Implementation in Undominated Strategies via Bounded Mechanisms

"ReLax" Workshop on Games, Chennai Math Institute

Arunava Sen, Indian Statistical Institute

February 1, 2021

・ロト・日本・モート モー うへぐ

Classic Mechanism Design Problem

- Players/agents/voters have private information.
- They collectively want to achieve some goals.
- Equivalent reformulation: A mechanism designer wishes to achieve these goals.
- The goals depend on the private information of agents.
- How does the designer achieve her goals? Is it possible to achieve them?

"Reverse Engineering" problem (Aumann).

Classic Mechanism Design Problem

- The mechanism designer designs a "mechanism" which consists of (i) a choice of message to be sent be each player and (ii) an outcome function that gives an outcome for all possible message-tuples.
- Once information is realized, players are playing a game.
- Fix an appropriate solution concept for a game.
- The mechanism is successful (given the solution concept), if equilibrium outcomes coincide with the goals of the designer (for all possible information realizations).
- Question: What goals can be achieved under these circumstances?
- Applications: Voting, Auctions etc.

Goal of the Talk

- The standard equilibrium notion for mechanism design is dominant strategies or strategy-proofness.
- Strategy-proofness is a demanding many negative results (Gibbard-Satterthwaite Theorem in voting).
- We consider an alternative solution concept undominated strategies that has the same informational basis.
- Relatively less studied because of difficult technical issues.
- Introduce the problem and report some recent progress.
- Main message: Designer can do "better" using undominated strategies.

The Model

- ► Finite set of agents N = {1,...n} and set of (fixed) alternatives A.
- ► Each agent $i \in N$'s private information or *type* is θ_i where $\theta_i \in \Theta$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Neither designer nor players other than *i* can observe θ_i .

The Model

In an "ordinal" model, θ_i determines an ordering over A, R(θ_i). Interpretation: aR(θ_i)b implies a is at least as good as b. Strict component P(θ_i): aP(θ_i)b implies aR(θ_i)b and not bR(θ_i).

- In a "cardinal" model, θ_i specifies a valuation or utility function v : A × Θ_i → ℜ.
- A type profile is an *n*-tuple $\theta \equiv (\theta_1, \ldots, \theta_n)$.

Social Choice Correspondences and Social Choice Functions

A social choice correspondence SCC F associates a non-empty subset of alternatives $F(\theta) \subset A$ for every type profile $\theta \in \Theta^n$.. A social choice function is a singleton- valued SCC.

Mechanisms and Implementation

A mechanism G = (M, g) consists of a message space $M \equiv \times_{i \in N} M_i$ and an outcome function $g : M \to A$.

- ► Each player i chooses a message m_i ∈ M_i. The resulting outcome is g(m₁,..., m_n).
- For every $\theta \in \Theta^n$, the pair (G, θ) constitutes a game.
- Let *E* be a solution concept, i.e. $E(G, \theta) \subset M$ for all $\theta \in \Theta^n$.

The mechanism G implements F if $g(E(G, \theta)) = F(\theta)$ for all $\theta \in \Theta^n$.

Solution concepts: Dominant Strategies

- The most widely used solution concept is dominant strategies.
- ► $[\bar{m} \in E(G, \theta)] \Rightarrow [g(\bar{m}_i, m_{-i})R(\theta_i)g(m_i, m_{-i})]$ for all $m_i \in M_i, m_{-i} \in M_{-i}, i \in N.$
- *m
 _i* is optimal for *i* at θ_i irrespective of the messages sent by other players.

Solution concepts: Bayes-Nash Equilibrium

- Another popular solution concept is Bayes-Nash equilibrium.
- Appropriate for the ordinal model but can be adapted suitably to the ordinal model.
- ▶ Player have a "belief" μ over types, i.e. $\mu(\theta) \ge 0$ and $\sum_{\theta} \mu(\theta) = 1$.
- ► $[\bar{m} \in E(G, \theta)] \Rightarrow [\int_{\theta_{-i}} v(g(\bar{m}_i, \bar{m}_{-i}), \theta_i) d(\mu(\theta_{-i}|\theta_i)) \ge \int_{\theta_{-i}} v(g(m_i, \bar{m}_{-i}), \theta_i) d(\mu(\theta_{-i}|\theta_i)] \text{ for all } m_i \in M_i \text{ and } i \in N.$
- \bar{m}_i is optimal for *i* at θ_i in expectation, assuming other players play according to \bar{m} .

Solution Concepts: Undominated Strategies

- ► We focus on the solution concept undominated strategies.
- ► $[\bar{m} \in E(G, \theta)] \Rightarrow [\nexists i \in N, \nexists m'_i \in M_i \text{ such that}$ $g(m'_i, m_{-i})R(\theta_i)g(\bar{m}_i, m_{-i}) \text{ for all } m_{-i} \in M_{-i} \text{ and}$ $g(m'_i, \hat{m}_{-i})P(\theta_i)g(\bar{m}_i, \hat{m}_{-i}) \text{ for some } \hat{m}_{-i} \in M_{-i}].$
- *m̄_i* is undominated for player *i* of type θ_i, i.e. there does not exist another message for *i* that does at least as well as *m̄_i* for any possible message of the other players and does strictly better for some message.

Set-valued notion unlike dominant strategies.

Solution concepts: Remarks

- In the solution concepts, equilibrium message for i at profile θ depends only on her type.
- In dominant strategies and undominated strategies, the following is true: For every θ ∈ Θⁿ, E(G, θ) = (E₁(G, θ₁) × ... × E_n(G, θ_n)) where E_i(G, θ_i) is the set of equilibrium messages for voter i of type θ_i.
- Consistent with the private information environment.
- Implementation in Bayes-Nash equilibrium depends on beliefs

 on the other hand, both dominant strategies and undominated are "detail-free" in that respect.
- In dominant strategy implementation, there is a message m
 _i(θ_i) that weakly dominates every other message m'_i ∈ M_i.
- Not true in undominated implementation.
- There can be *different* messages that do not dominate each other.

- Let f be a SCF.
- A direct mechanism is the mechanism $D_f \equiv (\Theta, f)$ i.e. players announce their types and f is the outcome function.
- ▶ The SCF *f* can be truthfully implemented according to *E* if $\theta_i \in E_i(D_f, \theta_i)$, for all $\theta_i \in \Theta_i$ and *i*, i.e. truth-telling is an equilibrium for every player of every type. If dominant strategy is the solution concept, then *f* is strategy-proof.
- ▶ Note that we are not insisting $\theta_i = E_i(D_f, \theta_i)$, i.e. there could be non truth-telling equilibrium type announcements as well.

Theorem

(Revelation Principle): Suppose F can be implemented in dominant strategies (or Bayes-Nash equilibrium). Then any SCF $f \in F$ can be truthfully implemented.

Proof.

Suppose G = (M, f) implements F. Let $f \in F$. For every $\theta \in \Theta$, there exists $\overline{m}_i(\theta_i) \in M_i$ such that $\overline{m}_i(\theta_i) \in E_i(G, \theta_i)$ for all $i \in N$ and $g(\overline{m}) = f(\theta)$. Construct direct mechanism D_f . Note θ_i in D_f is a message that corresponds to $m_i(\theta_i)$ in M_i . Messages that are not equilibrium messages for some θ_i are eliminated in D_f . If E is either dominant strategies or BNE, then θ_i will be an equilibrium in D_f .

- Without loss of generality Θ_i ⊂ M_i where G = (M, g) is the implementing mechanism.
- Critical feature of dominant strategies and BNE that make the Revelation Principle work: if m_i is an equilibrium for type θ_i, it continues to remain an equilibrium when "redundant" strategies of other players are eliminated.
- Revelation Principle enormously simplifies mechanism design for solution concepts that satisfy it - the direct mechanism is a "canonical mechanism".

▶ $\theta_i \in E(D_f, \theta_i)$ is also called the incentive-compatibility requirement. Necessary for implementing f.

- Implementation via undominated strategies *does not* satisfy the "stability with respect to the deletion of redundant messages" condition satisfied by implementation by dominant strategies or BNE.
- ► Consider messages $\bar{m}_i, m'_i \in M_i$ such that $g(m'_i, m_{-i})P_i(\theta_i)g(\bar{m}_i, m_{-i})$ for all $m_{-i} \in M_{-i} \setminus \hat{m}_{-i}$ and $g(\bar{m}_i, \hat{m}_{-i})P_i(\theta_i)g(m'_i, \hat{m}_{-i}).$
- Both m
 _i and m'_i are undominated at θ_i. However, m
 _i is dominated by m'_i if m
 _{-i} is deleted.

The Revelation does not hold for implementation in undominated strategies as the next Example shows.

Example (Jackson 1992)

- $N = \{1, 2\}.$
- $\blacktriangleright A = \{a, b\}.$
- $\bullet \ \Theta_1 = \{\theta_1, \theta_1'\}, \ \Theta_2 = \{\theta_2\}.$
- $aP(\theta_1)b$, $bP(\theta'_1)a$ and $aP(\theta_2)b$.
- $f(\theta_1, \theta_2) = b$, $f(\theta'_1, \theta_2) = a$.
- Player 1's worse alternative is selected in both states.
- In the direct mechanism, lying is a dominant strategy for player 1 in both states.
- However, f can be implemented in undominated strategies by the following crazy mechanism!

Example (Jackson, 1992)

						<i>M</i> ₂					
		<i>m</i> ₂									
	m_1	b	а	а	а		а	а	а	а	
		b	а	а	а		b	b	b	b	
		b	b	а	а		b	b	b	b	
		Ь	b	b	а		b	b	b	b	
M_1		:	÷	÷	÷		÷	÷	÷	÷	
	\tilde{m}_1	а	b	b	b		b	b	b	b	
		а	а	а	а		а	b	b	b	
		а	а	а	а		а	а	b	b	
		а	а	а	а		а	а	а	b	
		:	:	÷	÷		:	÷	÷	÷	

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Example

- m_1 is the only message undominated at θ_1 .
- \tilde{m}_1 is the only message undominated at θ'_1 .
- m_2 is the only undominated message at θ_2 .
- g(m₁, m₂) = b and g(m̃₁, m₂) = a as required for implementing f.

The Jackson (1992) Result

- Recall that the incentive-compatibility compatibility condition ensured that truth-telling was an equilibrium in the direct mechanism.
- Since direct mechanisms are not useful here, what is the "appropriate" incentive-compatibility condition?
- ► NONE!

Jackson (1992) proved the following amazing result!

Theorem (Jackson 1992): Every SCF defined on an arbitrary domain (satisfying very weak conditions) is implementable in undominated strategies.

Every SCF defined on the complete domain $\ensuremath{\mathcal{P}}$ is implementable in undominated strategies.

A Difficulty

- The mechanism in the example works by using the following trick: infinite string of messages each dominating the one preceding it.
- This is unsatisfactory. For example, when player 1's (row player) preference is aP(θ₁)b, she has no best-response among the "lower block" of messages.
- Jackson proposed further restrictions on mechanisms in oder to avoid this difficulty.

Bounded Mechanisms

The mechanism (M, g) is bounded if the following property is true: for all $i \in N$ and $\theta_i \in \Theta_i$:

If message $m_i \in M_i$ is weakly dominated at θ_i , there exists a message $m'_i \in M_i$ that weakly dominates m_i at θ_i and is undominated at θ_i .

If M_i is finite for all i, G = (M, R) must be bounded. However non-finite mechanisms can also be bounded.

What are the SCCs that are implementable in undominated strategies by bounded mechanisms (IUSBM)?

Not a very easy question to answer. We will have a sufficient condition later.

A Restriction Imposed by Boundedness

- Suppose F can be IUSBM implemented. Let G = (M, g) implement it.
- Let θ be a type-profile and $a \in F(\theta)$.
- Then there exists an (undominated) message profile at θ, m̃ such that g(m̃) = a.
- Let *i* be a player and θ'_i be another type for the player.
- Either m
 _i is undominated at θ'_i or there exists another message m'_i that is undominated (by boundedness) at θ'_i which dominates m
 _i.

Strategy-Resistance

- In the former case $a \in F(\theta'_i, \theta_{-i})$.
- In the latter case $b = g(m'_i, \tilde{m}_{-i})R(\theta'_i)a$.
- ▶ In each case, there exists $b \in F(\theta'_i, \theta_{-i})$ such that $bR(\theta'_i)a$.
- Jackson (1992) refers to this condition as strategy-resistance and is necessary for IUSBM.

Strategy-resistance is not sufficient for IUSBM (Ohseto (1994)).

Börgers (1991)

- Börgers (1991) raised the issue of implementing Pareto-efficient outcomes.
- Implementing specific sub-correspondences of the Pareto correspondence is not a problem. Dictatorship can be obviously implemented.
- However the correspondence of best-ranked alternatives can also be implemented.

 $F^{T}(\theta) = \{a | a \text{ is } P(\theta_i) \text{ maximal for some } i \in N\}.$

Implementing F^{T} : "pseudo-random" dictatorship

- Each player i announces an integer s_i in the set {1,..., n} and θ_i.
- Let r be the residue of $\sum_i s_i \mod n$.
- Outcome is the maximal element according to the ordering of the r + 1th player, i.e. the maximal element of $P(\theta_{r+1})$.
- ▶ Suppose *i*'s true type is θ_i . Suppose θ'_i is such that $\max P(\theta_i) \neq \max P(\theta'_i)$. Then the strategy (θ_i, s_i) weakly dominates (θ'_i, s_i) .
- Moreover, announcing true ordering and arbitrary integer is undominated.

Implementing Compromises

- Can one implement SCCs that contain outcomes that are not first-ranked by some player?
- Difficulty: Making sure that announcing false orderings is dominated seems to require agents to have a strategy that gives their maximal alternatives according to their true preferences. But this strategy may also weakly dominate the strategy that gives a compromise.

Implementing Compromises

- ▶ Börgers (1991) shows that a variant of approval voting implements the Pareto correspondence in the case of m = 3. Fails for m ≥ 4.
- According to the paper "....if agents play " undominated strategies" it is not obvious how to ensure Pareto efficient collective decisions for all possible preference profiles without excluding compromises."
- Proves an impossibility result (for three alternatives or two players) by imposing an additional axiom: there exists a profile where choosing a top-ranked alternative is not allowed.

The Pareto-Correspondence: Mukherjee, Muto, Ramaekers, Sen (2019)

- MMRS(2019) the entire Pareto Correspondence can be implemented.
- Idea: Augmented modulo game.
- Players have strategies that give compromise outcomes (playing Green). They also have a strategy that gives the maximal element at any ordering (playing Blue). However there are situations where playing Green does strictly better than Blue.

This can be done without violating Pareto-efficiency.

The Pareto Correspondence Result

Theorem

Consider the domain of strict orderings. The Pareto Correspondence can be implemented in IUSBM.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Mukherjee, Muto and Sen (2021)

Provide a sufficient condition for implementation in *finite* mechanims. involving three properties:

- 1. Strategy-resistance of SCC F.
- 2. Strategy-proofness of "range-top selections".
- 3. The "Flip Condition."

Provide several applications.

Range-top selection

- Fix SCC F. Let tⁱ be the following SCF: such for each θ, tⁱ(θ) is the most-preferred alternative among F(θ) w.r.t. R(θ_i).
- t^i is a range-top selection for *i* from *F*.
- ► F is generated by adding to tⁱ worse alternatives w.r.t. agent i's preference.

Range-top selection

- Suppose *F* satisfies strategy-resistance.
- Agent *i* cannot gain by misrepresentation of preference in tⁱ (actually, equivalent to strategy-resistance).
- However t^i is not strategy-proof.
- Agent $j \neq i$ could manipulate by affecting the range of F.

Key to our Approach

- Assume the existence of strategy-proof t^i for each *i*.
- At every profile add alternatives that are worse than tⁱ for each i but may be preferred by the designer.

Implement the resulting SCC.

Examples

- Social Choice environment: tⁱ is dictatorial. Add "compromise" or other Pareto efficient alternatives.
- Add the full-surplus extraction outcome to the second-price auction outcome at every valuation profile.
- In public-good provision model add an efficient budget-balanced outcome to the VCG outcome.
- Add all other stable matchings to the man-optimal stable matching.

► In each case, the range-top selection is strategy-proof.

Definition (Extended Strategy-Resistance, ESR)

The SCC F satisfies Extended Strategy-Resistance (ESR) if (i) F satisfies strategy-resistance and (ii) for each i, there exists a range-top selection t^i such that t^i is strategy-proof.

• Condition (ii) does not imply (i) in the definition of ESR.

The Flip Condition

Definition

The SCC *F* satisfies the Flip Condition if for each $i \in N$ and each θ_i, θ'_i there exist $x, y \in A$ such that

- 1. $xP(\theta_i)y$ and $yR(\theta'_i)x$, and
- 2. for each each agent $j \neq i$, there exists a range-top selection t^j of j from F such that for all preference profiles $\overline{\theta}$, we have $t^j(\overline{\theta})R(\overline{\theta}_j)x$ and $t^j(\overline{\theta})R(\overline{\theta}_j)y$.
- x and y "flip" between θ_i and θ'_i .
- ► all agents j ≠ i "dislike" x, y. Need not be in the range of F at any profile.
- ▶ E.g., x and y involve a large monetary payment for $\forall j \neq i$.
- ► The Flip Condition holds in most "economic" environments.

A sufficient condition for implementation

Theorem

A SCC satisfying ESR and the Flip Condition is implementable in undominated strategies by a finite mechanism.

Proof uses a refinement of the modulo game called the extended modulo game. Similar ideas to MMRS.

Applications

- We apply this result to auctions, public good provision and stability.
- In each case that the designer can do "better" than in dominant strategies.
- Better in what sense?
- Involves comparisons between and implementable SCF (in dominant strategies) and an implementable SCC.

Ranking SCCs

- Börgers and Smith (2012)
- A SCC F outperforms another SCC G if at every θ, the planner weakly prefers any outcome given by F to that by G, and strictly prefers some outcome in F(θ) to that in G(θ).
- If a SCC F is constructed by adding new outcomes to a SCF
 G at each θ such that these outcomes are "more desirable"
 for the planner (at θ), then F outperforms G.
- ► *F* strictly outperforms *G* if *F* outperforms *G* and *G* does not outperform *F*.

Example: Auctions

- Single indivisible object, private values.
- Let $N = \{1, \ldots, n\}$ be the set of bidders.
- ► Each bidder i's valuation is θ_i. Payoff is θ_i − p_i if she gets object and pays p_i.
- $\Theta := \{ \theta^k \in \Re_+ \mid k = 1, \dots, K \} \text{ where } \\ 0 \le \theta^1 < \theta^2 < \dots < \theta^K.$
- ▶ Ø: seller keeps object.
- Outcome is a pair consisting of a bidder and a payment or \emptyset .
- ► $f^{\text{II},r}$ is the SCF where for each θ , the highest θ_i gets object and pays second-highest θ_j . Seller's bid is r.

Example: Auctions

- ► Myerson (1981): assume i.i.d distribution there exists r ≥ 0 such that f^{II,r} maximizes expected revenue.
- ► *f*^{II,*r*} is strategy-proof.
- Let f^{SE} be the "full extraction" SCF at each θ, highest θ_i gets object and pays θ_i.

• Let
$$F(\theta) = f^{\mathrm{II},r} \cup f^{\mathrm{SE}}$$
.

Example: Auctions

- For every *i*, $t^i(\theta) = f^{\text{II},r}(\theta)$.
- ► If *i* has the highest valuation, she wins the object but pays a lower amount in *f*^{II,r}.
- We know $f^{II,r}$ is strategy-proof.
- For a revenue-maximizing auctioneer, F outperforms $f^{II,r}$

Proposition

The SCC F can be implemented in undominated strategies by a finite mechanism.

Example: Public good provision

- Let N = {1,..., n} be the set of agents. These agents jointly decide whether to provide an indivisible public good. This decision is denoted by g ∈ {0,1}, where g = 1 if the public good is produced, and g = 0 if not.
- ► Each agent i ∈ N has a valuation θ_i (this is a private information for i) on the public good. Let p_i ∈ ℜ be a monetary transfer from i: her utility is θ_ig − p_i.
- (Finite environment:) we assume that the valuations are discrete, and the set of valuations is
 Θ := {θ^k ∈ ℜ₊ | k = 1,..., K}, where
 0 ≤ θ = θ¹ < θ² < ··· < θ^K = θ̄.

• A generic outcome is denoted by $(g, p_1, \ldots, p_n) \in A$.

Example: Public goods provision

▶ The cost of provision is *c* > 0; the cost function: *gc*.

► Assume
$$n\underline{ heta} < c < (n-1)\overline{ heta} + \underline{ heta}$$
;

- the public good is still socially beneficial when only one agent has the lowest valuation and the others have the highest (no veto).

Also for each θ ∈ Θⁿ, ∑_{i∈N} θ_i ≠ c;
 rules out complications caused by tie-breaking rules. Generically true.

Example: Public goods provision

For each valuation profile $\theta = (\theta_1, \dots, \theta_n) \in \Theta^n$, let $g^*(\theta) \in \{0, 1\}$ be the socially optimal decision (maximizing the total surplus)

$$g^*(heta) = egin{cases} 1 & ext{if } \sum_{i \in N} heta_i > c, \ 0 & ext{otherwise.} \end{cases}$$

The *pivotal* or *Vickrey–Clarke–Groves* (VCG) SCF is given by the following transfer function p^{VCG}(θ) together with the socially optimal decision g^{*}:

for each
$$i \in N$$
 and each $heta \in \Theta^n$,

$$p_i^{\mathrm{VCG}}(\theta) = g^*(\underline{ heta}, \theta_{-i})\underline{ heta} + (g^*(\theta) - g^*(\underline{ heta}, \theta_{-i})) \Big(c - \sum_{j \in N \setminus \{i\}} \theta_j \Big).$$

Example: public goods provision

- Well-known that (g^{*}, p^{VCG}) is strategy-proof but not budget balanced - leads to deficits that have to financed from outside.
- Define first-best transfers as follows:

$$p_i^{\mathrm{FB}}(\theta) = g^*(\theta) \left(p_i^{\mathrm{VCG}}(\theta) + rac{ heta_i - p_i^{\mathrm{VCG}}(\theta)}{\sum_{j \in N} (heta_i - p_i^{\mathrm{VCG}}(heta))} \left(c - \sum_{j \in N} p_j^{\mathrm{VCG}}(heta)
ight)$$

- Note $\sum_{j \in N} p_i^{\text{FB}}(\theta) = 0$ if $g^*(\theta) = 0$ and c if $g^*(\theta) = 1$.
- Payments adjusted proportionally to VCG payments to cover deficits - budget balanced.

Example: Public Good Provision

Define F as follows:

$$F(\theta) = \left\{ (g^*(\theta), p^{\text{VCG}}(\theta)), (g^*(\theta), p^{\text{FB}}(\theta)) \right\}.$$

- F is the union of VCG and FB.
- For each *i*, tⁱ(θ) is given by (g^{*}(θ), p^{VCG}(θ)) FB payments are higher.

▶ Hence *tⁱ* is strategy-proof.

Public Good Provision

- Suppose the designer has the following lexicographic preferences: "first" care about maximizing social surplus, "second" care about minimizing budget deficit.
- ► *F* also outperforms $(g^*(\theta), p^{VCG}(\theta))$ for such a designer.

Proposition

The SCC F can be implemented in undominated strategies by a finite mechanism.

Example: Two-sided matching

- Marriage Problem of Gale-Shapley.
- N = {1,..., n}- set of men, and W = {w₁,..., w_m} -set of women. Let Ø be the alternative "single".
- Every i ∈ N has a strict preference over W ∪ {∅}: ≻i (private information to i). The set of all strict preferences over W ∪ {∅} is denoted by P.

- ► Every woman w_j ∈ W, she has a strict preference over M ∪ {∅} denoted by ≻_{w_i}.
- ► Assume that each woman's preference ≻_{wj} is known to everyone, and fixed.

Example: Two-sided matchings

For each preference profile $\succ = (\succ_i)_{i \in N}$, a matching μ is *stable* at \succ if

- there exists no man $i \in N$ such that $\emptyset \succ_i \mu(i)$,
- ▶ there exists no woman $w_j \in W$ such that $\varnothing \succ_{w_i} \mu^{-1}(w_j)$, and
- b there exists no pair of man i ∈ N and woman w ∈ W such that w ≻_i µ(i) and i ≻_w µ⁻¹(w).

Let $\mathcal{S}(\succ) \subseteq A$ (set of all possible matchings) be the set of all stable matchings at \succ .

For each \succ , there exists a unique stable matching $\mu \in S(\succ)$ such that for each $\mu' \in S(\succ)$ and each $i \in N$, either $\mu(i) \succ_i \mu'(i)$ or $\mu(i) = \mu'(i)$: man-optimal stable matching at \succ .

In μ^\prime each woman has the worst partner that she could have in any stable matching.

Example: Two-sided matchings

- Let f^{MO}: Pⁿ → A be the SCF such that for each ≻, f^{MO}(≻) is the man-optimal stable matching at ≻.
- $t^i \equiv f^{MO}$. Known to be strategy-proof.
- If the planner considers women's preferences, S outperforms f^{MO}.

Proposition

The SCC S is implementable in undominated strategies by a finite mechanism.

Literature

- Ohseto (1994) proves impossibility for the plurality correspondence. Satisfies strategy-resistance. Hence strategy-resistance is not sufficient.
- Yamashita (2012) provides a necessity condition (chain dominance) stronger than strategy resistance.
- Yamashita (2015) gives a performance bound for mechanisms when players play undominated strategies.
- Caroll (2014) proves a complexity result.
- Mukherjee, Muto and Ramaekers (2016) provide a characterization of implementable SCCs when players satisfy the additional behavioural assumption of *partial honesty*. The condition is a stronger version of Yamashita's (2012) necessary condition.
- Li and Dworczak (2020) investigate cases where undominated implementation outperforms particular strategy-proof SCFs.