Limit value in stochastic games

Jérôme Renault, TSE Université Toulouse 1

ReLaX Workshop on Games, Chennai online Feb 1, 2021.

2-player zero-sum stochastic games: $\lim _{\lambda \rightarrow 0} v_{\lambda}$?

Introduction

- Given a A in $\mathbb{R}^{I \times J}$, the value of the matrix A is:

$$
\begin{aligned}
\operatorname{val}(A)=\operatorname{val}_{\Delta(I) \times \Delta(J)}(A)= & \max _{x \in \Delta(I)} \min _{y \in \Delta(J)} \sum_{i \in l} \sum_{j \in J} x_{i} y_{j} a_{i, j}=\min _{y \in \Delta(J)} \max _{x \in \Delta(I)} \sum_{i \in l} \sum_{j \in J} x_{i} y_{j} a_{i, j} \\
& \operatorname{val}\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)=\frac{1}{5}
\end{aligned}
$$

- Standard stochastic game: at each stage one matrix will be played, and the matrix of today together with the actions played today determine the matrix played tomorrow.

$$
\left.\begin{array}{c}
\\
T \\
B
\end{array} \begin{array}{cc}
L & R \\
0 & 1^{*} \\
1^{*} & 0^{*}
\end{array}\right)
$$

- Zero-sum stochastic game: a dynamic zero-sum game with a Markovian structure, played in discrete time.

Outline:

1. The standard model: finitely many states and actions
1.1 The n-stage game and the λ-discounted game
1.2 Limit value
2. Beyond the standard model
2.1 The 1-player case
2.2 A compact continuous game with no limit value
2.3 A hidden stochastic game with no limit value
2.4 A non zero-sum stochastic game with no limit equilibrium payoff set
3. Concluding Remarks
4. Standard model (Shapley, 1953): a set of states K with an initial state k_{1}, actions sets I for player 1 and J for player 2 , a payoff function
$g: K \times I \times J \longrightarrow \mathbb{R}$, and a transition $q: K \times I \times J \longrightarrow \Delta(K)$.
K, I and J are assumed to be non empty finite sets.
Progress of the game:

- stage 1: players simultaneously choose $i_{1} \in I$ and $j_{1} \in J$. i_{1} and j_{1} are publicly announced, and P1's stage payoff is $g\left(k_{1}, i_{1}, j_{1}\right)$.
- stage $t \geq 2: k_{t}$ is selected according to $q\left(k_{t-1}, i_{t-1}, j_{t-1}\right)$ and publicly announced. Players then simultaneously choose $i_{t} \in I$ et $j_{t} \in J$. i_{t} et j_{t} are announced, and P1's payoff is $g\left(k_{t}, i_{t}, j_{t}\right)$.

Example 1:

$$
\left.\begin{array}{c}
\\
T \\
B
\end{array} \begin{array}{cc}
L & R \\
0 & 1^{*} \\
1^{*} & 0^{*}
\end{array}\right)
$$

3 states. 1^{*} and 0^{*} are absorbing states.

A strategy of a player associates to every finite history $\left(k_{1}, i_{1}, j_{1}, \ldots ., k_{t-1}, i_{t-1}, j_{t-1}, k_{t}\right)$, with $t \geq 1$, a mixed action in $\Delta(I)$ or $\Delta(J)$.

A couple of strategies (σ, τ) induces a probability distribution $\mathbb{P}_{k_{1}, \sigma, \tau}$ over the set of plays (endowed with the product σ-algebra).

The n-stage game and the λ-discounted game

- For $n \geq 1$, the n-stage game with initial state k_{1} is the zero-sum game with payoff:

$$
\gamma_{n}^{k_{1}}(\sigma, \tau)=\mathbb{E}_{k_{1}, \sigma, \tau}\left(\frac{1}{n} \sum_{t=1}^{n} g\left(k_{t}, i_{t}, j_{t}\right)\right) .
$$

It has a value: $v_{n}\left(k_{1}\right)=\max _{\sigma} \min _{\tau} \gamma_{n}^{k_{1}}(\sigma, \tau)=\min _{\tau} \max _{\sigma} \gamma_{n}^{k_{1}}(\sigma, \tau)$.

- Given a discount rate λ in $(0,1]$, the λ-discounted game with initial state k_{1} is the zero-sum game with payoff :

$$
\gamma_{\lambda}^{k_{1}}(\sigma, \tau)=\mathbb{E}_{k_{1}, \sigma, \tau}\left(\lambda \sum_{t=1}^{\infty}(1-\lambda)^{t-1} g\left(k_{t}, i_{t}, j_{t}\right)\right) .
$$

It has a value denoted by $v_{\lambda}\left(k_{1}\right)$.
$\delta=1-\lambda=\frac{1}{1+r}$ is called the discount factor, and r is the "interest rate".

Proposition v_{n} and v_{λ} are characterized by the Shapley equations:

- For $n \geq 0$ and k dans K :

$$
(n+1) v_{n+1}(k)=\operatorname{Val}_{\Delta(l) \times \Delta(J)}\left(g(k, i, j)+\sum_{k^{\prime} \in K} q\left(k^{\prime} \mid k, i, j\right) n v_{n}\left(k^{\prime}\right)\right) .
$$

And in any n-stage game, players have Markov optimal strategies.

- For λ in $(0,1]$ and k in K :

$$
v_{\lambda}(k)=\operatorname{Val}_{\Delta(I) \times \Delta(J)}\left(\lambda g(k, i, j)+(1-\lambda) \sum_{k^{\prime} \in K} q\left(k^{\prime} \mid k, i, j\right) v_{\lambda}\left(k^{\prime}\right)\right) .
$$

And in any λ-discounted game, players have stationary optimal strategies.
Example 1: $v_{n}=\frac{1}{2-\frac{n-1}{n} v_{n-1}}$ for $n \geq 1$, and $v_{\lambda}=\frac{1}{1+\sqrt{\lambda}}$ for each λ.

Example 2: A one-player game, with deterministic transitions and actions Black and Blue for Player 1. Payoffs are 1 or 0 in each case.

For λ small enough, $v_{\lambda}\left(k_{1}\right)=\frac{1}{2-\lambda}$ and it is optimal in the λ-discounted game to alternate between states k_{1} and k_{4}.

For $n \geq 0,(2 n+3) v_{2 n+3}=(2 n+4) v_{2 n+4}=n+3$ (first alternate between k_{1} and k_{4}, then go to $k_{2} 3$ or 4 stages before the end).

Limit values

1) The 1-player case: Markov Decision Processes.

For $\lambda>0$, player 1 has a pure stationary optimal strategy in the λ - game. The λ-discounted payoff of a pure stationary strategy $\mathbf{i}: K \rightarrow I$ satisfies:

$$
\gamma_{\lambda}^{k}(\mathbf{i})=\lambda g(k, \mathbf{i}(k))+(1-\lambda) \sum_{k^{\prime} \in K} q\left(k^{\prime} \mid k, \mathbf{i}(k)\right) \gamma_{\lambda}^{k^{\prime}}(\mathbf{i}) .
$$

Can be written in matrix form: $(I-(1-\lambda) A) v=\lambda \alpha$, where $v=\left(\gamma_{\lambda}^{k}(\mathbf{i})\right)_{k}$ and $(I-(1-\lambda) A)$ is invertible. So for each \mathbf{i} and k, the payoff $\gamma_{\lambda}^{k}(\mathbf{i})$ is a rational function of λ.

Theorem (Blackwell, 1962): In the 1-player case, there exists $\lambda_{0}>0$ and a pure stationary strategy which is optimal in any game with discount $\lambda \leq \lambda_{0}$. For $\lambda \leq \lambda_{0}$ and k in K, the value $v_{\lambda}(k)$ is a bounded rational fraction of λ, hence converges when λ goes to 0 .

Example 2 again: \mathbf{i} is the strategy which alternates forever between k_{1} and k_{4}. There exists no strategy which is exactly optimal in all n-stage games with n sufficiently large.

2) Stochastic games: The algebraic approach For each λ, players have stationary optimal strategies x_{λ} and y_{λ} : Consider the following set:

$$
\begin{aligned}
A= & \left\{\left(\lambda, x_{\lambda}, y_{\lambda}, w_{\lambda}\right) \in(0,1] \times\left(\mathbb{R}^{\prime}\right)^{K} \times\left(\mathbb{R}^{J}\right)^{K} \times \mathbb{R}^{K}, \forall k \in K,\right. \\
& \left.x_{\lambda}(k), y_{\lambda}(k) \text { stationary optimal in } \Gamma_{\lambda}(k), w_{\lambda}(k)=v_{\lambda}(k)\right\} .
\end{aligned}
$$

A can be written with finitely many polynomial inequalities:

$$
\begin{gathered}
\forall i, j, k, \sum_{i} x_{\lambda}^{i}(k)=1, x_{\lambda}^{i}(k) \geq 0, \sum_{j} y_{\lambda}^{j}(k)=1, y_{\lambda}^{j}(k) \geq 0, \\
\forall j, k, \sum_{i \in I} x_{\lambda}^{i}(k)\left(\lambda g(k, i, j)+(1-\lambda) \sum_{k^{\prime}} q\left(k^{\prime} \mid k, i, j\right) w_{\lambda}\left(k^{\prime}\right)\right) \geq w_{\lambda}(k), \\
\forall i, k, \sum_{j \in J} y_{\lambda}^{j}(k)\left(\lambda g(k, i, j)+(1-\lambda) \sum_{k^{\prime}} q\left(k^{\prime} \mid k, i, j\right) w_{\lambda}\left(k^{\prime}\right)\right) \leq w_{\lambda}(k) .
\end{gathered}
$$

A is semi-algebraic (can be written a finite union of sets, each of these sets being defined as the conjunction of finitely many weak or strict polynomial inequalities).

The projection of a semi-algebraic set is still semi-algebraic (Tarski-Seidenberg elimination theorem).
So $A^{*}=\left\{\left(\lambda, v_{\lambda}\right), \lambda \in(0,1]\right\}$ is also a semi-algebraic subset of $\mathbb{R} \times \mathbb{R}^{K}$. Implies the existence of a bounded Puiseux series development of v_{λ} in a neighborhood of $\lambda=0$.
Theorem (Bewley Kohlberg 1976):
There exists $\lambda_{0}>0$, a positive integer M, coefficients $r_{m} \in \mathbb{R}^{K}$ for each $m \geq 0$ such that for all $\lambda \in\left(0, \lambda_{0}\right]$, and all k in K :

$$
v_{\lambda}(k)=\sum_{m=0}^{\infty} r_{m}(k) \lambda^{m / M}
$$

Example 1: $v_{\lambda}=\frac{1}{1+\sqrt{\lambda}}=(1-\sqrt{\lambda})\left(1+\lambda+\ldots+\lambda^{n}+\ldots.\right)$
Corollary: v_{λ} converges when λ goes to 0 .
v_{n} also converges, and $\lim _{n \rightarrow \infty} v_{n}=\lim _{\lambda \rightarrow 0} v_{\lambda}$. (Uniform convergence of (v_{n}) and ($\left.v_{\lambda}\right)_{\lambda}$ are equivalent in general stochastic games, Ziliotto 2016)
3) Stochastic games: a recent simple approach Given stationary strategies $x: K \rightarrow \Delta(I)$ and $y: K \rightarrow \Delta(J)$, the λ-discounted payoff $\gamma_{\lambda}^{k}(x, y)$ is not bilinear in x and y, so in general $v_{\lambda}^{k} \neq \operatorname{val}\left(\gamma_{\lambda}^{k}(\mathbf{i}, \mathbf{j})\right)_{\mathbf{i}, \mathbf{j}}$, where \mathbf{i} and \mathbf{j} are pure stationary strategies.

However $\gamma_{\lambda}^{k}(x, y)$ can be computed via a Cramer linear system, with denominator:

$$
\Delta_{\lambda}^{0}(x, y)=\operatorname{det}(I d-(1-\lambda) Q(x, y)) \geq \lambda^{|K|}>0
$$

with $Q(x, y)$ the stochastic matrix on K induced by x and y. And both $\Delta_{\lambda}^{0}(x, y)$ and $\Delta_{\lambda}^{0}(x, y) \gamma_{\lambda}^{k}(x, y)$ are bilinear in $x, y!$
Optimal x satisfies: $\forall \mathbf{j}, \Delta_{\lambda}^{0}(x, \mathbf{j})\left(\gamma_{\lambda}^{k}(x, \mathbf{j})-v_{\lambda}^{k}\right) \geq 0$.
Optimal y satisfies: $\forall \mathbf{i}, \Delta_{\lambda}^{0}(\mathbf{i}, y)\left(\gamma_{\lambda}^{k}(\mathbf{i}, y)-v_{\lambda}^{k}\right) \leq 0$
Theorem (Atia and Oliu-Barton, 2019) : $\forall k, v_{\lambda}^{k}$ is the unique solution of the equation:

$$
0=\operatorname{val}\left(\Delta_{\lambda}^{0}(\mathbf{i}, \mathbf{j})\left(\gamma_{\lambda}^{k}(\mathbf{i}, \mathbf{j})-z\right)\right)_{\mathrm{i}, \mathbf{j}} .
$$

Corollary: (Atia-Oliu-Barton 2019) v_{λ}^{k} converges to the unique $v \in \mathbb{R}$ such that for all $z \in \mathbb{R}$:

$$
\left\{\begin{aligned}
(z>v) & \Longrightarrow \lim _{\lambda \rightarrow 0} \frac{1}{\lambda|k|} \operatorname{val}\left(\Delta_{\lambda}^{0}(\mathbf{i}, \mathbf{j})\left(\gamma_{\lambda}^{k}(\mathbf{i}, \mathbf{j})-z\right)\right)_{\mathrm{i}, \mathbf{j}}<0, \quad \text { and } \\
(z<v) & \Longrightarrow \lim _{\lambda \rightarrow 0} \frac{1}{\lambda|K|} \operatorname{val}\left(\Delta_{\lambda}^{0}(\mathbf{i}, \mathbf{j})\left(\gamma_{\lambda}^{k}(\mathbf{i}, \mathbf{j})-z\right)\right)_{\mathrm{i}, \mathbf{j}}>0 .
\end{aligned}\right.
$$

Corollary: (Atia-Oliu-Barton 2019) v_{λ}^{k} converges to the unique $v \in \mathbb{R}$ such that for all $z \in \mathbb{R}$:

$$
\left\{\begin{aligned}
(z>v) & \Longrightarrow \lim _{\lambda \rightarrow 0} \frac{1}{\lambda|k|} \operatorname{val}\left(\Delta_{\lambda}^{0}(\mathbf{i}, \mathbf{j})\left(\gamma_{\lambda}^{k}(\mathbf{i}, \mathbf{j})-z\right)\right)_{\mathrm{i}, \mathbf{j}}<0, \quad \text { and } \\
(z<v) & \Longrightarrow \lim _{\lambda \rightarrow 0} \frac{1}{\lambda|K|} \operatorname{val}\left(\Delta_{\lambda}^{0}(\mathbf{i}, \mathbf{j})\left(\gamma_{\lambda}^{k}(\mathbf{i}, \mathbf{j})-z\right)\right)_{\mathrm{i}, \mathbf{j}}>0 .
\end{aligned}\right.
$$

2.1 Beyond the standard model: the 1-player case

Consider a stochastic dynamic programing problem $\Gamma=\left(X, F, r, x_{0}\right)$ given by a non empty set of states X, an initial state x_{0}, a transition multifunction F from X to $Z:=\Delta_{f}(X)$ with non empty values, and a reward mapping r from X to $[0,1]$.

Assume X compact metric. Then $\Delta(X)$ is also compact metric space for the Kantorovich-Rubinstein metric: for u, u^{\prime} in $\Delta(X)$,

$$
\begin{aligned}
d_{K R}\left(u, u^{\prime}\right) & =\sup _{f: X \rightarrow \mathbb{R}, 1-L i p}\left|\int_{x \in X} f(x) d u(x)-\int_{x \in X} f(x) d u^{\prime}(x)\right| \\
& =\min _{\pi \in \Pi\left(u, u^{\prime}\right)} \int_{\left(x, x^{\prime}\right) \in X \times X} d\left(x, x^{\prime}\right) d \pi\left(x, x^{\prime}\right) .
\end{aligned}
$$

X is now viewed as a subset of $\Delta(X)$, and we define the set of invariant measures as:

$$
R=\{u \in \Delta(X),(u, u) \in \overline{\operatorname{conv} G r a p h}(F)\}
$$

Theorem (R-Venel 2017) Assume the state space is compact metric, payoffs are continuous and transitions are non expansive for $d_{K R}$. Then $\left(v_{n}\right)$ and (v_{λ}) uniformly converge to v^{*}, where for each initial state x,

$$
\begin{aligned}
& v^{*}(x)=\inf \left\{w(x), w: \Delta(X) \rightarrow[0,1] \text { affine } C^{0}\right. \text { s.t. } \\
& \text { (1) } \forall x^{\prime} \in X, w\left(x^{\prime}\right) \geq \sup _{u \in F\left(x^{\prime}\right)} w(u) \\
& \text { (2) } \forall u \in R, w(u) \geq r(u)\} .
\end{aligned}
$$

2.2 A compact continuous game with no limit value.

Finite set of states, compact action sets, continuous transitions.

First counterexample: Vigeral (2013), with non semi-algebraic transitions (Bolte, Gaubert, Vigeral 2015).

Following counterexample : polynomial transitions but non semi-algebraic action sets: variant of a counter-example of Ziliotto (2016), also mentioned in Sorin Vigeral (2015). The elementary proof here follows Renault (2015).

4 states: $K=\left\{k_{0}, k_{1}, 0^{*}, 1^{*}\right\}$.
In state k_{1} player 2 chooses β in $J=[0,1 / 2]$.
In state k_{0}, Player 1 chooses $\alpha \in I=\{0\} \cup\left\{\frac{1}{4^{n}}, n \geq 1\right\}$

Write $x_{\lambda}=v_{\lambda}\left(k_{0}\right), y_{\lambda}=v_{\lambda}\left(k_{1}\right)$.
Shapley equations:

$$
\begin{aligned}
& x_{\lambda}=\max _{\alpha \in I}(1-\lambda)\left(\left(1-\alpha-\alpha^{2}\right) x_{\lambda}+\alpha y_{\lambda}\right) \\
& y_{\lambda}=\min _{\beta \in J}\left(\lambda+(1-\lambda)\left(\left(1-\beta-\beta^{2}\right) y_{\lambda}+\beta x_{\lambda}+\beta^{2}\right)\right)
\end{aligned}
$$

Can be rewriten:

$$
\begin{align*}
& \lambda x_{\lambda}=(1-\lambda) \max _{\alpha \in I}\left(\alpha\left(y_{\lambda}-x_{\lambda}\right)-\alpha^{2} x_{\lambda}\right) \tag{1}\\
& \lambda y_{\lambda}=\lambda+(1-\lambda) \min _{\beta \in J}\left(\beta\left(x_{\lambda}-y_{\lambda}\right)+\beta^{2}\left(1-y_{\lambda}\right)\right) \tag{2}
\end{align*}
$$

Since $x_{\lambda}>0$, eq. (??) gives that $y_{\lambda}>x_{\lambda}$.

Lemma 0: For $\lambda \leq 1 / 5, \beta_{\lambda}=\frac{y_{\lambda}-x_{\lambda}}{2\left(1-y_{\lambda}\right)}$ is optimal for player 2 and

$$
\begin{equation*}
4 \lambda\left(1-y_{\lambda}\right)^{2}=(1-\lambda)\left(y_{\lambda}-x_{\lambda}\right)^{2} \tag{3}
\end{equation*}
$$

Consequence: $y_{\lambda}-x_{\lambda} \longrightarrow_{\lambda \rightarrow 0} 0$.
Let λ_{n} be a vanishing sequence of discount factors.
Lemma 1: if $y_{\lambda_{n}}$ and $x_{\lambda_{n}}$ converge to v in $[0,1]$, then $v \leq 1 / 2$, $y_{\lambda_{n}}-x_{\lambda_{n}} \sim 2 \sqrt{\lambda_{n}}(1-v)$ and $\beta_{\lambda_{n}} \sim \sqrt{\lambda_{n}}$.

Lemma 2: If for each $n, \sqrt{\lambda_{n}} \in I$, then $y_{\lambda_{n}}$ and $x_{\lambda_{n}}$ converge to $1 / 2$.
Lemma 3: If for each n, the open interval $\left(\frac{1}{2} \sqrt{\lambda_{n}}, 2 \sqrt{\lambda_{n}}\right)$ does not intersect I, then $\limsup { }_{n} y_{\lambda_{n}} \leq 4 / 9$.

Considering the sequences $\lambda_{n}=\frac{1}{2^{2 n}}$ and $\lambda_{n}=\frac{1}{2^{2 n+1}}$ is enough to conclude that there is no limit value.

2.2 A hidden stochastic game with no limit value

Hidden stochastic games: at the beginning of each period, players observe past actions and a public signal (but no longer the current state). Stochastic games with public information.

Model given by: finite sets of states K, of actions I for player 1, of actions J for player 2 , and of signals S, a payoff function $g: K \times I \times J \longrightarrow \mathbb{R}$, and a transition $q: K \times I \times J \longrightarrow \Delta(K \times S)$.

Ziliotto (2016) constructed a hidden stochastic game with no limit value. ($\lim \inf v_{\delta}=1 / 2$, $\lim \sup v_{\delta} \geq 5 / 9$). Disproves 2 conjectures of J.F. Mertens

Here: (R. Ziliotto 2020):
Theorem: For each $\varepsilon>0$, there exists a zero-sum HSG with payoffs in $[0,1]$ for P1, 6 states, 2 actions for each player, 6 signals, s.t.:

$$
\limsup _{\lambda \rightarrow 0} v_{\lambda} \geq 1-\varepsilon \text { and } \liminf _{\lambda \rightarrow 0} v_{\lambda} \leq \varepsilon
$$

Construction done in 4 progressive steps: a Markov chain on $[0,1]$, a Markov Decision Process, a stochastic game with infinite state space, and a final HSG.

Step 1: a Markov chain on $[0,1]$, with a parameter $\alpha \in(0,1 / 4)$. Initial state $q_{0}=1$.

Define for a in $\mathbb{N}, T_{a}=\inf \left\{t \geq 1, q_{t} \leq \alpha^{a}\right\}$.

$$
\mathbb{E}\left(T_{a+1}\right)=\frac{1}{\alpha}\left(1+\mathbb{E}\left(T_{a}\right)\right) \text { (grows exponentially with } a \text {) }
$$

Step 2: a Markov Decision Process on $[0,1]$

Recall $T_{a}=\inf \left\{t \geq 1, q_{t} \leq \alpha^{a}\right\}$.
Payoff of the a-strategy in the MDP with parameter α, reward R and discount $\delta: R s_{\alpha, \delta}(a)$, with

$$
s_{\alpha, \delta}(a)=\frac{\left(1-\alpha^{a}\right)(1-\alpha \delta)}{1-\alpha+(1-\delta) \alpha^{-a} \delta^{-a-1}} .
$$

(optimal strategies do not depend on R)

For $R=1$, the value is:

$$
v_{\alpha, \delta}=\operatorname{Max}_{a \in \mathbb{N}} s_{\alpha, \delta}(a)=\operatorname{Max}_{a \in \mathbb{N}} \frac{\left(1-\alpha^{a}\right)(1-\alpha \delta)}{1-\alpha+(1-\delta) \alpha^{-a} \delta^{-a-1}} \underset{\delta \rightarrow 1}{\longrightarrow} 1 .
$$

Optimal choice for $a \in \mathbb{R}_{+}$would be $a^{*}=a^{*}(\alpha, \delta)$ s.t. $\alpha^{a^{*}} \simeq \sqrt{\frac{1-\delta}{1-\alpha}}$.
Define $\Delta_{1}(\alpha)=\left\{\delta, a^{*} \in \mathbb{N}\right\}=\left\{1-(1-\alpha) \alpha^{2 a}, a \in \mathbb{N}\right\}$, and $\Delta_{2}(\alpha)=\left\{\delta, a^{*} \in \mathbb{N}+[1 / 4,3 / 4]\right\}$.

Proposition:

For $\delta \in \Delta_{1}(\alpha), v_{\alpha, \delta}=1-\frac{2}{\sqrt{1-\alpha}} \sqrt{1-\delta}+o(\sqrt{1-\delta})$.
For $\delta \in \Delta_{2}(\alpha), v_{\alpha, \delta} \leq 1-\frac{1}{\sqrt{\alpha^{1 / 2}(1-\alpha)}} \sqrt{1-\delta}+o(\sqrt{1-\delta})$.

Step 3: a stochastic game $\Gamma_{\alpha, \beta}$ with perfect information States: $X=\{(1, q), q \in[0,1]\} \cup\{(2, I), I \in[0,1]\} \cup 0^{*} \cup 1^{*}$, start at $(2,1)$. Sum of payoffs is $1, \mathrm{P} 1$ has payoff 0 in the left part, payoff 1 in the right part.

Player 1

Proposition: The stochastic game restricted to pure stationary strategies has an equilibrium in dominant strategies, and value:

$$
v_{\alpha, \beta, \delta}=\frac{1-v_{\beta, \delta}}{1-v_{\alpha, \delta} v_{\beta, \delta}}
$$

Proposition: Fix $\varepsilon>0$. For n large enough, fixing $\alpha=1 / n$ and $\beta=1 /(n+1)$ yields:

$$
\limsup _{\delta \rightarrow 1} v_{\alpha, \beta, \delta} \geq 1-\varepsilon, \text { and } \liminf _{\delta \rightarrow 1} v_{\alpha, \beta, \delta} \leq \varepsilon .
$$

Step 4: a constant-sum hidden stochastic game $\Gamma_{\alpha, \beta}^{*}$ with 6 states and 6 signals, initial state: $(2,1)$.

2.4 A non zero-sum stochastic game with no limit equilibrium payoff set

Like the standard model, except that each player $i=1,2$ now has his own payoff function $g_{i}: K \times I \times J \rightarrow \mathbb{R}$.

For each λ, there exists a Nash equilibrium of the λ-discounted game in stationary strategies.

R-Ziliotto 2020: Using the algebraic approach, one can easily prove that the set $E_{\lambda}^{\prime \prime}$ of stationary λ-discounted equilibrium payoffs converges to a non empty compact set of \mathbb{R}^{2}.
But there are examples where the set E_{λ} of λ-discounted equilibrium payoffs does not converge when $\lambda \rightarrow 0$.

For all $\lambda,(1 / 2,0) \in E_{\lambda}$.

If at eq. k_{3} is reached, the payoff

For $\lambda \notin L, E_{\lambda}=\{(1 / 2,0)\}$.
For $\lambda \in L, E_{\lambda}=1 / 2 \times[0,1 / 2]$.

Concluding Remarks

If we leave the standard model, the limit value may fail to exist.
However, there are positive results in the ergodic case, or in the acyclic case (Laraki, R 2020). Zero-sum counter-examples seems to be due to "nasty cycles".

Several other interesting notions of value not mentioned here (uniform value, limiting average, Borel payoff functions on plays...)
n-player quitting games: at each stage, each player decides to stop or continue. Whenever at least one player stops, the game is absorbed and each player receives a payoff depending on the set of stopping players. Payoff is 0 for everyone if no one ever stops.

Example: $n=4$

The game is defined by 2^{n-1} vector payoff in \mathbb{R}^{n} Is it true that for each $\varepsilon>0$, this game has a ε-Nash equilibrium? Open as soon as $n \geq 4$

