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Abstract

We look at the history of research on vagueness and the
Sorites paradox. That search has been largely unsuccessful and
the existing solutions are not quite adequate. But following
Wittgenstein we show that the notion of a successful language
game works.

Language games involving words like “small” or “red” can be
successful and people can use these words to cooperate with
others. And yet, ultimately these words do not have a
meaning in the sense of a tight semantics. It is just that most
of the time these games work. It works to say, “the light is
green and we can go,” even though the color word “green”
does not actually have a semantics.



According to Hindu scriptures, the evil king Hiranyakashyapu
prayed to the god Brahma to grant him the following boon:

Grant me that I not die within any residence or
outside any residence, during the daytime or at night, nor
on the ground or in the sky. Grant me that my death not
be brought by any being other than those created by you,
nor by any weapon, nor by any human being or animal.

Eventually, Hiranyakashyapu was killed by a creature (Narasimha )
which was half man and half lion, not killed in day or night but at
dusk, and not indoors nor outdoors but at the doorstep.



Evidently, Hiranyakashyapu did not realize that with ambiguous
A,B, a conjunction ¬A ∧ ¬B could be true even though A ∨ B is
also true. He was not killed indoors and he was not killed outdoors
even though he was killed “either indoor or outdoor”. We will
return to this point which is also discussed by Michael Dummett



But, now, consider a vague statement, for instance
‘That is orange’. If the object pointed to is definitely
orange, then of course the statement will be definitely
true; if it is definitely some other colour, then the
statement will be definitely false; but the object may be a
borderline case, and then the statement will be neither
definitely true nor definitely false.... - the disjunctive
statement, ‘That is either orange or red’ will be definitely
true even though neither of its disjuncts is.

(Dummett 1975)
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Background

The Megarian philosopher Eubulides (4th century BC) is usually
credited with the first formulation of the following puzzle.

1. 1 grain of wheat does not make a heap.

2. if n grains do not make a heap then n+1 grains do not make
a heap. Therefore,

3. 1 million grains don’t make a heap.



This inductive argument can be replaced by a large number of
applications of modus ponens

1. 1 grain of wheat does not make a heap.

2. If 1 grain doesn’t make a heap, then 2 grains don’t.

3. If 2 grains don’t make a heap, then 3 grains don’t.
...

4. If 999,999 grains don’t make a heap, then 1 million grains
don’t. Therefore,

5. 1 million grains don’t make a heap.



Since soros is the Greek word for a heap, this puzzle is often known
as the Sorites paradox. Here 2-4 replaced the inductive step, if n
grains do not make a heap then n+1 grains do not make a heap.



There is a similar Indian story about a woman who cured her
husband of his opium addiction. She weighed his usual opium
ration against a ball of woolen thread. Then every day, she cut off
about an inch or so of the ball and she weighed his opium ration
against the reduced ball. The husband did not notice any
difference from one day to the next, but over time, the ball became
empty and the husband was cured.

This story must be recent as opium was only introduced into India
by the Mughals in the 17th century, long after Eubulides.



Precisification and super-truth

One way to deal with this problem is epistemic. Namely that there
is an n for which n grains do not make a heap but that n + 1 does
but we do not know which n it is. We will say that a statement is
super-true if it is true regardless of which n it is and it is
super-false if it is false regardless of which n it is. In that case
(∃n)(¬H(n) ∧ H(n + 1)) is super-true although we are unable to
give an explicit n.



Kit Fine (Fine 75) says,

In this section we shall argue for the super-truth
theory, that a vague sentence is true if it is true for all
admissible and complete specifications. An intensional
version of the theory is that a sentence is true if it is true
for all ways of making it completely precise ... As such, it
is a sort of principle of non-pedantry : truth is secured if
it does not turn upon what one means.



Fine manages to save a great deal of classical logic and our
intuitions this way. Suppose there is doubt whether a certain patch
is pink or red. Then, according to him, it is not (super)true that it
is pink, it is not true that it is red, but it is true that it is either
pink or red. For regardless of where we draw the boundary, it will
be one or the other. And it is false that it is both pink and red for
no path to a complete specification will render it both.



Fuzzy logic

Lotfi Zadeh (1965) addresses this problem by resorting to truth
values properly between 0 and 1.

More often than not, the classes of objects
encountered in the real physical world do not have
precisely defined criteria of membership. For example,
the class of animals clearly includes dogs, horses, birds,
etc. as its members, and clearly excludes such objects as
rocks, fluids, plants, etc. However, such objects as
starfish, bacteria, etc. have an ambiguous status with
respect to the class of animals. The same kind of
ambiguity arises in the case of a nmnber such as 10 in
relation to the ”class” of all real numbers which are
much greater than 1.”



Fuzzy logic, contd

Clearly, the ”class of all real numbers which are much
greater than 1,” or ”the class of beautiful women,” or
”the class of tall men,” do not constitute classes or sets
in the usual mathematical sense of these terms. Yet, the
fact remains that such imprecisely defined ”classes” play
an important role in human thinking, particularly in the
domains of pattern recognition, communication of
information, and abstraction.



Zadeh addresses his concerns by allowing fuzzy truth values in the
real interval [0,1]. Let R(x) indicate that the object x is red. If the
fuzzy truth value of R(x) is close to zero then it means that x is
pretty much not red. If it is close to 1 then x is pretty close to
being red. Now if you have a series of objects o1, o2, ..., o100 and
the R values gradually go up from 0 to 1 then one could say that
the objects are gradually becoming more red, although you might
not be able to distinguish say o49 and o50. Thus the Sorites
paradox is defanged so to say.



One would expect that even though fuzzy truth values lie between
0 and 1 they should at least be interpersonal. If I think that
something is .3 red then you should also think that it is .3 red. But
in a test I administered in Sicily, (Parikh 1991), I found that people
gave very different fuzzy values to questions like “is a handkerchief
an item of clothing?” or “is Sonia Gandhi an Indian?”. A
handkerchief is made of cotton but we do not usually wear it so to
the first question, intuitions conflict. Similarly Sonia Gandhi was
Italian by birth but became an Indian citizen so again intuitions
conflicted. These conflicts were resolved by different people in
different ways so there was no stable fuzzy value.



Almost consistent theories

But perhaps communication does not necessitate having the exact
same truth value for a proposition and perhaps some agreement
suffices and is useful. We will return to this question.
Let us define an inductive set of natural numbers to be a
nonempty set X such that if n ∈ X then n + 1 ∈ X . Clearly such a
set will contain all large numbers and if it contains 0, it will
contain all numbers.
Let us define a bounded set X to be a set such that
(∃M)(∀n)(n ∈ X → n < M). Clearly a bounded set must be finite
whereas an inductive set will be infinite. So can a set be both
bounded and inductive? Seems not.



Yesenin-Volpin points out that such sets do exist in some sense.
For let H be the set of heartbeats in one’s childhood. No one
ceases to be a child in a single heartbeat. So if n ∈ H then
n + 1 ∈ H. And yet, assuming at most a hundred heartbeats per
minute, there are fewer than 10 million heartbeats before one
reaches the age of eighteen. So H is bounded above by 10 million.
H is both inductive and bounded.

But isn’t it inconsistent to speak of H at all?



To make things easier let us replace 10 million by a mere 100. The
inconsistency should be even more glaring.

Consider a set X of formulas
{H(1),H(1) → H(2), ...H(99) → H(100),¬H(100)} This set is
inconsistent as the conclusion H(100) can be derived from the first
100 formulas in X contradicting the last formula.

However, let T be some consistent theory, say T is PA = Peano
Arithmetic. Let T ′ = T ∪ X . Evidently T ′ is inconsistent since it
includes X . However, let A be some formula of number theory
(not involving the predicate H) whose proof in T ′ takes less than
100 lines. Then A is a theorem of PA.



Proof: Clearly the proof includes less than 100 formulas of the
form H(n) → H(n + 1) and hence some formula of the form
H(n) → H(n + 1) is absent. To fix thoughts suppose that the
formula H(50) → H(51) is missing from the proof. Then extend
the usual interpretation of PA by interpreting H(k) as k < 51. All
the formulas which occur in the proof become true and A becomes
a theorem of PA. 2

This means that even though, in the classical sense there is no set
like H and the properties of the putative H are inconsistent, it still
works to reason with H. Only a dogmatic person will insist that
there are no children or no heartbeats in childhood “because the
very notions are inconsistent”.



Vagueness and communication

In the following example, the usefulness of communication consists
of a saving of time. Ann and Bob teach at the same college. Ann
teaches Math and Bob teaches History. One day Ann telephones
Bob from school.
Ann: Bob, can you bring my topology book in?
Bob: What does it look like?
Ann: It is blue.
Bob: OK.
Ann: Be sure to bring it, I am going to lunch now, but I need it for
class at 2 PM.



It so happens that Ann and Bob have somewhat different notions
of what the word “blue” means, i.e. which things it applies to.



Among Ann’s 1,000 books, there are 250 that Ann would call blue
whereas there are 300 that Bob would call blue.

Let X= Blue(Ann), the set of those books that Ann considers to
be blue, and Y = Blue(Bob), the set of those books that Bob
considers to be blue.

There are 225 books that both would call blue (i.e. they are in
X ∩ Y )

675 that neither would (they are in X ∩ Y ).

But there are 25 books that Ann, but not Bob would call blue
((they are in X ∩ Y ))

and 75 books that Bob, but not Ann, would call blue (they are in
X ∩ Y ). So they would, if asked, disagree on 100 books.



I shall assume that neither Ann nor Bob is aware of this. Now Ann
intends Bob to look through the set X, but having his own notion
of what blue is, he will look in Y = Blue(Bob). Here are the
expected (average) number of books that Bob would look at in
two cases.
If Bob had no information: 500 books on average. (If he is lucky,
the first book that he looks at will be the topology book. If
unlucky, the last book he looks at will be the topology book. The
average is 500.5, or approximately 500.)



In the actual case, since the book is in X, with probability 0.9 it is
also in Y. Since Bob actually looks in Y, and if necessary, in the
complement of Y, with probability 0.9 he only needs to look
through Y, or at most 300 books, yielding 150 average. With
probability 0.1 he will not find it in Y.

In time he will have looked through all of Y and will only need to
look at about 350 further books in the complement of Y. Thus he
will look at .9(150) + .1(300 + 350) = 200 books, which is the
average in this case.

Thus Bob is saved considerable labour by what Ann said though
his interpretation of “blue” is not what Ann intended. Instead of
having to look through 500 he looks through 200. No proposition
is conveyed by Ann to Bob for they do not share a semantics for
blue but he is helped.



Here is Wittgenstein in his Remarks on the Foundations of
Mathematics

“What we call counting is an important part of life’s
activities. Counting and calculating are not – e.g. –
simply a pastime....

The truth is that counting has proved to pay – “then
do you want to say that being true means being usable or
useful?” “No, not that but that it can’t be said of the
series of natural numbers anymore than of our language
that it is true, but that is usable, and above all it is
used”.



Coming back to Ann, we need not ask if Ann was speaking the
truth when she said that the book was blue. There is indeed a
10% chance that Bob would disagree with her. But she did help
Bob in his search for her book. I think Wittgenstein would like this
example where a language game is successful even though it is not
underpinned by a solid notion of objective truth.

I would suggest that the reason this problem has been so thorny is
that we have been looking for a semantics and a logic. We did not
consider that there might be successful language games without
there being a semantics to justify our language.



Vagueness and language games

Suppose that a community of people (like us) use words like
“blue”, “red”, “large”, “small” etc. and assign certain properties
to the putative predicates. But on second thought it turns out that
these properties are inconsistent and hence there are no such
predicates (classically speaking). Does it follow that these people
should constantly fall into confusion and be perpetually at war
with each other? Not so.



For we saw that Bob and Ann can “communicate” even though
they assign different extensions to the word “blue”. We also saw
that someone who believes that (i) 0 is small, that (ii) if n is small
then so is n + 1 and that (iii) 1010 is not small, may succeed in
making correct inferences provided only that she does not perform
deductions of more than 1010 lines.



Dealing with non-transitivity

If we define I (x , y) to mean that x , y are indiscriminable in some
important way then I is reflexive and symmetric but may not not
transitive. In other words, there can exist x , y , z such that x , y are
indiscriminable, y , z are indiscriminable, but x , z are discriminable.
Thus I not an equivalence relation. This fact is of course behind
the Sorites paradox. This can create a problem in practical matters
as when we are sorting socks after a wash and dry.



Suppose we have six socks, A, B, C, D, E, F where the sets {A,B},
{C,D} and {E,F} are respectively from three different pairs of
socks. Moreover each of A, B will match each of C, D. Each of C,
D will match with each of E, F. However, because of intransitivity,
A, B do not match E, F.

A ... B ... C ... D ... E ... F



Suppose now that all six socks have been washed and dried and,
relying on matching, we pair together B,C which match. We also
put together D, E which match.

A ... (B ... C) ... (D ... E) ... F

We are now left with A, F which do not match! How do we deal
with this problem? We relied on indiscriminability which is not
transitive. We could start over, but if there are a lot of socks we
might be working for ever!



At first sight it looks as if finding a good matching might be an
NP-complete problem, quite hard if there are a hundred socks.No
doubt this is one reason centipedes do not wear socks!
It turns out that there is a transitive relation J which depends on
I , indiscriminability, but does not coincide with it. Given a sock s,
let M(s) = {t : I (s, t)} And let J(s, t) mean that M(s) = M(t).
Then J(s, t) implies I (s, t) but is stronger. Moreover, J is
transitive. Relying on I , we construct J and pair two socks s, t iff
J(s, t). This algorithm runs in n2 time, showing that the original
problem was not NP-complete.



To see that J(x , y) implies I (x , y) note the following. Suppose
J(x , y). Now I (x , x) holds. Hence x ∈ M(x). Given J(x , y),
M(x) = M(y) and hence x ∈ M(y). Ergo I (x , y).
On the other hand I does not imply J, for in the example with
A,..,F above, I (B,C ) holds. But while I (C ,E ) holds, I (B,E ) fails.
Hence E ∈ M(C ) but E 6∈ M(B). So J(B,C ) fails, and I (B,C )
fails to imply J(B,C ). (See Parikh et al 2001 for details).



However, we do need a theory of what happens when different
agents interpret the same vague predicate in different ways. Many
cooks making incompatible decisions can spoil a broth, but they
could also come up with a good feast. Vagueness is not always a
disaster.



Consider the following situation. Country A moves some troops to
its border with country B. If there is one soldier, we will not say,
“A is massing troops,” and if there are a million, we will. So “A is
massing troops on the border with B” is a vague statement and
interpreted by different governments and different generals in
different ways. And yet we can predict something. We badly need
a theory of how that happens.



Conclusion

We showed quite convincingly that vague predicates do not have a
semantics and hence they do not have a logic. But they do have a
use and we found how this use falls inside Wittgenstein’s
requirement that a language game be useful and be used.

Here is a question I would raise – for the future. Suppose that
people’s reactions to ”is it blue?” go according to experimental
data. Then they will have different ”semantics” for blue which will
vary a little from person to person and from the same person to
himself from time to time. But some algorithms will still ”work”.
It is perfectly fine to say, ”green means go and red means stop”
even though both red and green are vague predicates.



Thanks to Juliet Floyd, David Mumford, Paul Pedersen, Gordon
Plotkin, Vaughan Pratt, R. Ramanujam, Alan Stearns and Rineke
Verbrugge for comments.
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