
there are situations where playing Green does strictly better
than Blue.

I This can be done without violating Pareto-efficiency.



The Pareto Correspondence Result

Theorem
Consider the domain of strict orderings. The Pareto
Correspondence can be implemented in IUSBM.



Mukherjee, Muto and Sen (2021)

Provide a sufficient condition for implementation in finite
mechanims. involving three properties:

1. Strategy-resistance of SCC F .

2. Strategy-proofness of “range-top selections”.

3. The “Flip Condition.”

Provide several applications.



Range-top selection

I Fix SCC F . Let t i be the following SCF: such for each θ, t i (θ)
is the most-preferred alternative among F (θ) w.r.t. R(θi ).

I t i is a range-top selection for i from F .

I F is generated by adding to t i worse alternatives w.r.t. agent
i ’s preference.



Range-top selection

I Suppose F satisfies strategy-resistance.

I Agent i cannot gain by misrepresentation of preference in t i

(actually, equivalent to strategy-resistance).

I However t i is not strategy-proof.

I Agent j 6= i could manipulate by affecting the range of F .



Key to our Approach

I Assume the existence of strategy-proof t i for each i .

I At every profile add alternatives that are worse than t i for
each i but may be preferred by the designer.

I Implement the resulting SCC.



Examples

I Social Choice environment: t i is dictatorial. Add
“compromise” or other Pareto efficient alternatives.

I Add the full-surplus extraction outcome to the second-price
auction outcome at every valuation profile.

I In public-good provision model add an efficient
budget-balanced outcome to the VCG outcome.

I Add all other stable matchings to the man-optimal stable
matching.

I In each case, the range-top selection is strategy-proof.



Extended Strategy-Resistance

Definition (Extended Strategy-Resistance, ESR)

The SCC F satisfies Extended Strategy-Resistance (ESR) if (i) F
satisfies strategy-resistance and (ii) for each i , there exists a
range-top selection t i such that t i is strategy-proof.

I Condition (ii) does not imply (i) in the definition of ESR.



The Flip Condition

Definition
The SCC F satisfies the Flip Condition if for each i ∈ N and each
θi , θ

′
i there exist x , y ∈ A such that

1. xP(θi )y and yR(θ′i )x , and

2. for each each agent j 6= i , there exists a range-top selection t j

of j from F such that for all preference profiles θ̄, we have
t j(θ̄)R(θ̄j)x and t j(θ̄)R(θ̄j)y .

I x and y “flip” between θi and θ′i .

I all agents j 6= i “dislike” x , y . Need not be in the range of F
at any profile.

I E.g., x and y involve a large monetary payment for ∀j 6= i .

I The Flip Condition holds in most “economic” environments.



A sufficient condition for implementation

Theorem
A SCC satisfying ESR and the Flip Condition is implementable in
undominated strategies by a finite mechanism.

Proof uses a refinement of the modulo game called the extended
modulo game. Similar ideas to MMRS.



Applications

I We apply this result to auctions, public good provision and
stability.

I In each case that the designer can do “better” than in
dominant strategies.

I Better in what sense?

I Involves comparisons between and implementable SCF (in
dominant strategies) and an implementable SCC.



Ranking SCCs

I Börgers and Smith (2012)

I A SCC F outperforms another SCC G if at every θ, the
planner weakly prefers any outcome given by F to that by G ,
and strictly prefers some outcome in F (θ) to that in G (θ).

I If a SCC F is constructed by adding new outcomes to a SCF
G at each θ such that these outcomes are “more desirable”
for the planner (at θ), then F outperforms G .

I F strictly outperforms G if F outperforms G and G does not
outperform F .



Example: Auctions

I Single indivisible object, private values.

I Let N = {1, . . . , n} be the set of bidders.

I Each bidder i ’s valuation is θi . Payoff is θi − pi if she gets
object and pays pi .

I Θ := {θk ∈ <+ | k = 1, . . . ,K} where
0 ≤ θ1 < θ2 < · · · < θK .

I ∅: seller keeps object.

I Outcome is a pair consisting of a bidder and a payment or ∅.
I f II,r is the SCF where for each θ, the highest θi gets object

and pays second-highest θj . Seller’s bid is r .



Example: Auctions

I Myerson (1981): assume i.i.d distribution there exists r ≥ 0
such that f II,r maximizes expected revenue.

I f II,r is strategy-proof.

I Let f SE be the “full extraction” SCF - at each θ, highest θi
gets object and pays θi .

I Let F (θ) = f II,r ∪ f SE.



Example: Auctions

I For every i , t i (θ) = f II,r (θ).

I If i has the highest valuation, she wins the object but pays a
lower amount in f II,r .

I We know f II,r is strategy-proof.

I For a revenue-maximizing auctioneer, F outperforms f II,r

Proposition

The SCC F can be implemented in undominated strategies by a
finite mechanism.



Example: Public good provision

I Let N = {1, . . . , n} be the set of agents. These agents jointly
decide whether to provide an indivisible public good. This
decision is denoted by g ∈ {0, 1}, where g = 1 if the public
good is produced, and g = 0 if not.

I Each agent i ∈ N has a valuation θi (this is a private
information for i) on the public good. Let pi ∈ < be a
monetary transfer from i : her utility is θig − pi .

I (Finite environment:) we assume that the valuations are
discrete, and the set of valuations is
Θ := {θk ∈ <+ | k = 1, . . . ,K}, where
0 ≤ θ = θ1 < θ2 < · · · < θK = θ.

I A generic outcome is denoted by (g , p1, . . . , pn) ∈ A.



Example: Public goods provision

I The cost of provision is c > 0; the cost function: gc .

I Assume nθ < c < (n − 1)θ + θ;
- the public good is still socially beneficial when only one
agent has the lowest valuation and the others have the
highest (no veto).

I Also for each θ ∈ Θn,
∑

i∈N θi 6= c ;
- rules out complications caused by tie-breaking rules.
Generically true.



Example: Public goods provision

For each valuation profile θ = (θ1, . . . , θn) ∈ Θn, let g∗(θ) ∈ {0, 1}
be the socially optimal decision (maximizing the total surplus)

g∗(θ) =

{
1 if

∑
i∈N θi > c ,

0 otherwise.

I The pivotal or Vickrey–Clarke–Groves (VCG) SCF is given by
the following transfer function pVCG(θ) together with the
socially optimal decision g∗:

for each i ∈ N and each θ ∈ Θn,

pVCG
i (θ) = g∗(θ, θ−i )θ +

(
g∗(θ)− g∗(θ, θ−i )

)(
c −

∑
j∈N\{i}

θj

)
.



Example: public goods provision

I Well-known that (g∗, pVCG) is strategy-proof but not budget
balanced - leads to deficits that have to financed from outside.

I Define first-best transfers as follows:

pFBi (θ) = g∗(θ)

(
pVCG
i (θ) +

θi − pVCG
i (θ)∑

j∈N(θi − pVCG
i (θ))

(
c −

∑
j∈N

pVCG
j (θ)

))
.

I Note
∑

j∈N pFBi (θ) = 0 if g∗(θ) = 0 and c if g∗(θ) = 1.

I Payments adjusted proportionally to VCG payments to cover
deficits - budget balanced.



Example:Public Good Provision

I Define F as follows:

F (θ) =
{

(g∗(θ), pVCG(θ)), (g∗(θ), pFB(θ))
}

.

I F is the union of VCG and FB.

I For each i , t i (θ) is given by (g∗(θ), pVCG(θ)) - FB payments
are higher.

I Hence t i is strategy-proof.



Public Good Provision

I Suppose the designer has the following lexicographic
preferences: “first” care about maximizing social surplus,
“second” care about minimizing budget deficit.

I F also outperforms (g∗(θ), pVCG(θ)) for such a designer.

Proposition

The SCC F can be implemented in undominated strategies by a
finite mechanism.



Example: Two-sided matching

I Marriage Problem of Gale-Shapley.

I N = {1, . . . , n}- set of men, and W = {w1, . . . ,wm} -set of
women. Let ∅ be the alternative “single”.

I Every i ∈ N has a strict preference over W ∪ {∅}: �i (private
information to i). The set of all strict preferences over
W ∪ {∅} is denoted by P.

I Every woman wj ∈W , she has a strict preference over
M ∪ {∅} denoted by �wj .

I Assume that each woman’s preference �wj is known to
everyone, and fixed.



Example: Two-sided matchings

For each preference profile �= (�i )i∈N , a matching µ is stable at
� if

I there exists no man i ∈ N such that ∅ �i µ(i),

I there exists no woman wj ∈W such that ∅ �wj µ
−1(wj), and

I there exists no pair of man i ∈ N and woman w ∈W such
that w �i µ(i) and i �w µ−1(w).

Let S(�) ⊆ A (set of all possible matchings) be the set of all
stable matchings at �.

For each �, there exists a unique stable matching µ ∈ S(�) such
that for each µ′ ∈ S(�) and each i ∈ N, either µ(i) �i µ

′(i) or
µ(i) = µ′(i): man-optimal stable matching at �.

In µ′ each woman has the worst partner that she could have in any
stable matching.



Example: Two-sided matchings

I Let f MO : Pn → A be the SCF such that for each �, f MO(�)
is the man-optimal stable matching at �.

I t i ≡ f MO. Known to be strategy-proof.

I If the planner considers women’s preferences, S outperforms
f MO.

Proposition

The SCC S is implementable in undominated strategies by a finite
mechanism.
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