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Introduction

Introduction

• Given a A in IR I×J , the value of the matrix A is:

val(A) = val∆(I )×∆(J)(A) = max
x∈∆(I )

min
y∈∆(J)

∑
i∈I

∑
j∈J

xiyjai ,j = min
y∈∆(J)

max
x∈∆(I )

∑
i∈I

∑
j∈J

xiyjai ,j

val
(

2 −1
−1 1

)
=

1
5

• Standard stochastic game: at each stage one matrix will be played, and
the matrix of today together with the actions played today determine the
matrix played tomorrow.
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Limit value in stochastic games
Introduction

• Zero-sum stochastic game: a dynamic zero-sum game with a
Markovian structure, played in discrete time.

Outline:

1. The standard model: finitely many states and actions
1.1 The n-stage game and the λ -discounted game
1.2 Limit value

2. Beyond the standard model
2.1 The 1-player case
2.2 A compact continuous game with no limit value
2.3 A hidden stochastic game with no limit value
2.4 A non zero-sum stochastic game with no limit equilibrium payoff set

3. Concluding Remarks
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Limit value in stochastic games
1.Standard Model

1. Standard model (Shapley, 1953): a set of states K with an initial state
k1, actions sets I for player 1 and J for player 2, a payoff function
g : K × I ×J −→ IR , and a transition q : K × I ×J −→∆(K ).
K , I and J are assumed to be non empty finite sets.

Progress of the game:
- stage 1: players simultaneously choose i1 ∈ I and j1 ∈ J. i1 and j1 are
publicly announced, and P1’s stage payoff is g(k1, i1, j1).
- stage t ≥ 2 : kt is selected according to q(kt−1, it−1, jt−1) and publicly
announced. Players then simultaneously choose it ∈ I et jt ∈ J. it et jt
are announced, and P1’s payoff is g(kt , it , jt).

Example 1:

L R

T
B

(
0 1∗

1∗ 0∗

)

3 states. 1∗ and 0∗ are absorbing states.
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Limit value in stochastic games
1.Standard Model

A strategy of a player associates to every finite history
(k1, i1, j1, ....,kt−1, it−1, jt−1,kt), with t ≥ 1, a mixed action in ∆(I ) or
∆(J).

A couple of strategies (σ ,τ) induces a probability distribution IPk1,σ ,τ

over the set of plays (endowed with the product σ -algebra).
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Limit value in stochastic games
1.Standard Model

1.1 The n-stage game and the λ-discounted game

The n-stage game and the λ -discounted game

• For n ≥ 1, the n-stage game with initial state k1 is the zero-sum game
with payoff:

γ
k1
n (σ ,τ) = IEk1,σ ,τ

(
1
n

n

∑
t=1

g(kt , it , jt)

)
.

It has a value: vn(k1) = maxσ minτ γ
k1
n (σ ,τ) = minτ maxσ γ

k1
n (σ ,τ).

• Given a discount rate λ in (0,1], the λ -discounted game with initial
state k1 is the zero-sum game with payoff :

γ
k1
λ

(σ ,τ) = IEk1,σ ,τ

(
λ

∞

∑
t=1

(1−λ )t−1g(kt , it , jt)

)
.

It has a value denoted by vλ (k1).
δ = 1−λ = 1

1+r is called the discount factor, and r is the “interest rate”.
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Limit value in stochastic games
1.Standard Model

1.1 The n-stage game and the λ-discounted game

Proposition vn and vλ are characterized by the Shapley equations:
• For n ≥ 0 and k dans K :

(n+1) vn+1(k) = Val∆(I )×∆(J)

(
g(k , i , j) + ∑

k ′∈K
q(k ′|k, i , j) n vn(k ′)

)
.

And in any n-stage game, players have Markov optimal strategies.

• For λ in (0,1] and k in K :

vλ (k) = Val∆(I )×∆(J)

(
λ g(k , i , j) + (1−λ ) ∑

k ′∈K
q(k ′|k, i , j) vλ (k ′)

)
.

And in any λ -discounted game, players have stationary optimal
strategies.

Example 1: vn = 1
2− n−1

n vn−1
for n ≥ 1, and vλ = 1

1+
√

λ
for each λ .
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Limit value in stochastic games
1.Standard Model

1.1 The n-stage game and the λ-discounted game

Example 2: A one-player game, with deterministic transitions and actions
Black and Blue for Player 1. Payoffs are 1 or 0 in each case.

����
���� ���� ���� ����

k4

k1 k2 k3 0∗

?0
6

1

-1 -1

-
1

-1

-
1

*1

For λ small enough, vλ (k1) = 1
2−λ

and it is optimal in the λ -discounted
game to alternate between states k1 and k4.

For n ≥ 0, (2n+3)v2n+3 = (2n+4)v2n+4 = n+3 (first alternate between
k1 and k4, then go to k2 3 or 4 stages before the end).
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1.Standard Model

1.2 Limit values

Limit values

1) The 1-player case: Markov Decision Processes.
For λ > 0, player 1 has a pure stationary optimal strategy in the λ - game.
The λ -discounted payoff of a pure stationary strategy i : K → I satisfies:

γ
k
λ

(i) = λg(k, i(k)) + (1−λ ) ∑
k ′∈K

q(k ′|k , i(k))γ
k ′
λ

(i).

Can be written in matrix form: (I − (1−λ )A)v = λα, where v = (γk
λ

(i))k
and (I − (1−λ )A) is invertible. So for each i and k , the payoff γk

λ
(i) is a

rational function of λ .

Theorem (Blackwell, 1962): In the 1-player case, there exists λ0 > 0 and
a pure stationary strategy which is optimal in any game with discount
λ ≤ λ0. For λ ≤ λ0 and k in K , the value vλ (k) is a bounded rational
fraction of λ , hence converges when λ goes to 0.
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Limit value in stochastic games
1.Standard Model

1.2 Limit values

Example 2 again: i is the strategy which alternates forever between k1
and k4. There exists no strategy which is exactly optimal in all n-stage
games with n sufficiently large.

����
���� ���� ���� ����

k4

k1 k2 k3 0∗

?0
6

1
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-
1
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1
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Limit value in stochastic games
1.Standard Model

1.2 Limit values

2) Stochastic games: The algebraic approach
For each λ , players have stationary optimal strategies xλ and yλ :
Consider the following set:

A = {(λ ,xλ ,yλ ,wλ ) ∈ (0,1]× (IR I )K × (IRJ)K × IRK ,∀k ∈ K ,

xλ (k),yλ (k) stationary optimal in Γλ (k), wλ (k) = vλ (k)}.
A can be written with finitely many polynomial inequalities:

∀i , j ,k, ∑
i

x i
λ

(k) = 1,x i
λ

(k)≥ 0,∑
j

y j
λ

(k) = 1,y j
λ

(k)≥ 0,

∀j ,k, ∑
i∈I

x i
λ

(k)(λg(k , i , j) + (1−λ )∑
k ′
q(k ′|k , i , j)wλ (k ′))≥ wλ (k),

∀i ,k, ∑
j∈J

y j
λ

(k)(λg(k , i , j) + (1−λ )∑
k ′
q(k ′|k , i , j)wλ (k ′))≤ wλ (k).

A is semi-algebraic (can be written a finite union of sets, each of these
sets being defined as the conjunction of finitely many weak or strict
polynomial inequalities).
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Limit value in stochastic games
1.Standard Model

1.2 Limit values

The projection of a semi-algebraic set is still semi-algebraic
(Tarski-Seidenberg elimination theorem).
So A∗ = {(λ ,vλ ),λ ∈ (0,1]} is also a semi-algebraic subset of IR× IRK .
Implies the existence of a bounded Puiseux series development of vλ in a
neighborhood of λ = 0.
Theorem (Bewley Kohlberg 1976):
There exists λ0 > 0, a positive integer M, coefficients rm ∈ IRK for each
m ≥ 0 such that for all λ ∈ (0,λ0], and all k in K :

vλ (k) =
∞

∑
m=0

rm(k) λ
m/M .

Example 1 : vλ = 1
1+
√

λ
= (1−

√
λ )(1+ λ + ...+ λ n + ....)

Corollary: vλ converges when λ goes to 0.

vn also converges, and limn→∞vn = limλ→0vλ . (Uniform convergence of
(vn) and (vλ )λ are equivalent in general stochastic games, Ziliotto 2016)
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Limit value in stochastic games
1.Standard Model

1.2 Limit values

3) Stochastic games: a recent simple approach
Given stationary strategies x : K →∆(I ) and y : K →∆(J), the
λ -discounted payoff γk

λ
(x ,y) is not bilinear in x and y , so in general

vk
λ
6= val(γk

λ
(i, j))i,j, where i and j are pure stationary strategies.

However γk
λ

(x ,y) can be computed via a Cramer linear system, with
denominator:

∆0
λ

(x ,y) = det(Id − (1−λ )Q(x ,y))≥ λ
|K | > 0

with Q(x ,y) the stochastic matrix on K induced by x and y . And both
∆0

λ
(x ,y) and ∆0

λ
(x ,y)γk

λ
(x ,y) are bilinear in x , y !

Optimal x satisfies: ∀j,∆0
λ

(x , j)(γk
λ

(x , j)−vk
λ

)≥ 0.
Optimal y satisfies: ∀i,∆0

λ
(i,y)(γk

λ
(i,y)−vk

λ
)≤ 0

Theorem (Atia and Oliu-Barton, 2019) : ∀k , vk
λ
is the unique solution of

the equation:
0 = val(∆0

λ
(i, j)(γ

k
λ

(i, j)− z))i,j.
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Limit value in stochastic games
1.Standard Model

1.2 Limit values

Corollary: (Atia-Oliu-Barton 2019) vk
λ
converges to the unique v ∈ IR

such that for all z ∈ IR :




(z > v) =⇒ limλ→0
1

λ |K |
val(∆0

λ
(i, j)(γk

λ
(i, j)− z))i,j < 0, and

(z < v) =⇒ limλ→0
1

λ |K |
val(∆0

λ
(i, j)(γk

λ
(i, j)− z))i,j > 0.
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1.Standard Model

1.2 Limit values
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Limit value in stochastic games
2. Beyond the standard model

2.1 Beyond the standard model: the 1-player case

Consider a stochastic dynamic programing problem Γ = (X ,F , r ,x0) given
by a non empty set of states X , an initial state x0, a transition
multifunction F from X to Z := ∆f (X ) with non empty values, and a
reward mapping r from X to [0,1].

Assume X compact metric. Then ∆(X ) is also compact metric space for
the Kantorovich-Rubinstein metric: for u, u′ in ∆(X ),

dKR(u,u′) = supf :X→IR,1−Lip

∣∣∣∣
∫

x∈X
f (x)du(x)−

∫

x∈X
f (x)du′(x)

∣∣∣∣

= min
π∈Π(u,u′)

∫

(x ,x ′)∈X×X
d(x ,x ′)dπ(x ,x ′).

X is now viewed as a subset of ∆(X ), and we define the set of invariant
measures as:

R = {u ∈∆(X ),(u,u) ∈ convGraph(F )}
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Limit value in stochastic games
2. Beyond the standard model

Theorem (R-Venel 2017) Assume the state space is compact metric,
payoffs are continuous and transitions are non expansive for dKR . Then
(vn) and (vλ ) uniformly converge to v∗, where for each initial state x ,

v∗(x) = inf{w(x),w : ∆(X )→ [0,1] affine C 0 s.t.

(1) ∀x ′ ∈ X ,w(x ′)≥ supu∈F (x ′)w(u)

(2) ∀u ∈ R,w(u)≥ r(u)}.
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Limit value in stochastic games
2. Beyond the standard model

2.2 A compact continuous game with no limit value.

Finite set of states, compact action sets, continuous transitions.

First counterexample: Vigeral (2013), with non semi-algebraic transitions
(Bolte, Gaubert, Vigeral 2015).

Following counterexample : polynomial transitions but non semi-algebraic
action sets: variant of a counter-example of Ziliotto (2016), also
mentioned in Sorin Vigeral (2015). The elementary proof here follows
Renault (2015).
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Limit value in stochastic games
2. Beyond the standard model

4 states: K = {k0,k1,0∗,1∗}.
In state k1 player 2 chooses β in J = [0,1/2].
In state k0, Player 1 chooses α ∈ I = {0}∪{ 1

4n ,n ≥ 1}

"!
# 

"!
# 
"!
# 

"!
# 

0∗ 1∗

0 1

P1 P2α

β

1−α−α2 1−β −β 2

α2 β 2

-

�
? ?

? ?
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2. Beyond the standard model

Write xλ = vλ (k0), yλ = vλ (k1).
Shapley equations:

xλ = max
α∈I

(1−λ )((1−α−α
2)xλ + αyλ ),

yλ = min
β∈J

(
λ + (1−λ )((1−β −β

2)yλ + βxλ + β
2)
)
.

Can be rewriten:

λxλ = (1−λ )max
α∈I

(
α(yλ −xλ )−α

2xλ

)
(1)

λyλ = λ + (1−λ )min
β∈J

(β (xλ −yλ ) + β
2(1−yλ )) (2)

Since xλ > 0, eq. (??) gives that yλ > xλ .

Lemma 0: For λ ≤ 1/5, βλ =
yλ−xλ

2(1−yλ ) is optimal for player 2 and

4λ (1−yλ )2 = (1−λ )(yλ −xλ )2. (3)
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Limit value in stochastic games
2. Beyond the standard model

Consequence: yλ −xλ −→λ→0 0.
Let λn be a vanishing sequence of discount factors.

Lemma 1: if yλn
and xλn

converge to v in [0,1], then v ≤ 1/2,
yλn
−xλn

∼ 2
√

λn(1−v) and βλn
∼
√

λn.

Lemma 2: If for each n,
√

λn ∈ I , then yλn
and xλn

converge to 1/2.

Lemma 3: If for each n, the open interval ( 1
2

√
λn,2
√

λn) does not
intersect I , then limsupn yλn

≤ 4/9.

Considering the sequences λn = 1
22n and λn = 1

22n+1 is enough to conclude
that there is no limit value.
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2. Beyond the standard model

2.2 A hidden stochastic game with no limit value

Hidden stochastic games: at the beginning of each period, players
observe past actions and a public signal (but no longer the current state).
Stochastic games with public information.

Model given by: finite sets of states K , of actions I for player 1, of
actions J for player 2, and of signals S , a payoff function
g : K × I ×J −→ IR , and a transition q : K × I ×J −→∆(K ×S).

Ziliotto (2016) constructed a hidden stochastic game with no limit value.
(liminf vδ = 1/2, limsupvδ ≥ 5/9). Disproves 2 conjectures of J.F.
Mertens

Here: (R. Ziliotto 2020):
Theorem: For each ε > 0, there exists a zero-sum HSG with payoffs in
[0,1] for P1, 6 states, 2 actions for each player, 6 signals, s.t.:

limsup
λ→0

vλ ≥ 1− ε and liminf
λ→0

vλ ≤ ε.
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Limit value in stochastic games
2. Beyond the standard model

Construction done in 4 progressive steps: a Markov chain on [0,1], a
Markov Decision Process, a stochastic game with infinite state space,
and a final HSG.

Step 1: a Markov chain on [0,1], with a parameter α ∈ (0,1/4).
Initial state q0 = 1.

q

αq

6

?

11

0

1−α

α

Define for a in IN, Ta = inf{t ≥ 1,qt ≤ αa}.

IE (Ta+1) = 1
α

(1+ IE (Ta)) (grows exponentially with a)
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2. Beyond the standard model

Step 2: a Markov Decision Process on [0,1]

q

αq

6

?

11

0

1−α

α

�R∗

0∗

1−q

q

�

Recall Ta = inf{t ≥ 1,qt ≤ αa}.
Payoff of the a-strategy in the MDP with parameter α, reward R and
discount δ : R sα,δ (a), with

sα,δ (a) =
(1−αa)(1−αδ )

1−α + (1−δ )α−aδ−a−1 .

(optimal strategies do not depend on R)
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Limit value in stochastic games
2. Beyond the standard model

For R = 1, the value is:

vα,δ = Maxa∈INsα,δ (a) = Maxa∈IN
(1−αa)(1−αδ )

1−α + (1−δ )α−aδ−a−1 −−−→
δ→1

1.

Optimal choice for a ∈ IR+ would be a∗ = a∗(α,δ ) s.t. αa∗ '
√

1−δ

1−α
.

Define ∆1(α) = {δ ,a∗ ∈ IN}= {1− (1−α)α2a,a ∈ IN},
and ∆2(α) = {δ ,a∗ ∈ IN + [1/4,3/4]}.

Proposition:
For δ ∈∆1(α), vα,δ = 1− 2√

1−α

√
1−δ +o(

√
1−δ ).

For δ ∈∆2(α), vα,δ ≤ 1− 1√
α1/2(1−α)

√
1−δ +o(

√
1−δ ).
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Limit value in stochastic games
2. Beyond the standard model

Step 3: a stochastic game Γα,β with perfect information
States: X = {(1,q),q ∈ [0,1]} ∪ {(2, l), l ∈ [0,1]} ∪ 0∗ ∪ 1∗, start at
(2,1). Sum of payoffs is 1, P1 has payoff 0 in the left part, payoff 1 in
the right part.

Player 1 Player 2

J1, 1− q J2, 1− l

(1, 1)

(1, q)

(1, αq)

(1, 0)

0∗

(2, 1)

(2, l)

(2, βl)

(2, 0)

1∗
J1, q

W1, α

W1, 1− α

J2, l

W2, β

W2, 1− β

1
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Limit value in stochastic games
2. Beyond the standard model

Proposition: The stochastic game restricted to pure stationary strategies
has an equilibrium in dominant strategies, and value:

vα,β ,δ =
1−vβ ,δ

1−vα,δ vβ ,δ
.

Proposition: Fix ε > 0. For n large enough, fixing α = 1/n and
β = 1/(n+1) yields:

limsup
δ→1

vα,β ,δ ≥ 1− ε, and liminf
δ→1

vα,β ,δ ≤ ε.
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Limit value in stochastic games
2. Beyond the standard model

Step 4: a constant-sum hidden stochastic game Γ∗
α,β

with 6 states and 6 signals, initial state: (2,1).

Player 1 Player 2

Value v∗α,β,δ = vα,β,δ.

(1, 1)

(1, 0)

0∗

(2, 1)

(2, 0)

1∗

W1, 1− α, s1

W1, α(1− α), s′1

W1, α
2, s′1

W1, α, s
′
1

W1, 1− α, s1

J1, s2

J1, s
∗
0

W2, 1− β, s2

W2, β(1− β), s′2

W2, β
2, s′2

W2, β, s
′
2

W2, 1− β, s2

J2, s1

J2, s
∗
1

1

27/32



Limit value in stochastic games
2. Beyond the standard model

2.4 A non zero-sum stochastic game with no limit
equilibrium payoff set

Like the standard model, except that each player i = 1,2 now has his own
payoff function gi : K × I ×J → IR .

For each λ , there exists a Nash equilibrium of the λ -discounted game in
stationary strategies.

R-Ziliotto 2020: Using the algebraic approach, one can easily prove that
the set E ′′

λ
of stationary λ -discounted equilibrium payoffs converges to a

non empty compact set of IR2 .
But there are examples where the set Eλ of λ -discounted equilibrium
payoffs does not converge when λ → 0.
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2. Beyond the standard model

k1

k2

k3

(1/2,0)∗

(0,1/2)∗

T B

RL

P1

(1/2,0) (1/2,1/2)

P2

(1/2,1/2)

L R
T
B

(
(1,0) 	 (−1,−1)∗

(−1,−1)∗ (0,1)∗

)
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2. Beyond the standard model

k1

k2

k3

(1/2, 0)∗

(0, 1/2)∗

T B

RL

P1

(1/2, 0) (1/2, 1/2)

P2

(1/2, 1/2)

L R
T
B

(
(1, 0) 	 (−1,−1)∗

(−1,−1)∗ (0, 1)∗

)

1

For all λ , (1/2,0) ∈ Eλ .

If at eq. k3 is reached, the payoff
has to be (1/2,1/2), and
λ ∈ L = {1− ( 1

2 )1/N ,N ∈ IN+}.

For λ /∈ L,Eλ = {(1/2,0)}.
For λ ∈ L,Eλ = 1/2× [0,1/2].

2
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3. Concluding Remarks

Concluding Remarks

If we leave the standard model, the limit value may fail to exist.

However, there are positive results in the ergodic case, or in the acyclic
case (Laraki, R 2020). Zero-sum counter-examples seems to be due to
"nasty cycles".

Several other interesting notions of value not mentioned here (uniform
value, limiting average, Borel payoff functions on plays...)
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Limit value in stochastic games
3. Concluding Remarks

n-player quitting games: at each stage, each player decides to stop or
continue. Whenever at least one player stops, the game is absorbed and
each player receives a payoff depending on the set of stopping players.
Payoff is 0 for everyone if no one ever stops.

Example: n = 4

The game is defined by 2n−1 vector payoff in IRn Is it true that for each
ε > 0, this game has a ε-Nash equilibrium? Open as soon as n ≥ 4
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